Abstract

An approach to achieve refractive index sensing at an air and aqueous glycerol solution interface is proposed using a tapered-fiber-based microfiber Mach–Zehnder interferometer (MFMZI). Compared to a surrounding uniform medium of air or solutions, the spectral interference visibility of the MFMZI at the air/solution interface is significantly reduced due to a weak coupling between the fundamental cladding mode and high-order asymmetric cladding modes, which are extremely sensitive to the external refractive index. The MFMZI is experimentally demonstrated as an evanescent wave refractive index sensor to measure concentrations of glycerol solutions by monitoring average power attenuation of the tapered fiber.

© 2012 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Refractive index sensor based on plastic optical fiber with tapered structure

Feng De-Jun, Liu Guan-Xiu, Liu Xi-Lu, Jiang Ming-Shun, and Sui Qing-Mei
Appl. Opt. 53(10) 2007-2011 (2014)

Multimode interference tapered fiber refractive index sensors

Claudecir R. Biazoli, Susana Silva, Marcos A. R. Franco, Orlando Frazão, and Cristiano M. B. Cordeiro
Appl. Opt. 51(24) 5941-5945 (2012)

Refractive index sensing based on Mach–Zehnder interferometer formed by three cascaded single-mode fiber tapers

Di Wu, Tao Zhu, Ming Deng, De-Wen Duan, Lei-Lei Shi, Jun Yao, and Yun-Jiang Rao
Appl. Opt. 50(11) 1548-1553 (2011)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription