Abstract

A two-flow model is developed to simulate a light field composed of both collimated and diffuse irradiance within natural waters containing a canopy of bottom-adhering plants. To account for the effects of submerging a canopy, the transmittance and reflectance terms associated with each plant structure (leaves, stems, fruiting bodies, etc.) are expressed as functions of the ratio of the refractive index of the plant material to the refractive index of the surrounding media and the internal transmittance of the plant structure. Algebraic solutions to the model are shown to yield plausible physical explanations for unanticipated variations in volume reflectance spectra. The effect of bottom reflectance on the near-bottom light field is also investigated. These results indicate that within light-limited submerged aquatic plant canopies, substrate reflectance may play an important role in determining the amount of light available to the plants and, therefore, canopy productivity.

© 1986 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Suits reflectance models for wheat and cotton: theoretical and experimental tests

J. E. Chance and E. W. LeMaster
Appl. Opt. 16(2) 407-412 (1977)

Effective upwelling irradiance depths in turbid waters: a spectral analysis of origins and fate

Ronghua Ma, Guangjia Jiang, Hongtao Duan, Luca Bracchini, and Steven Loiselle
Opt. Express 19(8) 7127-7138 (2011)

Plant canopy light absorption model with application to wheat

J. E. Chance and E. W. LeMaster
Appl. Opt. 17(16) 2629-2636 (1978)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (43)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription