Abstract

The influence of molecular collisions on the production of the degenerate four-wave mixing signal in I2 is presented. Measurements were performed on gaseous molecular iodine, I2, contained in a glass cell in which pressure, temperature, and species concentration are easily and independently varied. Frequency-doubled outputs from a seeded Nd:YAG laser and an excimer-pumped dye laser were used as excitation sources. We have studied the dependence of signal strength versus buffer gas pressure, with pump intensity as a third parameter. It is evident from our results that, for pump intensities of less than 1 MW/cm2, the pressure dependence of the signal follows that given by a simple two-level model in the homogeneously broadened regime. In this regime collisional deexcitation becomes significant, leading to changes in saturation intensity. This is evidenced by a reduction in the signal with an increase in buffer gas pressure. This behavior is similar to that seen in laser-induced fluorescence. At higher pump intensities, the signal is seen to increase with pressure; this behavior cannot be described by the simple two-level model.

© 1995 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Effect of Doppler broadening on quantitative concentration measurements with degenerate four-wave mixing spectroscopy

Thomas A. Reichardt and Robert P. Lucht
J. Opt. Soc. Am. B 13(6) 1107-1119 (1996)

Infrared degenerate four-wave mixing spectroscopy of polyatomic molecules: CH4 and C2H2

Geoffrey J. Germann, Roger L. Farrow, and David J. Rakestraw
J. Opt. Soc. Am. B 12(1) 25-32 (1995)

Experimental investigation of saturated degenerate four-wave mixing for quantitative concentration measurements

Thomas A. Reichardt, William C. Giancola, Christopher M. Shappert, and Robert P. Lucht
Appl. Opt. 38(33) 6951-6961 (1999)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription