Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Squeezed light generation in a monomode optical fiber

Open Access Open Access

Abstract

Squeezed light, in which the quantum noise in one amplitude component is reduced below the vacuum level, has been generated using parametric processes. The starting point described here is the nonlinear Schrodinger equation which models light propagating through optical fibers. When such a dispersive nonlinear medium with a third-order susceptibility is pumped with an optical beam, squeezing can result. It is found that the degree of squeezing oscillates as a function of fiber length in the normal dispersion regime, whereas in the anomalous dispersion regime, it grows exponentially with fiber length. Examination of squeezing near the fiber’s zero dispersion wavelength shows that odd-order dispersive terms have no effect on squeezing. However, small values of higher-order even terms have significant effects on squeezing. In practice, high-frequency components of the squeezing spectrum are difficult to obtain. However, it is shown that a cross-correlation technique may be used to explore the frequency dependence of the squeezing spectrum.

© 1987 Optical Society of America

PDF Article
More Like This
Four-mode squeezing in an optical fiber

B. L. SCHUMAKER, S. H. PERLMUTTER, R M. SHELBY, and M. D. LEVENSON
FGG2 International Quantum Electronics Conference (IQEC) 1987

Trainlike formation in monomode optical fiber: experimental results

M. J. POTASEK
THGG25 International Quantum Electronics Conference (IQEC) 1987

Theory of squeezed light generation in optical fibers

G. J. Milburn, M. D. Reid, D. F. Walls, R. Shelby, and M. D. Levenson
TUJ8 OSA Annual Meeting (FIO) 1986

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.