Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • The 4th Pacific Rim Conference on Lasers and Electro-Optics
  • Technical Digest Series (Optica Publishing Group, 2001),
  • paper TuK2_1

Photonic Band Gap Materials: A Semiconductor for Light

Not Accessible

Your library or personal account may give you access

Abstract

Photonic band gap (PBG) materials are a new class of dielectrics which represent a major new frontier in quantum, nonlinear, and classical optics. They also represent a new technology platform for the optical networking industry. Unlike semiconductors which facilitate the coherent propagation of electrons, PBG materials execute their novel functions through the coherent localization of photons. When a PBG material is doped with impurity atoms (or other two-level systems) which have an electronic transition that lies within the gap, spontaneous emission of light from the atom is inhibited. Instead, the photon forms a bound state to the atom. This has dramatic consequences for collective light emission from a large number of atoms and for the interaction of such atoms with an external laser field. I describe the design of an all optical micro-transistor based on collective switching of two-level atoms near a photonic band edge, by external laser field. I discuss tunable PBG materials whose band structure can be modulated by means of an external field. This effect enables the steering of light in a manner similar to the steering of electrons by an electric field in a semiconductor.

© 2001 IEEE

PDF Article
More Like This
Photonic Band Gap Materials: A Semiconductor for Light

Sajeev John
JTuC1 Conference on Lasers and Electro-Optics (CLEO:S&I) 2002

Quantum optics in a photonic band gap material

Sajeev john
QTuF3 Quantum Electronics and Laser Science Conference (CLEO:FS) 2000

Photonic Band Gap Materials: Light Trapping Crystals

Sajeev John
OWC1 Optical Fiber Communication Conference (OFC) 2009

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.