Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Chemically produced metastable magnesium atoms for laser pumping

Not Accessible

Your library or personal account may give you access

Abstract

A chemical reaction has been used to chemically produce metastable magnesium atoms by sequentially reacting ground state magnesium atoms with N2O and CO. Formation of the excited atoms occurs via a Mg–N2O complex which is reduced by reaction with CO to form metastable magnesium atoms. In these experiments, the metastable magnesium atoms were produced in a supersonic flow; the success of this investigation demonstrated the feasibility of scaling Benard’s subsonic flow experiments. Analysis of our data indicates that the observed excited magnesium atom concentration can be increased over measured levels by an order of magnitude. This prediction is based in part on calculations which were made using the experimentally measured rate constant data for the Mg–N2O reaction. With the predicted increase in the Mg[3P] concentration, chemically pumped metastable magnesium atoms should be an excellent energy storage medium for an energy transfer visible chemical laser. Mg[3P] atoms have a relatively long radiative lifetime, 4.5 ms; deactivation of Mg[3P] by various reagents is slow; spontaneous emission from the metastable electronic energy level to the ground state is in the blue region, 3P−1S:457.1 nm; and the metastable magnesium atoms can be chemically pumped. Some of the potential energy transfer candidates are evaluated and are discussed in detail in some of the related presentations.

© 1986 Optical Society of America

PDF Article
More Like This
Visible chemical laser potential of the Mg(3P)/Sm system

J. D. Stanfill, R. S. F. Chang, and N. Djeu
WB5 OSA Annual Meeting (FIO) 1986

Azide reactions for advanced chemical lasers

Robert D. Coombe
WH1 OSA Annual Meeting (FIO) 1986

Chemical production and reaction of metastable N(2D) for short-wavelength chemical lasers

W. L. Nikolai, R. C. Jensen, and Robert D. Coombe
WH2 OSA Annual Meeting (FIO) 1986

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.