Gain and loss are omnipotent in the physical, chemical and biological systems. Their effects can in a convenient way be modelled by effective non-Hermitian Hamiltonians. Imaginary contributions to the potential introduce source and drain terms for the probability amplitude. A special class of non-Hermitian Hamiltonians are those which possess a parity-time symmetry. In spite of their non-Hermiticity these Hamiltonians allow for real energy eigenvalues, i.e. the existence of stationary states in the presence of balanced gain and loss. This effect has been identified theoretically in a large number of quantum systems. Its existence has also been proved experimentally in coupled optical wave guides. In my talk I will provide concise review of these systems including the aspect of physics of energy conversion in nanostructures.

© 2017 Optical Society of America

PDF Article


You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
Login to access OSA Member Subscription