Abstract
High quality holograms of flat objects are produced by developing an achromatic-fringe system that consists of a monochromatic but spatially incoherent source, a holographic beam splitting device, and a pair of Fourier transform lenses. The effects of using an incoherent extended source and the transfer characteristics of the holograms are discussed. Emphasis is also placed on the advantages of developing lens Fourier transform holography along with the practical lens systems. A further possible extension of the system to attain high storage density as well as high quality holograms is proposed by making use of a new type of pseudorandom phase sequence.
© 1975 Optical Society of America
Full Article |
PDF Article
More Like This
References
You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access OSA Member Subscription
Cited By
You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access OSA Member Subscription
Equations (13)
You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access OSA Member Subscription
Metrics
You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access OSA Member Subscription