Abstract

A technique is described for fitting collisional linewidths and shifts from experimental spectral data. The method involves convoluting a low-pressure reference spectrum with a Lorentz shape function and comparing the convoluted spectrum with higher pressure spectra. Several experimental examples are given. One advantage of the method is that no extra information is needed about the instrument response function or spectral modulation. In addition, the method is shown to be relatively insensitive to the presence of reflections in the sample cell.

© 1980 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Method for the simultaneous determination of line strengths and collisional widths from high-resolution Fourier transform spectra

N. Lacome, A. Levy, C. Boulet, and J. P. Houdeau
Appl. Opt. 21(14) 2473-2480 (1982)

Broadband D2 coherent anti-Stokes Raman spectroscopy for single-shot pressure and temperature determination with a Fabry–Perot etalon

Walter D. Gillespie, Jae Won Hahn, Walter J. Bowers, Wilbur S. Hurst, and Gregory J. Rosasco
Appl. Opt. 38(3) 534-544 (1999)

Sulfur dioxide absorption at DF laser wavelengths

J. Altmann and P. Pokrowsky
Appl. Opt. 19(20) 3449-3452 (1980)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (16)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription