Abstract

Based on scalar diffraction theory and the geometric structure of liquid crystal on silicon (LCoS), we study the impulse responses and image depth of focus in a holographic three-dimensional (3D) display system. Theoretical expressions of the impulse response and the depth of focus of reconstructed 3D images are obtained, and experimental verifications of the imaging properties are performed. The results indicated that the images formed by holographic display based on the LCoS device were periodic image fields surrounding optical axes. The widths of the image fields were directly proportional to the wavelength and diffraction distance, and inversely proportional to the pixel size of the LCoS device. Based on the features of holographic 3D imaging and focal depth, we enhance currently popular hologram calculation methods of 3D objects to improve the computing speed of hologram calculation.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Light-field and holographic three-dimensional displays [Invited]

Masahiro Yamaguchi
J. Opt. Soc. Am. A 33(12) 2348-2364 (2016)

Fast polygon-based method for calculating computer-generated holograms in three-dimensional display

Yijie Pan, Yongtian Wang, Juan Liu, Xin Li, and Jia Jia
Appl. Opt. 52(1) A290-A299 (2013)

Binocular holographic three-dimensional display using a single spatial light modulator and a grating

Yanfeng Su, Zhijian Cai, Quan Liu, Lingyan Shi, Feng Zhou, and Jianhong Wu
J. Opt. Soc. Am. A 35(8) 1477-1486 (2018)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (26)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription