Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Beam splitters for p-polarized light using a high-index quarter-wave layer embedded in a low-index cube prism

Not Accessible

Your library or personal account may give you access

Abstract

A high-index quarter-wave layer (QWL) embedded in a low-index cube prism is designed to achieve 50%–50% beam splitting for incident p-polarized light at a 45° angle of incidence. This is accomplished when the ratio of the refractive index of the QWL to that of the prism is n=3.336666. Such a refractive index ratio is realized, e.g., with a Ge QWL embedded in a LiF cube at 8.357 μm wavelength. Spectral, angular, and film-thickness sensitivities of this mid-IR beam splitter (BS) are presented. Free-standing QWL pellicles of GaP and GaAs can also function as 50%–50% BSs for incident p-polarized light at 45° at visible and IR wavelengths of 0.610 μm and 2.929 μm, respectively. An application in interferometry is briefly discussed.

© 2015 Optical Society of America

Full Article  |  PDF Article
More Like This

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.