Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Wavelength response of waveguide volume grating couplers for optical interconnects

Not Accessible

Your library or personal account may give you access

Abstract

The wavelength response of a waveguide volume grating coupler (WVGC) is analyzed for coupling light from a slab waveguide into the superstrate. A leaky-mode approach is used in conjunction with rigorous coupled-wave analysis. A quantitative theoretical study of the effect of index modulation, waveguide index, and grating thickness on the wavelength bandpass of a WVGC is also presented. The FWHM wavelength bandpasses found for high-efficiency couplers range from 173 to 525 nm. The various Bragg conditions that can be used in designing a WVGC are also presented and compared. The use of the propagation constant of the mode being outcoupled as the incident wave vector in the Bragg condition is shown to produce the highest coupling efficiency.

© 2004 Optical Society of America

Full Article  |  PDF Article
More Like This
Volume grating couplers: polarization and loss effects

Ricardo A. Villalaz, Elias N. Glytsis, and Thomas K. Gaylord
Appl. Opt. 41(25) 5223-5229 (2002)

Preferential-order waveguide grating couplers: a comparative rigorous analysis using the finite-difference time-domain method

Aristeides D. Papadopoulos and Elias N. Glytsis
Appl. Opt. 49(30) 5787-5798 (2010)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.