Abstract

The optical absorption in 25-μm-thick, single-crystal Si foils fabricated using a novel exfoliation technique for solar cells is studied and improved in this work. Various light-trapping and optical absorption enhancement schemes implemented show that it is possible to substantially narrow the gap in optical absorption loss between the 25 μm Si foils and industry-standard 180-μm-thick Si wafer solar cells. An improvement of absorption by 58% in the near-infrared (740–1200 nm) range is observed for the 25 μm monocrystalline Si substrates with the use of antireflective coating and texturing. The back reflectance of the metal foil that provides mechanical support to the ultrathin Si semiconductor-on-metal foils is extracted to be 51.5%, based on the reflectance matching with the simulated escape reflectance in the sub-bandgap region. The back reflectance is enhanced to 58% by incorporating an intermediate silicon nitride layer on the back between the Si and the metal. The incorporation of Al as an improved metal reflector on top of the silicon nitride at the backside of the solar cell results in a 5.8 times enhancement in optical path length as a consequence of the improved effective back reflectance of 95%. A thin Si foil solar cell with an unoptimized amorphous Si/crystalline Si heterojunction with intrinsic-thin-layer design with implementation of such light-trapping schemes shows an efficiency of 13.28% with a short-circuit current density (JSC) of 35.97mA/cm2, which approaches the JSC of industrial wafer-based Si solar cells.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Light trapping in ultrathin plasmonic solar cells

Vivian E. Ferry, Marc A. Verschuuren, Hongbo B. T. Li, Ewold Verhagen, Robert J. Walters, Ruud E. I. Schropp, Harry A. Atwater, and Albert Polman
Opt. Express 18(S2) A237-A245 (2010)

Light trapping efficiency comparison of Si solar cell textures using spectral photoluminescence

Chog Barugkin, Thomas Allen, Teck K. Chong, Thomas P. White, Klaus J. Weber, and Kylie R. Catchpole
Opt. Express 23(7) A391-A400 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription