Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Direct Ultrashort-Pulse Retrieval Using Frequency-Resolved Optical Gating and a Computational Neural Network

Not Accessible

Your library or personal account may give you access

Abstract

Frequency-Resolved Optical Gating (FROG) is a method for measuring the time-dependent intensity and phase of an ultrashort laser pulse. In FROG a nonlinear autocorrelation signal is frequency-resolved by a spectrometer to produce a "FROG trace", which is a type of spectrogram of the pulse [1]. The FROG trace, a two-dimensional image (intensity vs. frequency and delay) is then input into a phase-retrieval-based iterative algorithm [2], that determines the intensity and phase of the laser pulse. Although the FROG algorithm performs well, it requires a minute or more to converge for complex pulse shapes. It is therefore desirable in many situations to have a direct (i.e., non-iterative) computational method capable of quickly inverting the highly non-linear and complex function that relates the ultrashort pulse intensity and phase to its experimental FROG trace. In this work, we show that computational neural networks can directly obtain the intensity and phase of a pulse from its FROG trace in less than one second, independent of the pulse shape. Our demonstration using a serial personal computer is a proof of this principle, utilizing a set of pulses defined by only five parameters. Because neural networks now take advantage of very simple, fast, and powerful parallel-processing hardware, however, future waveform recovery, even in the general case of arbitrary pulses, could be nearly instantaneous.

© 1995 Optical Society of America

PDF Article
More Like This
Ultra-short pulse retrieval using FROG-trace irradiance moments and the adaptive-neural-networks backpropagation algorithm

Celso L. Ladera, Kenneth W. DeLong, Rick Trebino, and David N. Fifflnghoff
CThI36 Conference on Lasers and Electro-Optics (CLEO:S&I) 1995

Frequency-resolved optical gating measurements of ultrashort laser pulses

Kenneth W. DeLong, David N. Fittinghoff, Celso L. Ladera, Rick Trebino, G. Taft, A. Rundquist, M. M. Murnane, H. C. Kapteyn, and I. P. Christov
FP4 Conference on Lasers and Electro-Optics/Pacific Rim (CLEO/PR) 1995

Noise in Frequency-Resolved-Optical-Gating Measurements of Ultrashort Laser Pulses

David N. Fittinghoff, Kenneth W. DeLong, Rick Trebino, and Celso L. Ladera
RTuD1 Signal Recovery and Synthesis (SRS) 1995

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.