Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Temporal Characteristics and Modelling of Atmospherically-Distorted Wavefront Slopes

Not Accessible

Your library or personal account may give you access

Abstract

The wavefronts distorted by a Kolmogorov turbulent atmosphere are fractal surfaces [1] and have the properties of fractional Brownian motion (FBM) with a self-similarity parameter of 5/6. Such a FBM process is nonstationary and has a power-law spectrum with spectral index -8/3. In an adaptive optics system a Shack-Hartmann (SH) wavefront sensor (WFS) delivers the time series of wavefront (WF) slopes measured at each lenslet subaperture. While the FBM wavefront exhibits persistence, and consequently has predictability, the derivatives or slopes of this FBM process are antipersistent [2] with spectral index -2/3. This means that the WF slopes would have limited predictability at least by conventional mean-square prediction methods. Thus the adaptive optics (AO) control strategy that treats WF slopes as an unpredictable random walk process would seem justified. Within a closed loop system the difference between the incident wavefront and the correction by the deformable mirror is equivalent to a differentiation or increments process because of the loop delay, in which case the wavefront sensor gives essentially the second derivative. The second derivative process of FBM is also antipersistent.

© 1996 Optical Society of America

PDF Article
More Like This
Predictability of Atmospherically-distorted Stellar Wavefronts

George J. M. Aitken and Donald McGaughey
TuA5 Adaptive Optics (AO) 1995

Prediction of Wavefront Sensor Slope Measurements Using Artificial Neural Networks

Dennis A. Montera, Byron M. Welsh, Michael C. Roggemann, and Dennis W. Ruck
AThA.5 Adaptive Optics (AO) 1996

Modeling pump-induced wavefront distortions in large-aperture laser amplifiers

Mark D. Rotter, Said Doss, Al Erlandson, Ken Jancaitis, Steve Sutton, and Geoffrey LeTouzé
CThD2 Conference on Lasers and Electro-Optics (CLEO:S&I) 1996

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.