Abstract

We discuss the merits of using single-layer (linear and nonlinear) and multiple-layer (nonlinear) filters for rotationally invariant and noise-tolerant pattern recognition. The capability of each approach is considered with reference to a two-class, rotation-invariant, character recognition problem. The minimum average correlation energy (MACE) filter is a linear filter that is generally accepted to be optimal for detecting signals that are free from noise. Here it is found that an optimized MACE filter cannot differentiate between the characters E and F in a rotation-invariant manner. We have found, however, that this task is possible when a single optimized linear filter is used to achieve the required response when a nonlinear threshold function is included after the filter. We show that this structure can be cascaded to form a multiple-layer, cascaded filter and that the capability of such a system is enhanced by its increased noise tolerance in the character recognition problem. Finally, we show the capability of a two-layer cascade as a means to detect different species of bacteria in images obtained from a phase-contrast microscope.

© 2005 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Cascaded linear shift-invariant processors in optical pattern recognition

Stuart Reed and Jeremy Coupland
Appl. Opt. 40(23) 3843-3849 (2001)

Distortion-invariant pattern recognition with Fourier-plane nonlinear filters

Bahram Javidi and Dean Painchaud
Appl. Opt. 35(2) 318-331 (1996)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (19)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription