Abstract

Recently, optical coherence tomography (OCT) was utilized in multiple studies for structural and functional imaging of the middle ear and the tympanic membrane. Since Doppler OCT allows both, the spatially resolved measurement of the tympanic membrane oscillation and high-resolution imaging, it is regarded as a promising tool for future in vivo applications. In this study, Doppler OCT is utilized for the visualization of the tympanic membrane oscillation in temporal bones with simulated Eustachian catarrh, which was realized by generating a depression in the tympanic cavity. The transfer function, meaning the oscillation amplitude normalized to the applied sound pressure, is measured frequency resolved in the range from 0.5 kHz to 6 kHz and with a lateral spatial resolution of 0.4 mm. Typical oscillation patterns could be observed in case of ambient pressure in the tympanic cavity. Under depression the characteristic oscillation patterns were observed with widely congruent appearance but at higher frequencies.

© 2015 SPIE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription