Abstract

A key issue in designing laser radar devices for short-range applications is the ability to estimate accurately the power seen by the receiver as a function of the measurement distance. To obtain a reasonable approximation of this power, the irradiance distribution over the sensor as well as the target surface, which is highly dependent on the type of the detector used, must be analyzed in detail. The calculation of signal power function by means of radiometry is discussed. A software package developed for simulating power transfer as a function of various optical parameters is presented. It can be applied to various types of laser sources, including high-power laser diodes (wide-stripe or stacked) and pigtailed laser diodes.

© 1994 Optical Society of America

Full Article  |  PDF Article
More Like This
Simulation of error in optical radar range measurements

Sandor Der, Brian Redman, and Rama Chellappa
Appl. Opt. 36(27) 6869-6874 (1997)

Neural-network laser radar

Keigo Iizuka and Satoshi Fujii
Appl. Opt. 33(13) 2492-2501 (1994)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (21)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription