Abstract

We present an approach for improving liquid crystal variable retarder (LCVR)-based spectroscopic polarization measurements. As deduced mathematically, the transfer coefficients from the random intensity noise to the signal noise are functions of modulation parameters of the LCVR, i.e., modulation range (MR) and initial retardation. Simulations allow more details about the roles of two parameters. A broad MR reduces effectively the values of the coefficients and leads to a better signal quality. However, as the MR narrows, initial retardation begins to influence the signal quality. To obtain a high-quality spectrum, a recommended solution is to settle the MR more than π at each wavelength. This treatment has two advantages: non-sinusoidal modulation becomes possible and the modulations do not average to zero. Moreover, it weakens the interference of non-uniform intensity distribution in wavelengths of the signal spectrum. These conclusions are proven in experiments. Further, this approach is valid for other polarimeters and ellipsometers based on LCVRs.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Normal-incidence reflectance difference spectroscopy based on a liquid crystal variable retarder

Shuchun Huo, Chunguang Hu, Wanfu Shen, Yanning Li, Lidong Sun, and Xiaotang Hu
Appl. Opt. 55(33) 9334-9340 (2016)

Preflight calibration of the Imaging Magnetograph eXperiment polarization modulation package based on liquid-crystal variable retarders

Néstor Uribe-Patarroyo, Alberto Alvarez-Herrero, and Valentín Martínez Pillet
Appl. Opt. 51(21) 4954-4970 (2012)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription