Electroluminescence, the conversion of electrons into externally emitted photons, is an intrinsic cooling process in a light-emitting diode as long as the applied voltage is less than the photon energy. When the diode is sufficiently efficient so that cooling due to electroluminescence surpasses heating due to internal losses, it becomes a solid-state refrigerator. We present the theoretical performance limits of a solid-state refrigerator that combines an optimized GaAs light-emitting diode and a GaAs photovoltaic cell. We show that at moderate power densities, this optoelectronic refrigerator can outperform thermoelectric coolers in cooling efficiency and is also a viable technology for cryogenic cooling applications.

© 2017 Optical Society of America

PDF Article


You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
Login to access OSA Member Subscription