Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • 2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference
  • (Optica Publishing Group, 2017),
  • paper EG_P_13

Atom probing of thermally populated surface polaritons

Not Accessible

Your library or personal account may give you access

Abstract

Thermal emission has been the historic paradigm to understand quantization of energy, for light and matter. However, the universal far field blackbody radiation is not sufficient to account for the near field effects of the thermal emission [1]. When matter is heated up, surface polaritons at its boundary become thermally excited, and intense electromagnetic fields evanescently decay away from the surface. For a given material, with a well-defined shape, the population of these surface modes obeys a thermodynamic distribution, according to the local density of states in vacuum near the interface. In addition, rising up the temperature is susceptible to induce phenomenological changes of the surface mode resonances, such as broadening or shift.

© 2017 IEEE

PDF Article
More Like This
Spectrally Narrow Near-Field Thermal Emission probed by a Casimir-Polder Atomic Sensor

J. C. de Aquino Carvalho, I. Maurin, P. Chaves de Souza Segundo, A. Laliotis, D. de Sousa Meneses, and D. Bloch
Tu1D.4 Latin America Optics and Photonics Conference (LAOP) 2022

Temperature dependence of the atom-surface interaction in thermal equilibrium

A. Laliotis, T. Passerat de Silans, I. Maurin, M-P Gorza, M. Ducloy, and D. Bloch
IH_2_4 International Quantum Electronics Conference (IQEC) 2013

Casimir-Polder interaction as a highly-selective probe of the near-field thermal emission

J.C. de Aquino Carvalho, P. Chaves de Souza Segundo, A. Laliotis, I. Maurin, M. Oriá, M. Chevrollier, M. Ducloy, and D. Bloch
EG_4_4 European Quantum Electronics Conference (EQEC) 2015

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.