Abstract

The feasibility of the use of a nonintrusive, line-of-sight averaging, infrared extinction technique for the quantitative measurement of fuel-vapor concentration and flux in transient sprays has been examined. A collinear visible and infrared system with a compact sandwich detector design allows for the detection of radiation at both wavelengths simultaneously. With a controlled simulated fuel spray that consists of styrene spheres and methane vapor, vapor concentrations were measured within 10% of the known input value for a large range of particle loadings. Quantitative measurements were also made in a transient isooctane spray with an automotive-type injector. The time-resolved vapor mole fraction, velocity, and mass flux were compared with the transient liquid-phase characteristics obtained with a phase/Doppler anemometer system. The combined use of both instruments for discerning differences in liquid and vapor transport is discussed.

© 1994 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quantifying liquid boundary and vapor distributions in a fuel spray by rainbow schlieren deflectometry

C. Taber Wanstall, Ajay K. Agrawal, and Joshua A. Bittle
Appl. Opt. 56(30) 8385-8393 (2017)

Imaging of droplets and vapor distributions in a Diesel fuel spray by means of a laser absorption–scattering technique

Yu-yin Zhang, Takuo Yoshizaki, and Keiya Nishida
Appl. Opt. 39(33) 6221-6229 (2000)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription