Abstract

In this paper, we demonstrated that an optical tweezer setup can be calibrated by using a part of the symmetric intensity distribution of the trapped particle in digital video microscopy. First, we modified the radial symmetry center method, which was a recently proposed position detection algorithm. This algorithm uses gradient vectors of the particle intensity distribution, which allows us to use a part of the symmetric intensity distribution in the calculation of the particle center. We applied the modified algorithm to different camera image configurations, which are obtained by cutting the same experimental video frames. We further calibrated the trap stiffness for each camera configuration. Then we compared the trap stiffness values and the position distributions. As a result, we can conclude that optical tweezer setups can be calibrated by using a part of the intensity distribution of the trapped particle.

© 2016 Optical Society of America

Full Article  |  PDF Article
More Like This
Finding trap stiffness of optical tweezers using digital filters

Pedro Almendarez-Rangel, Beatriz Morales-Cruzado, Erick Sarmiento-Gómez, and Francisco G. Pérez-Gutiérrez
Appl. Opt. 57(4) 652-658 (2018)

High trapping forces for high-refractive index particles trapped in dynamic arrays of counterpropagating optical tweezers

Astrid van der Horst, Peter D. J. van Oostrum, Alexander Moroz, Alfons van Blaaderen, and Marileen Dogterom
Appl. Opt. 47(17) 3196-3202 (2008)

Toward optical-tweezers-based force microscopy for airborne microparticles

Rory M. Power, Daniel R. Burnham, and Jonathan P. Reid
Appl. Opt. 53(36) 8522-8534 (2014)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription