Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

High CW conversion efficiency in a strained InGaAs/AlGaAs quantum well laser (λ = 930nm)

Open Access Open Access

Abstract

A strained InGaAs/AlGaAs quantum well laser with a front-end power conversion efficiency exceeding 33%, and available output power greater than 1 Watt, is demonstrated. The laser structure is grown by atmospheric pressure organometallic vapor phase epitaxy, and consists of a graded index separate confinement heterostructure (GRIN SCH) with a 70Å In0.2Ga0.8As strained quantum well active region. The lasing wavelength of 930nm is in good agreement with that expected from quantum well thickness and composition. The longest attainable wavelength is dictated by the tradeoff between InAs alloy content and sub-critical quantum well thickness; we have fabricated devices up to λ = 1.08μm. Threshold currents of strained quantum well lasers are as low as those in unstrained lasers. In fact, they may be lower, a result of some beneficial effects of biaxial compression, and the possibility of higher confinement factors. Despite this, quantum efficiencies are somewhat reduced; the best we have observed is ηe = 58.4%. This may be due to the increased importance of nonradiative processes in the low-bandgap InGaAs. With the exception of lower quantum efficiencies, these devices behave much like unstrained GaAs quantum well lasers. For example, in the short-cavity regime, where average losses are high, threshold currents are increased while characteristic temperatures decrease.

© 1988 Optical Society of America

PDF Article
More Like This
InGaAs/AlGaAs strained quantum well lasers emitting at 1 µm with extremely low threshold current density and high efficiency

H. K. CHOI and C. A. WANG
CMH2 Conference on Lasers and Electro-Optics (CLEO:S&I) 1990

Performance characteristics of strained InGaAs/AIGaAs quantum well lasers

D. P. BOUR, G. A. EVANS, NILS W. CARLSON, D. B. GILBERT, L. ELBAUM, and M. G. HARVEY
THM2 Conference on Lasers and Electro-Optics (CLEO:S&I) 1989

Low-internal-loss separate confinement heterostructure InGaAs/InGaAsP quantum well laser

U. KOREN, B. I. MILLER, Y. K. SU, T. L. KOCH, and J. E. BOWERS
WJ4 Optical Fiber Communication Conference (OFC) 1988

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.