Abstract

All-inorganic perovskite has attracted significant attention due to its excellent nonlinear optical characteristics. Stable and low-toxic perovskite materials have great application prospects in optoelectronic devices. Here, we study the nonlinear optical properties of CsPbClxBr3x (x=1, 1.5, 2) nanocrystals (NCs) glass by open-aperture Z-scan. It is found that the two- (2PA) and three-photon absorption (3PA) intensity can be adjusted by the treatment temperature and the ratio of halide anions. The perovskite NCs glass treated at a high temperature has better crystallinity, resulting in stronger nonlinear absorption performance. In addition, the value of the 2PA parameter of CsPbCl1.5Br1.5 NCs glasses decreases when the incident pump intensity increases, which is ascribed to the saturation of 2PA and population inversion. Finally, the research results show that the 2PA coefficient (0.127cmGW1) and 3PA coefficient (1.21×105cm3GW2) of CsPbCl1Br2 NCs glass with high Br anion content are larger than those of CsPbCl2Br1 and CsPbCl1.5Br1.5 NCs glasses. This is mainly due to the greater influence of Br anions on the symmetry of the perovskite structure, which leads to the redistribution of delocalized electrons. The revealed adjustable nonlinear optical properties of perovskite NCs glass are essential for developing stable and high-performance nonlinear optical devices.

© 2021 Chinese Laser Press

1. INTRODUCTION

All-inorganic perovskite has received widespread attention recently, owing to its tunable light-emitting bandgap [1,2], large exciton binding energy [3], and other excellent photoelectric properties [4,5]. Hence, perovskite materials are mostly used in light-emitting diodes (LEDs) [6,7], solar cells [8], photodetectors [9,10], lasers [4,11], and other devices. Halide perovskite nanocrystals have become one of the most promising optoelectronic materials due to their low-cost and easy synthesis [1]. Compared with bulk and layered materials, the specific surface area of CsPbClxBr3x nanocrystals (NCs) is greatly increased, thereby enhancing the NC optical performance [1,2,12]. Due to the strong multiphoton absorption (MPA) characteristics of halide perovskite NCs, they are very promising as a material for the development of multiphoton pump lasers [13]. The spherical NCs not only overcome the difficulty of large area growth of thin films, but also can combine with a variety of substrates or solutions for incorporation into optoelectronic devices [14].

Owing to the poor stability of bare perovskite and toxicity of lead halide perovskite, the application of perovskite materials in optoelectronic devices is greatly restricted [15,16]. So far, diverse approaches to improve the stability of perovskite materials have been reported, such as bonding of the organic ligands [17], establishing core/shell nanostructure [18], Mn-doping [19], silica coating [20,21], and infiltrating CsPbX3 NCs into mesoporous matrices [22]. However, combining the thermal, chemical, and mechanical stability of the glass has been proved an effective method to improve the stability of perovskite NCs [2325]. Hu et al. reported the well-designed arrangement of CsPbBr3 NCs glasses with reduced self-absorption emission and enhanced the quantum efficiency of solar cells [26]. Ye et al. investigated the versatile precipitation of CsPbX3 NCs glasses, in which photoluminescence (PL) covering the whole visible range with high efficiency could be achieved [24]. Meanwhile, some researches indicated that the relative PL intensity of CsPbBr3 quantum dots glass is still 85%90% after being immersed in water for 120 h or exposed to UV light for 100 h, and even about 60% of PL intensity still remained for storage up to 45 days [27,28]. All these previous studies reveal that embedding CsPbX3 quantum dots or NCs into glass has a great potential in improving its stability and fluorescence performance [2628].

However, the nonlinear optical aspect of perovskite glass, especially the study of MPA, which is important to the application of these optoelectronic devices, has been rarely investigated [13,29,30]. Many studies have been reported on the nonlinear optical properties of pure perovskite [31]. For example, a two-photon absorption (2PA) cross section of CsPbBr3 NCs in toluene as high as 106GW has been reported [32]. Chen et al. demonstrated that the 2PA cross section of CsPbBr3 NCs depends on the particle size [33]. Furthermore, due to the symmetry breaking of the perovskite octahedron structure, Li et al. confirmed that all-inorganic perovskites with different proportions of halogen atoms show greater MPA intensity than CsPbCl3 and specially designed organic molecules [34,35]. Not only that, Chen et al. reported that the five-photon absorption cross section of Type-I core-shell halide perovskite NCs is 9 orders of magnitude higher than that of specially designed organic molecules [30]. However, the nonlinear optical aspect of perovskite glass, which is highly desired for applications in low-threshold lasing [36], optical data storage [37], photodetectors [38], and other nonlinear optical photoelectric devices [32], has been rarely investigated.

In the present work, the three-order nonlinear optical characteristics of CsPbClxBr3x (x=1, 1.5, 2) NCs glasses have been investigated by open-aperture (OA) Z-scan measurements using femtosecond laser pulses. We observe the 2PA and three-photon absorption (3PA) phenomena of CsPbClxBr3x (x=1, 1.5, 2) NCs glasses at wavelengths of 800 and 1300 nm. The magnitude of the 2PA coefficient (β) of CsPbClxBr3x (x=1, 1.5, 2) NCs glasses is about 101102cmGW1, and the magnitude of the 3PA coefficient (γ) is 105106cm3GW2. The observed MPA behavior of CsPbClxBr3x (x=1, 1.5, 2) NCs glasses could play a great role in the development of perovskite-based optoelectronic devices.

2. EXPERIMENT SETUP

In the OA Z-scan measurement, as shown as Fig. 1, the perovskite NCs glasses with thickness L are moved along the Gaussian light propagation direction, and the laser beam transmittance after the sample is measured. For 2PA measurement, we used a Ti:sapphire femtosecond laser (Spectra-Physics) operating at a central wavelength of 800 nm with a repetition frequency of 1 kHz and a pulse width of 35 fs. For 3PA measurements, the laser source consisted of an optical parametric amplifier (TOPAS-Prime), delivering a wavelength of 1300 nm with a pulse width of 200 fs. The repetition frequency of laser was 1 kHz. In order to amplify weak signals, a chopper (Thorlabs MC2000B) is inserted into the optical path. The focal length of the front lens of the sample is 10 cm, and the spot radius at the focal point is about 30 μm. The transmitted intensity of each pulse after passing through the sample is measured by a Si-biased detector (Thorlabs DET10A2) using the lock-in amplifier (Signal Recovery Model 7270) technique.

 figure: Fig. 1.

Fig. 1. Experimental setup for the Z-scan technique.

Download Full Size | PPT Slide | PDF

3. RESULTS AND DISCUSSION

In this work, CsPbClxBr3x (x=1, 1.5, 2) NCs are successfully embedded inside a glass sheet (radius=10mm, thickness=0.56mm) matrix via the melt-quenching and in situ crystallization method. The CsPbClxBr3x (x=1, 1.5, 2) NCs are spherical structures with a diameter of 3545nm [see the Appendix A, Fig. 6(a)] [39]. Figure 2(a) shows the X-ray diffraction (XRD) patterns of CsPbCl1.5Br1.5 NCs glass under different treatment temperatures. The diffraction peaks of perovskite glass are at 15.5°, 22°, 31°, 38.5°, and 44.6°, corresponding to (100), (110), (200), (211), and (220) phase, respectively [40,41]. Referring to the previous research results, these narrow diffraction peaks demonstrate that the CsPbCl1.5Br1.5 NCs have good crystallization [25]. Figure 2(b) displays the PL emission spectra of CsPbCl1.5Br1.5 NCs glass. The PL emission peak of CsPbCl1.5Br1.5 NCs glass displays a slight redshift with the treatment temperature from 470°C to 530°C. The reason for the slight redshift of PL emission peak in the CsPbCl1.5Br1.5 NCs glass is the increase of the crystal grains size, which is caused by the increase of the heat treatment temperature [41]. However, the surface defects increase due to the continuous increase in temperature, which affects the fluorescence quantum yield and causes the PL emission intensity of the CsPbCl1.5Br1.5 NCs glass to decrease [41].

 figure: Fig. 2.

Fig. 2. (a) XRD patterns and (b) PL emission spectra of CsPbCl1.5Br1.5 NCs glasses under different treatment temperature excited by femtosecond pulses at 365 nm.

Download Full Size | PPT Slide | PDF

Figures 3(a) and 3(b) show the OA Z-scan curves of the CsPbCl1.5Br1.5 NCs glass (bandgap2.58eV) at the different treatment temperature excited by 800 nm (1.55eV) with pump intensity of 25.5GW/cm2 and by 1300 nm (0.95eV) with pump intensity of 217GW/cm2, respectively (see the Appendix A, Fig. 8). As shown in Figs. 3(a) and 3(b), the Z-scan curves are all valley shapes. When the CsPbCl1.5Br1.5 NCs glass is close to the focus, the normalized transmission of the incident laser decreases. As shown in Figs. 3(a) and 3(b), the CsPbCl1.5Br1.5 NCs glass with a heat treatment temperature of 530°C has the strongest nonlinear response.

 figure: Fig. 3.

Fig. 3. OA Z-scan results of CsPbCl1.5Br1.5 NCs glasses with different treatment temperatures. (a) Under pump intensity 25.5GW/cm2 at a wavelength of 800 nm and (b) under pump intensity 217GW/cm2 at a wavelength of 1300 nm. (The balls are the experimental data, and the solid lines are fitting curves.) The fitting results of (c) β and (d) γ of CsPbCl1.5Br1.5 NCs glass with different treatment temperatures. (Inset, the schematic of a two-level model.)

Download Full Size | PPT Slide | PDF

In theory, the measured normalized transmission (T) for OA Z-scan results is given by the expression [42,43]

TOA(nPA)=1{1+(n1)αNLLeff{I0/[1+(z/z0)2]}n1}1/n1(n=1,2,3),
where Leff is the effective length of the sample. αNL is the nonlinear optical coefficient. z is the position of the sample in the light path, z0=πω02/λ is the Rayleigh range of the Gaussian beam, and ω0 is the beam waist at the focal point (z=0).

Among them, the 2PA coefficient is represented by β. The imaginary part of third-order nonlinear susceptibility [44,45],

Imχ(3)=c2ε0n02βω,
where c is the speed of light, n0 is the linear refractive index, and ε0 and ω are the vacuum permittivity and angular frequency of the laser beam, respectively. The figures of merit (FOMs) are used to describe nonlinear absorption characteristics: FOM=|Imχ(3)/α0|, where α0 is the linear absorption coefficient. The 3PA coefficient is represented by γ. The effective thicknesses of 2PA and 3PA are Leff=(1eα0L)/α0 and Leff=(1e2α0L)/2α0, respectively [42,43].

Figures 3(c) and 3(d) display the 2PA and 3PA coefficients of CsPbCl1.5Br1.5 NCs glasses at the different treatment temperatures obtained by fitting Eq. (1). The insets in Figs. 3(c) and 3(d) show the schematic diagram of the 2PA and 3PA processes, respectively. When CsPbCl1.5Br1.5 NCs glass is excited by the femtosecond laser, electrons in the valence band need to absorb two (or three) photons at the same time to transition to the conduction band. By fitting with a Z-scan theory, 2PA coefficients of CsPbCl1.5Br1.5 NCs glass with different treatment temperatures were calculated: β=0.87cmGW1 for 470°C treatment temperature, β=0.97cmGW1 for 500°C treatment temperature, and β=1.23cmGW1 for 530°C treatment temperature, respectively. Under the pump intensity of 25GW/cm2, the Imχ(3) for CsPbCl1.5Br1.5 NCs glasses are in the range of (1.992.81)×103esu and the magnitudes of FOM are all at 103esu cm obtained by fitting Eq. (2) (see the Appendix A, Table 1). 3PA coefficients of CsPbCl1.5Br1.5 NCs glasses with different treatment temperatures were calculated: γ=2×105cm3GW2 for 470°C, γ=2.17×105cm3GW2 for 500°C, and γ=2.86×105cm3GW2 for 530°C, respectively. As the processing temperature increases, the crystallinity is better. The larger the nanocrystal particles, the stronger the 2PA and 3PA performance of the CsPbCl1.5Br1.5 NCs glasses [39].

Furthermore, the nonlinear properties of CsPbCl1.5Br1.5 NCs glasses with different pump intensities are measured. The OA Z-scan curves of CsPbCl1.5Br1.5 NCs glass under 500°C treatment temperature with various incident pump intensities at the wavelength of 800 nm are shown in Fig. 4(a). The normalized transmittance decreases when either increasing the pump intensity or placing the CsPbCl1.5Br1.5 NCs glass closer to the focus point, z=0, while as the pump intensity increases, the normalized transmittance curve deepens. These results suggest the potential application of CsPbCl1.5Br1.5 NCs glass in optoelectronic devices, such as optical limiting devices [46]. Figure 4(b) summarizes the dependence of 2PA fitting results as a function of pump intensity. (Fitting results are summarized in Table 2). The β is 0.096 cm/GW of CsPbCl1.5Br1.5 NCs glass at the pump intensity of 255GW/cm2 and 0.089 cm/GW at the pump intensity of 332GW/cm2, respectively. The result of the 2PA coefficient we obtained is with the same order of magnitude as the CsPbBr3 NCs [36] and CsPbClxBr3x (x=1, 2) quantum dots [47]. The perovskite NCs encapsulated in perovskite glass are isolated from the external environment. This gives them better stability and greatly improves the service life of perovskite NCs. The Imχ(3) for CsPbCl1.5Br1.5 NCs glasses are in the range of (2.032.88)×102esu and the FOM is in the range of (2.33.2)×102esucm. It is shown that as the pump intensity increased, the value of β, Imχ(3), and FOM decreased. The same phenomenon has been observed in other materials, such as PbS/glue nanocomposite [48] and few-layer WS2 films [49]. As the incident light energy increases, a large number of carriers gather in the excited state, resulting in population inversion [50]. Hence, the electrons in the ground state cannot further absorb the photon and transition to the excited state [51]. The β of CsPbCl1.5Br1.5 NCs decreases as the pump intensity increases.

 figure: Fig. 4.

Fig. 4. (a) OA Z-scan curves and (b) corresponding fitting results of β (black ball), Imχ(3) (pink), and FOM (blue) of the CsPbCl1.5Br1.5 NCs glass at the wavelength of 800 nm with different incident pump intensity.

Download Full Size | PPT Slide | PDF

To further explore the influence of different doped halogen anion ratios on the MPA and consider the influence of treatment temperature on the PL performance of all-inorganic perovskite glasses, we choose CsPbClxBr3x (x=1, 1.5, 2) NCs glasses with a treatment temperature of 500°C to explore their nonlinear response [52]. Figures 5(a) and 5(b) display the OA Z-scan response of CsPbClxBr3x (x=1, 1.5, 2) NCs glasses under femtosecond laser of 800 nm and 1300 nm, respectively.

 figure: Fig. 5.

Fig. 5. OA Z-scan results of CsPbClxBr3x (x=1, 1.5, 2) NCs glasses. (a) Under pump intensity 178GW/cm2 at a wavelength of 800 nm and (b) under pump intensity 535GW/cm2 at a wavelength of 1300 nm. (The balls are the experimental data, and the solid lines are fitting curves.) (c) PL emission spectra of CsPbClxBr3x (x=1, 1.5, 2) NCs glasses for 500°C treatment temperature excited by femtosecond pulses at 365 nm; (d) fitting the results of 2PA coefficient (β, purple bar) and 3PA coefficient (γ, red bar) obtained in (a) and (b), respectively.

Download Full Size | PPT Slide | PDF

Figure 5(a) shows the OA Z-scan curves of CsPbClxBr3x (x=1, 1.5, 2) NCs glasses under pump intensity 178GW/cm2 at a wavelength of 800 nm. Comparing the normalized transmittance curves of CsPbClxBr3x (x=1, 1.5, 2) NCs glasses with different Cl and Br ion ratios, it is found that the CsPbClxBr3x (x=1, 1.5, 2) NCs glasses with higher Br ions doping ratio have a greater nonlinear response in the process of 2PA and 3PA. The bandgap width of CsPbCl1Br2 NCs glasses is 2.46 eV, slightly smaller than that of CsPbCl1.5Br1.5 (2.58 eV) and CsPbCl2Br1 (2.7 eV) (see the Appendix A, Fig. 8). Due to the increase of Br ion content, the bandgap is narrowed, thereby promoting the carrier transition rate [34,53]. CsPbCl1Br2 NCs glasses exhibit a large MPA phenomenon. Correspondingly, the PL emission peak of CsPbCl2Br1, CsPbCl1.5Br1.5, and CsPbCl1Br2 NCs glasses with emission wavelength peaks at 454, 470, and 490 nm is shown in Fig. 5(c), respectively. The PL peak shifts to the lower energy direction as the proportion of Br ions increases. It is shown that the luminescence can be effectively tuned by introducing the Cl and Br ion ratios. The width of CsPbClxBr3x (x=1, 1.5, 2) NCs glasses at half-height (FWHM) of the PL emission is less than 30 nm (see the Appendix A, Fig. 7).

By fitting the Z-scan data in Figs. 5(a) and 5(b), the β of CsPbCl1Br2 NCs glass is 0.087cmGW1, 0.1cmGW1 for CsPbCl1.5Br1.5 NCs glass, and 0.127cmGW1 for CsPbCl2Br1 NCs glass. The 2PA coefficient of CsPbCl1Br2 NCs glass is 1 order of magnitude higher than that of CsPbCl1Br2 quantum dots [47]. Combined with Eq. (2), the Imχ(3) for CsPbClxBr3x NCs glasses is in a range of (1.992.9)×102esu, which is larger than that of CsPbBr3 NC (see the Appendix A). The FOM value used to describe the nonlinear absorption characteristics is in the range of (2.22.53)×102esucm (see the Appendix A, Table 3). Meanwhile, we obtained the γ: 0.54×105cm3GW2 is for CsPbCl2Br1 NCs glass, 0.82×105cm3GW2 is for CsPbCl1.5Br1.5 NCs glass, and 1.21×105cm3GW2 is for CsPbCl1Br2 NCs glass. The 3PA coefficient of CsPbCl1Br2 NCs glass is over 1 order of magnitude larger than that of the CsPbCl1.5Br1.5 and CsPbCl2Br1 NCs glasses. This is mainly because the CsPbCl1Br2 NCs glass has a narrower bandgap and higher structural destabilization that will lead to the easier carrier transition and delocalized electrons redistribution compared with CsPbCl1.5Br1.5 and CsPbCl2Br1 NCs glasses [24]. Due to the narrower bandgap and structural destabilization of the perovskite, the electron cloud is distorted, which promotes the transition of electrons from the ground state to the excited state [34]. Therefore, the carrier transition rate is further increased.

4. CONCLUSION

In summary, we measure the 2PA and 3PA properties of CsPbClxBr3x (x=1, 1.5, 2) NCs glasses using the OA Z-scan method. The CsPbCl1.5Br1.5 NCs glass under 530°C treatment temperature exhibited the strongest 2PA and 3PA coefficients, which is mainly due to the better crystallization properties of perovskite NCs at higher temperatures. Furthermore, the dependence of incident pump intensity shows that the nonlinear coefficient decreases when the incident pump intensity increases. We also found that the larger the proportion of Br anions, the stronger the MPA performance. These results for CsPbClxBr3x NCs glass may guide designs for their potential use in applications.

Appendix A

The CsPbClxBr3-x (x = 1, 1.5, 2) nanocrystals are spherical structures with a diameter of ∼35–45 nm enclosed in a glass sheet, as shown in Fig. 6(a).

 figure: Fig. 6.

Fig. 6. (a) Transmission electron microscopy (TEM) images of CsPbClxBr3-x (x = 1, 1.5, 2) NCs and (b) high-resolution TEM images of CsPbCl1.5Br1.5 NCs.

Download Full Size | PPT Slide | PDF

 figure: Fig. 7.

Fig. 7. (a) Amplified spontaneous emission (ASE) measurement on CsPbCl1.5Br1.5 NCs glass under an 800 nm pulsed laser at room temperature and (b) corresponding full-width at half-maxima (FWHM) and output as a function of incident pump intensity.

Download Full Size | PPT Slide | PDF

 figure: Fig. 8.

Fig. 8. (αhυ)2-hυ plot of CsPbClxBr3-x (x=1,2,3) NCs glass.

Download Full Size | PPT Slide | PDF

Tables Icon

Table 1. Summary of the Measured 2PA and 3PA Parameters of CsPbCl1.5Br1.5 NCs Glasses at Wavelengths of 800 nm and 1300 nma

Tables Icon

Table 2. 2PA Parameters of the CsPbCl1.5Br1.5 NCs Glass Measured by an OA Z-Scan at 800 nm under Different Pump Intensitya

Tables Icon

Table 3. Summary of the Measured 2PA and 3PA Parameters of CsPbClxBr3-x NCs Glasses at Wavelengths of 800 nm and 1300 nma

As shown as Fig. 9, CsPbCl1Br2 and CsPbCl2Br1 NCs glasses also showed the 2PA phenomenon that the normalized transmittance decreased greatly as the pump power increased under the wavelength of 800 nm. As the pump energy becomes stronger, more carriers are excited, thereby absorbing more photons. This performance can be applied to optoelectronic devices such as optical limiting.
 figure: Fig. 9.

Fig. 9. Open-aperture Z-scan curves of the (a) CsPbCl1Br2 and (b) CsPbCl2Br1 NCs glasses at the wavelength of 800 nm with different incident pump intensity.

Download Full Size | PPT Slide | PDF

Funding

National Natural Science Foundation of China (61520106012, 61674023, 61875211, 61905264, 61925507); National Key Research and Development Program of China (2017YFE0123700); Strategic Priority Research Program of the Chinese Academy of Sciences (XDB16030400); CAS Interdisciplinary Innovation Team; Program of Shanghai Academic/Technology Research Leader (18XD1404200); Shanghai Municipal Science and Technology Major Project (2017SHZDZX02).

Disclosures

The authors declare no conflicts of interest.

REFERENCES

1. L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, “Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color Gamut,” Nano Lett. 15, 3692–3696 (2015). [CrossRef]  

2. G. Nedelcu, L. Protesescu, S. Yakunin, M. I. Bodnarchuk, M. J. Grotevent, and M. V. Kovalenko, “Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I),” Nano Lett. 15, 5635–5640 (2015). [CrossRef]  

3. J. A. Castaneda, G. Nagamine, E. Yassitepe, L. G. Bonato, O. Voznyy, S. Hoogland, A. F. Nogueira, E. H. Sargent, C. H. Cruz, and L. A. Padilha, “Efficient biexciton interaction in perovskite quantum dots under weak and strong confinement,” ACS Nano 10, 8603–8609 (2016). [CrossRef]  

4. S. Chen and G. Shi, “Two-dimensional materials for halide perovskite-based optoelectronic devices,” Adv. Mater. 29, 1605448 (2017). [CrossRef]  

5. T. Zhang, M. I. Dar, G. Li, F. Xu, N. Guo, M. Grätzel, and Y. Zhao, “Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells,” Sci. Adv. 3, e1700841 (2017). [CrossRef]  

6. H. Cho, S.-H. Jeong, M.-H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, and T.-W. Lee, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350, 1222–1225 (2015). [CrossRef]  

7. Z. K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, F. Hanusch, T. Bein, H. J. Snaith, and R. H. Friend, “Bright light-emitting diodes based on organometal halide perovskite,” Nat. Nanotechnol. 9, 687–692 (2014). [CrossRef]  

8. J. Yang, X. Wen, H. Xia, R. Sheng, Q. Ma, J. Kim, P. Tapping, T. Harada, T. W. Kee, F. Huang, Y. B. Cheng, M. Green, A. Ho-Baillie, S. Huang, S. Shrestha, R. Patterson, and G. Conibeer, “Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites,” Nat. Commun. 8, 14120 (2017). [CrossRef]  

9. M. Li, S. Bhaumik, T. W. Goh, M. S. Kumar, N. Yantara, M. Gratzel, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Slow cooling and highly efficient extraction of hot carriers in colloidal perovskite nanocrystals,” Nat. Commun. 8, 14350 (2017). [CrossRef]  

10. X. Qi, Y. Zhang, Q. Ou, S. T. Ha, C. W. Qiu, H. Zhang, Y. B. Cheng, Q. Xiong, and Q. Bao, “Photonics and optoelectronics of 2D metal-halide perovskites,” Small 14, 1800682 (2018). [CrossRef]  

11. J. Butkus, P. Vashishtha, K. Chen, J. K. Gallaher, S. K. K. Prasad, D. Z. Metin, G. Laufersky, N. Gaston, J. E. Halpert, and J. M. Hodgkiss, “The evolution of quantum confinement in CsPbBr3 perovskite nanocrystals,” Chem. Mater. 29, 3644–3652 (2017). [CrossRef]  

12. J. He, L. Tao, H. Zhang, B. Zhou, and J. Li, “Emerging 2D materials beyond graphene for ultrashort pulse generation in fiber lasers,” Nanoscale 11, 2577–2593 (2019). [CrossRef]  

13. A. Pramanik, K. Gates, Y. Gao, S. Begum, and P. C. Ray, “Several orders-of-magnitude enhancement of multiphoton absorption property for CsPbX3 perovskite quantum dots by manipulating halide stoichiometry,” J. Phys. Chem. C 123, 5150–5156 (2019). [CrossRef]  

14. H. C. Wang, Z. Bao, H. Y. Tsai, A. C. Tang, and R. S. Liu, “Perovskite quantum dots and their application in light-emitting diodes,” Small 14, 1702433 (2018). [CrossRef]  

15. G. E. Eperon, S. N. Habisreutinger, T. Leijtens, B. J. Bruijnaers, J. J. Franeker, D. W. deQuilettes, S. Pathak, R. J. Sutton, G. Grancini, D. S. Ginger, R. A. J. Janssen, A. Petrozza, and H. J. Snaith, “The importance of moisture in hybrid lead halide perovskite thin film fabrication,” ACS Nano 9, 9380–9393 (2015). [CrossRef]  

16. C. Sun, Y. Zhang, C. Ruan, C. Yin, X. Wang, Y. Wang, and W. W. Yu, “Efficient and stable white LEDs with silica-coated inorganic perovskite quantum dots,” Adv. Mater. 28, 10088–10094 (2016). [CrossRef]  

17. F. Palazon, Q. A. Akkerman, M. Prato, and L. Manna, “X-ray lithography on perovskite nanocrystals films: from patterning with anion-exchange reactions to enhanced stability in air and water,” ACS Nano 10, 1224–1230 (2016). [CrossRef]  

18. V. K. Ravi, S. Saikia, S. Yadav, V. V. Nawale, and A. Nag, “CsPbBr3/ZnS core/shell type nanocrystals for enhancing luminescence lifetime and water stability,” ACS Energy Lett. 5, 1794–1796 (2020). [CrossRef]  

19. W. J. Mir, A. Swarnkar, and A. Nag, “Postsynthesis Mn-doping in CsPbI3 nanocrystals to stabilize the black perovskite phase,” Nanoscale 11, 4278–4286 (2019). [CrossRef]  

20. F. Zhang, Z. Shi, S. Li, Z. Ma, Y. Li, L. Wang, D. Wu, Y. Tian, G. Du, X. Li, and C. Shan, “Synergetic effect of the surfactant and silica coating on the enhanced emission and stability of perovskite quantum dots for anticounterfeiting,” ACS Appl. Mater. Interfaces 11, 28013–28022 (2019). [CrossRef]  

21. F. Zhang, Z. F. Shi, Z. Z. Ma, Y. Li, S. Li, D. Wu, T. T. Xu, X. J. Li, C. X. Shan, and G. T. Du, “Silica coating enhances the stability of inorganic perovskite nanocrystals for efficient and stable down-conversion in white light-emitting devices,” Nanoscale 10, 20131–20139 (2018). [CrossRef]  

22. D. N. Dirin, L. Protesescu, D. Trummer, I. V. Kochetygov, S. Yakunin, F. Krumeich, N. P. Stadie, and M. V. Kovalenko, “Harnessing defect-tolerance at the nanoscale: highly luminescent lead halide perovskite nanocrystals in mesoporous silica matrixes,” Nano Lett. 16, 5866–5874 (2016). [CrossRef]  

23. M. Xia, J. Luo, C. Chen, H. Liu, and J. Tang, “Semiconductor quantum dots-embedded inorganic glasses: fabrication, luminescent properties, and potential applications,” Adv. Opt. Mater. 7, 1900851 (2019). [CrossRef]  

24. Y. Ye, W. Zhang, Z. Zhao, J. Wang, C. Liu, Z. Deng, X. Zhao, and J. Han, “Highly luminescent cesium lead halide perovskite nanocrystals stabilized in glasses for light-emitting applications,” Adv. Opt. Mater. 7, 1801663 (2019). [CrossRef]  

25. B. Ai, C. Liu, J. Wang, J. Xie, J. Han, X. Zhao, and J. Heo, “Precipitation and optical properties of CsPbBr3 quantum dots in phosphate glasses,” J. Am. Ceram. Soc. 99, 2875–2877 (2016). [CrossRef]  

26. Y. Hu, W. Zhang, Y. Ye, Z. Zhao, and C. Liu, “Femtosecond-laser-induced precipitation of CsPbBr3 perovskite nanocrystals in glasses for solar spectral conversion,” ACS Appl. Nano Mater. 3, 850–857 (2019). [CrossRef]  

27. S. Yuan, D. Chen, X. Li, J. Zhong, and X. Xu, “In situ crystallization synthesis of CsPbBr3 perovskite quantum dot-embedded glasses with improved stability for solid-state lighting and random upconverted lasing,” ACS Appl. Mater. Interfaces 10, 18918–18926 (2018). [CrossRef]  

28. X. Pang, H. Zhang, L. Xie, T. Xuan, Y. Sun, S. Si, B. Jiang, W. Chen, J. Zhuang, C. Hu, Y. Liu, B. Lei, and X. Zhang, “Precipitating CsPbBr3 quantum dots in boro-germanate glass with a dense structure and inert environment toward highly stable and efficient narrow-band green emitters for wide-color-gamut liquid crystal displays,” J. Mater. Chem. C 7, 13139–13148 (2019). [CrossRef]  

29. J. Li, Q. Jing, S. Xiao, Y. Gao, Y. Wang, W. Zhang, X. W. Sun, K. Wang, and T. He, “Spectral dynamics and multiphoton absorption properties of all-inorganic perovskite nanorods,” J. Phys. Chem. Lett. 11, 4817–4825 (2020). [CrossRef]  

30. W. Chen, S. Bhaumik, S. A. Veldhuis, G. Xing, Q. Xu, M. Gratzel, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Giant five-photon absorption from multidimensional core-shell halide perovskite colloidal nanocrystals,” Nat. Commun. 8, 15198 (2017). [CrossRef]  

31. G. Nagamine, J. O. Rocha, L. G. Bonato, A. F. Nogueira, Z. Zaharieva, A. A. R. Watt, C. H. de Brito Cruz, and L. A. Padilha, “Two-photon absorption and two-photon-induced gain in perovskite quantum dots,” J. Phys. Chem. Lett. 9, 3478–3484 (2018). [CrossRef]  

32. Y. Xu, Q. Chen, C. Zhang, R. Wang, H. Wu, X. Zhang, G. Xing, W. W. Yu, X. Wang, Y. Zhang, and M. Xiao, “Two-photon-pumped perovskite semiconductor nanocrystal lasers,” J. Am. Chem. Soc. 138, 3761–3768 (2016). [CrossRef]  

33. J. Chen, P. Chabera, T. Pascher, M. E. Messing, R. Schaller, S. Canton, K. Zheng, and T. Pullerits, “Enhanced size selection in two-photon excitation for CsPbBr3 perovskite nanocrystals,” J. Phys. Chem. Lett. 8, 5119–5124 (2017). [CrossRef]  

34. J. Z. Li, C. Ren, X. Qiu, X. D. Lin, R. Chen, C. Yin, and T. C. He, “Ultrafast optical nonlinearity of blue-emitting perovskite nanocrystals,” Photon. Res. 6, 554–559 (2018). [CrossRef]  

35. J. Li, F. Zhao, S. Xiao, J. Cheng, X. Qiu, X. Lin, R. Chen, and T. He, “Giant two- to five-photon absorption in CsPbBr2.7I0.3 two-dimensional nanoplatelets,” Opt. Lett. 44, 3873–3876 (2019). [CrossRef]  

36. Y. Wang, X. Li, X. Zhao, L. Xiao, H. Zeng, and H. Sun, “Nonlinear absorption and low-threshold multiphoton pumped stimulated emission from all-inorganic perovskite nanocrystals,” Nano Lett. 16, 448–453 (2016). [CrossRef]  

37. B. Nafradi, P. Szirmai, M. Spina, H. Lee, O. V. Yazyev, A. Arakcheeva, D. Chernyshov, M. Gibert, L. Forro, and E. Horvath, “Optically switched magnetism in photovoltaic perovskite CH3NH3(Mn:Pb)I3,” Nat. Commun. 7, 13406 (2016). [CrossRef]  

38. G. Tong, H. Li, Z. Zhu, Y. Zhang, L. Yu, J. Xu, and Y. Jiang, “Enhancing hybrid perovskite detectability in the deep ultraviolet region with down-conversion dual-phase (CsPbBr3-Cs4PbBr6) films,” J. Phys. Chem. Lett. 9, 1592–1599 (2018). [CrossRef]  

39. M. Jin, S. Huang, C. Quan, X. Liang, J. Du, Z. Liu, Z. Zhang, and W. Xiang, “Blue low-threshold room-temperature stimulated emission from thermostable perovskite nanocrystals glasses through controlling crystallization,” J. Eur. Ceram. Soc 41, 1579–1585 (2021). [CrossRef]  

40. L. Y. Bai, S. W. Wang, Y. W. Zhang, K. X. Zhang, and L. X. Yi, “Influence of annealing process on the stable luminous CsPbCl3 perovskite films by thermal evaporation,” J. Lumin. 227, 117592 (2020). [CrossRef]  

41. E. Erol, O. Kıbrıslı, M. Ç. Ersundu, and A. E. Ersundu, “Size-controlled emission of long-time durable CsPbBr3 perovskite quantum dots embedded tellurite glass nanocomposites,” Chem. Eng. J. 401, 126053 (2020). [CrossRef]  

42. K. N. Krishnakanth, S. Seth, A. Samanta, and S. V. Rao, “Broadband ultrafast nonlinear optical studies revealing exciting multi-photon absorption coefficients in phase pure zero-dimensional Cs4PbBr6 perovskite films,” Nanoscale 11, 945–954 (2019). [CrossRef]  

43. L. Wu, Y. Dong, J. Zhao, D. Ma, W. Huang, Y. Zhang, Y. Wang, X. Jiang, Y. Xiang, J. Li, Y. Feng, J. Xu, and H. Zhang, “Kerr nonlinearity in 2D graphdiyne for passive photonic diodes,” Adv. Mater. 31, 1807981 (2019). [CrossRef]  

44. C. Quan, M. He, C. He, Y. Huang, L. Zhu, Z. Yao, X. Xu, C. Lu, and X. Xu, “Transition from saturable absorption to reverse saturable absorption in MoTe2 nano-films with thickness and pump intensity,” Appl. Surf. Sci. 457, 115–120 (2018). [CrossRef]  

45. X. Jiang, L. Zhang, S. Liu, Y. Zhang, Z. He, W. Li, F. Zhang, Y. Shi, W. Lü, Y. Li, Q. Wen, J. Li, J. Feng, S. Ruan, Y.-J. Zeng, X. Zhu, Y. Lu, and H. Zhang, “Ultrathin metal-organic framework: an emerging broadband nonlinear optical material for ultrafast photonics,” Adv. Opt. Mater. 6, 1800561 (2018). [CrossRef]  

46. D. Andres-Penares, J. Navarro-Arenas, R. I. Sánchez-Alarcón, R. Abargues, J. P. Martínez-Pastor, and J. F. Sánchez-Royo, “Enhanced optical response of InSe nanosheet devices decorated with CsPbX3 (X=I, Br) perovskite nanocrystals,” Appl. Surf. Sci. 536, 147939 (2021). [CrossRef]  

47. Q. Han, W. Wu, W. Liu, Q. Yang, and Y. Yang, “Two-photon absorption and upconversion luminescence of colloidal CsPbX3 quantum dots,” Opt. Mater. 75, 880–886 (2018). [CrossRef]  

48. P. A. Kurian, C. Vijayan, C. S. Suchand Sandeep, R. Philip, and K. Sathiyamoorthy, “Two-photon-assisted excited state absorption in nanocomposite films of PbS stabilized in a synthetic glue matrix,” Nanotechnology 18, 075708 (2007). [CrossRef]  

49. N. D. S. Zhang, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9, 7142–7150 (2015). [CrossRef]  

50. J. Wang, B. Gu, X.-W. Ni, and H.-T. Wang, “Z-scan theory with simultaneous two- and three-photon absorption saturation,” Opt. Laser Technol. 44, 390–393 (2012). [CrossRef]  

51. B. Gu, Y.-X. Fan, J. Chen, H.-T. Wang, J. He, and W. Ji, “Z-scan theory of two-photon absorption saturation and experimental evidence,” J. Appl. Phys. 102, 083101 (2007). [CrossRef]  

52. J. Chen, K. Zidek, P. Chabera, D. Liu, P. Cheng, L. Nuuttila, M. J. Al-Marri, H. Lehtivuori, M. E. Messing, K. Han, K. Zheng, and T. Pullerits, “Size- and wavelength-dependent two-photon absorption cross-section of CsPbBr3 perovskite quantum dots,” J. Phys. Chem. Lett. 8, 2316–2321 (2017). [CrossRef]  

53. T.-H. Le, S. Lee, E. Heo, U. Lee, H. Lee, H. Jo, K. S. Yang, M. Chang, and H. Yoon, “Controlled anisotropic growth of layered perovskite nanocrystals for enhanced optoelectronic properties,” Chem. Eng. J. 416, 128045 (2021). [CrossRef]  

References

  • View by:

  1. L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, “Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color Gamut,” Nano Lett. 15, 3692–3696 (2015).
    [Crossref]
  2. G. Nedelcu, L. Protesescu, S. Yakunin, M. I. Bodnarchuk, M. J. Grotevent, and M. V. Kovalenko, “Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I),” Nano Lett. 15, 5635–5640 (2015).
    [Crossref]
  3. J. A. Castaneda, G. Nagamine, E. Yassitepe, L. G. Bonato, O. Voznyy, S. Hoogland, A. F. Nogueira, E. H. Sargent, C. H. Cruz, and L. A. Padilha, “Efficient biexciton interaction in perovskite quantum dots under weak and strong confinement,” ACS Nano 10, 8603–8609 (2016).
    [Crossref]
  4. S. Chen and G. Shi, “Two-dimensional materials for halide perovskite-based optoelectronic devices,” Adv. Mater. 29, 1605448 (2017).
    [Crossref]
  5. T. Zhang, M. I. Dar, G. Li, F. Xu, N. Guo, M. Grätzel, and Y. Zhao, “Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells,” Sci. Adv. 3, e1700841 (2017).
    [Crossref]
  6. H. Cho, S.-H. Jeong, M.-H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, and T.-W. Lee, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350, 1222–1225 (2015).
    [Crossref]
  7. Z. K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, F. Hanusch, T. Bein, H. J. Snaith, and R. H. Friend, “Bright light-emitting diodes based on organometal halide perovskite,” Nat. Nanotechnol. 9, 687–692 (2014).
    [Crossref]
  8. J. Yang, X. Wen, H. Xia, R. Sheng, Q. Ma, J. Kim, P. Tapping, T. Harada, T. W. Kee, F. Huang, Y. B. Cheng, M. Green, A. Ho-Baillie, S. Huang, S. Shrestha, R. Patterson, and G. Conibeer, “Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites,” Nat. Commun. 8, 14120 (2017).
    [Crossref]
  9. M. Li, S. Bhaumik, T. W. Goh, M. S. Kumar, N. Yantara, M. Gratzel, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Slow cooling and highly efficient extraction of hot carriers in colloidal perovskite nanocrystals,” Nat. Commun. 8, 14350 (2017).
    [Crossref]
  10. X. Qi, Y. Zhang, Q. Ou, S. T. Ha, C. W. Qiu, H. Zhang, Y. B. Cheng, Q. Xiong, and Q. Bao, “Photonics and optoelectronics of 2D metal-halide perovskites,” Small 14, 1800682 (2018).
    [Crossref]
  11. J. Butkus, P. Vashishtha, K. Chen, J. K. Gallaher, S. K. K. Prasad, D. Z. Metin, G. Laufersky, N. Gaston, J. E. Halpert, and J. M. Hodgkiss, “The evolution of quantum confinement in CsPbBr3 perovskite nanocrystals,” Chem. Mater. 29, 3644–3652 (2017).
    [Crossref]
  12. J. He, L. Tao, H. Zhang, B. Zhou, and J. Li, “Emerging 2D materials beyond graphene for ultrashort pulse generation in fiber lasers,” Nanoscale 11, 2577–2593 (2019).
    [Crossref]
  13. A. Pramanik, K. Gates, Y. Gao, S. Begum, and P. C. Ray, “Several orders-of-magnitude enhancement of multiphoton absorption property for CsPbX3 perovskite quantum dots by manipulating halide stoichiometry,” J. Phys. Chem. C 123, 5150–5156 (2019).
    [Crossref]
  14. H. C. Wang, Z. Bao, H. Y. Tsai, A. C. Tang, and R. S. Liu, “Perovskite quantum dots and their application in light-emitting diodes,” Small 14, 1702433 (2018).
    [Crossref]
  15. G. E. Eperon, S. N. Habisreutinger, T. Leijtens, B. J. Bruijnaers, J. J. Franeker, D. W. deQuilettes, S. Pathak, R. J. Sutton, G. Grancini, D. S. Ginger, R. A. J. Janssen, A. Petrozza, and H. J. Snaith, “The importance of moisture in hybrid lead halide perovskite thin film fabrication,” ACS Nano 9, 9380–9393 (2015).
    [Crossref]
  16. C. Sun, Y. Zhang, C. Ruan, C. Yin, X. Wang, Y. Wang, and W. W. Yu, “Efficient and stable white LEDs with silica-coated inorganic perovskite quantum dots,” Adv. Mater. 28, 10088–10094 (2016).
    [Crossref]
  17. F. Palazon, Q. A. Akkerman, M. Prato, and L. Manna, “X-ray lithography on perovskite nanocrystals films: from patterning with anion-exchange reactions to enhanced stability in air and water,” ACS Nano 10, 1224–1230 (2016).
    [Crossref]
  18. V. K. Ravi, S. Saikia, S. Yadav, V. V. Nawale, and A. Nag, “CsPbBr3/ZnS core/shell type nanocrystals for enhancing luminescence lifetime and water stability,” ACS Energy Lett. 5, 1794–1796 (2020).
    [Crossref]
  19. W. J. Mir, A. Swarnkar, and A. Nag, “Postsynthesis Mn-doping in CsPbI3 nanocrystals to stabilize the black perovskite phase,” Nanoscale 11, 4278–4286 (2019).
    [Crossref]
  20. F. Zhang, Z. Shi, S. Li, Z. Ma, Y. Li, L. Wang, D. Wu, Y. Tian, G. Du, X. Li, and C. Shan, “Synergetic effect of the surfactant and silica coating on the enhanced emission and stability of perovskite quantum dots for anticounterfeiting,” ACS Appl. Mater. Interfaces 11, 28013–28022 (2019).
    [Crossref]
  21. F. Zhang, Z. F. Shi, Z. Z. Ma, Y. Li, S. Li, D. Wu, T. T. Xu, X. J. Li, C. X. Shan, and G. T. Du, “Silica coating enhances the stability of inorganic perovskite nanocrystals for efficient and stable down-conversion in white light-emitting devices,” Nanoscale 10, 20131–20139 (2018).
    [Crossref]
  22. D. N. Dirin, L. Protesescu, D. Trummer, I. V. Kochetygov, S. Yakunin, F. Krumeich, N. P. Stadie, and M. V. Kovalenko, “Harnessing defect-tolerance at the nanoscale: highly luminescent lead halide perovskite nanocrystals in mesoporous silica matrixes,” Nano Lett. 16, 5866–5874 (2016).
    [Crossref]
  23. M. Xia, J. Luo, C. Chen, H. Liu, and J. Tang, “Semiconductor quantum dots-embedded inorganic glasses: fabrication, luminescent properties, and potential applications,” Adv. Opt. Mater. 7, 1900851 (2019).
    [Crossref]
  24. Y. Ye, W. Zhang, Z. Zhao, J. Wang, C. Liu, Z. Deng, X. Zhao, and J. Han, “Highly luminescent cesium lead halide perovskite nanocrystals stabilized in glasses for light-emitting applications,” Adv. Opt. Mater. 7, 1801663 (2019).
    [Crossref]
  25. B. Ai, C. Liu, J. Wang, J. Xie, J. Han, X. Zhao, and J. Heo, “Precipitation and optical properties of CsPbBr3 quantum dots in phosphate glasses,” J. Am. Ceram. Soc. 99, 2875–2877 (2016).
    [Crossref]
  26. Y. Hu, W. Zhang, Y. Ye, Z. Zhao, and C. Liu, “Femtosecond-laser-induced precipitation of CsPbBr3 perovskite nanocrystals in glasses for solar spectral conversion,” ACS Appl. Nano Mater. 3, 850–857 (2019).
    [Crossref]
  27. S. Yuan, D. Chen, X. Li, J. Zhong, and X. Xu, “In situ crystallization synthesis of CsPbBr3 perovskite quantum dot-embedded glasses with improved stability for solid-state lighting and random upconverted lasing,” ACS Appl. Mater. Interfaces 10, 18918–18926 (2018).
    [Crossref]
  28. X. Pang, H. Zhang, L. Xie, T. Xuan, Y. Sun, S. Si, B. Jiang, W. Chen, J. Zhuang, C. Hu, Y. Liu, B. Lei, and X. Zhang, “Precipitating CsPbBr3 quantum dots in boro-germanate glass with a dense structure and inert environment toward highly stable and efficient narrow-band green emitters for wide-color-gamut liquid crystal displays,” J. Mater. Chem. C 7, 13139–13148 (2019).
    [Crossref]
  29. J. Li, Q. Jing, S. Xiao, Y. Gao, Y. Wang, W. Zhang, X. W. Sun, K. Wang, and T. He, “Spectral dynamics and multiphoton absorption properties of all-inorganic perovskite nanorods,” J. Phys. Chem. Lett. 11, 4817–4825 (2020).
    [Crossref]
  30. W. Chen, S. Bhaumik, S. A. Veldhuis, G. Xing, Q. Xu, M. Gratzel, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Giant five-photon absorption from multidimensional core-shell halide perovskite colloidal nanocrystals,” Nat. Commun. 8, 15198 (2017).
    [Crossref]
  31. G. Nagamine, J. O. Rocha, L. G. Bonato, A. F. Nogueira, Z. Zaharieva, A. A. R. Watt, C. H. de Brito Cruz, and L. A. Padilha, “Two-photon absorption and two-photon-induced gain in perovskite quantum dots,” J. Phys. Chem. Lett. 9, 3478–3484 (2018).
    [Crossref]
  32. Y. Xu, Q. Chen, C. Zhang, R. Wang, H. Wu, X. Zhang, G. Xing, W. W. Yu, X. Wang, Y. Zhang, and M. Xiao, “Two-photon-pumped perovskite semiconductor nanocrystal lasers,” J. Am. Chem. Soc. 138, 3761–3768 (2016).
    [Crossref]
  33. J. Chen, P. Chabera, T. Pascher, M. E. Messing, R. Schaller, S. Canton, K. Zheng, and T. Pullerits, “Enhanced size selection in two-photon excitation for CsPbBr3 perovskite nanocrystals,” J. Phys. Chem. Lett. 8, 5119–5124 (2017).
    [Crossref]
  34. J. Z. Li, C. Ren, X. Qiu, X. D. Lin, R. Chen, C. Yin, and T. C. He, “Ultrafast optical nonlinearity of blue-emitting perovskite nanocrystals,” Photon. Res. 6, 554–559 (2018).
    [Crossref]
  35. J. Li, F. Zhao, S. Xiao, J. Cheng, X. Qiu, X. Lin, R. Chen, and T. He, “Giant two- to five-photon absorption in CsPbBr2.7I0.3 two-dimensional nanoplatelets,” Opt. Lett. 44, 3873–3876 (2019).
    [Crossref]
  36. Y. Wang, X. Li, X. Zhao, L. Xiao, H. Zeng, and H. Sun, “Nonlinear absorption and low-threshold multiphoton pumped stimulated emission from all-inorganic perovskite nanocrystals,” Nano Lett. 16, 448–453 (2016).
    [Crossref]
  37. B. Nafradi, P. Szirmai, M. Spina, H. Lee, O. V. Yazyev, A. Arakcheeva, D. Chernyshov, M. Gibert, L. Forro, and E. Horvath, “Optically switched magnetism in photovoltaic perovskite CH3NH3(Mn:Pb)I3,” Nat. Commun. 7, 13406 (2016).
    [Crossref]
  38. G. Tong, H. Li, Z. Zhu, Y. Zhang, L. Yu, J. Xu, and Y. Jiang, “Enhancing hybrid perovskite detectability in the deep ultraviolet region with down-conversion dual-phase (CsPbBr3-Cs4PbBr6) films,” J. Phys. Chem. Lett. 9, 1592–1599 (2018).
    [Crossref]
  39. M. Jin, S. Huang, C. Quan, X. Liang, J. Du, Z. Liu, Z. Zhang, and W. Xiang, “Blue low-threshold room-temperature stimulated emission from thermostable perovskite nanocrystals glasses through controlling crystallization,” J. Eur. Ceram. Soc 41, 1579–1585 (2021).
    [Crossref]
  40. L. Y. Bai, S. W. Wang, Y. W. Zhang, K. X. Zhang, and L. X. Yi, “Influence of annealing process on the stable luminous CsPbCl3 perovskite films by thermal evaporation,” J. Lumin. 227, 117592 (2020).
    [Crossref]
  41. E. Erol, O. Kıbrıslı, M. Ç. Ersundu, and A. E. Ersundu, “Size-controlled emission of long-time durable CsPbBr3 perovskite quantum dots embedded tellurite glass nanocomposites,” Chem. Eng. J. 401, 126053 (2020).
    [Crossref]
  42. K. N. Krishnakanth, S. Seth, A. Samanta, and S. V. Rao, “Broadband ultrafast nonlinear optical studies revealing exciting multi-photon absorption coefficients in phase pure zero-dimensional Cs4PbBr6 perovskite films,” Nanoscale 11, 945–954 (2019).
    [Crossref]
  43. L. Wu, Y. Dong, J. Zhao, D. Ma, W. Huang, Y. Zhang, Y. Wang, X. Jiang, Y. Xiang, J. Li, Y. Feng, J. Xu, and H. Zhang, “Kerr nonlinearity in 2D graphdiyne for passive photonic diodes,” Adv. Mater. 31, 1807981 (2019).
    [Crossref]
  44. C. Quan, M. He, C. He, Y. Huang, L. Zhu, Z. Yao, X. Xu, C. Lu, and X. Xu, “Transition from saturable absorption to reverse saturable absorption in MoTe2 nano-films with thickness and pump intensity,” Appl. Surf. Sci. 457, 115–120 (2018).
    [Crossref]
  45. X. Jiang, L. Zhang, S. Liu, Y. Zhang, Z. He, W. Li, F. Zhang, Y. Shi, W. Lü, Y. Li, Q. Wen, J. Li, J. Feng, S. Ruan, Y.-J. Zeng, X. Zhu, Y. Lu, and H. Zhang, “Ultrathin metal-organic framework: an emerging broadband nonlinear optical material for ultrafast photonics,” Adv. Opt. Mater. 6, 1800561 (2018).
    [Crossref]
  46. D. Andres-Penares, J. Navarro-Arenas, R. I. Sánchez-Alarcón, R. Abargues, J. P. Martínez-Pastor, and J. F. Sánchez-Royo, “Enhanced optical response of InSe nanosheet devices decorated with CsPbX3 (X=I, Br) perovskite nanocrystals,” Appl. Surf. Sci. 536, 147939 (2021).
    [Crossref]
  47. Q. Han, W. Wu, W. Liu, Q. Yang, and Y. Yang, “Two-photon absorption and upconversion luminescence of colloidal CsPbX3 quantum dots,” Opt. Mater. 75, 880–886 (2018).
    [Crossref]
  48. P. A. Kurian, C. Vijayan, C. S. Suchand Sandeep, R. Philip, and K. Sathiyamoorthy, “Two-photon-assisted excited state absorption in nanocomposite films of PbS stabilized in a synthetic glue matrix,” Nanotechnology 18, 075708 (2007).
    [Crossref]
  49. N. D. S. Zhang, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9, 7142–7150 (2015).
    [Crossref]
  50. J. Wang, B. Gu, X.-W. Ni, and H.-T. Wang, “Z-scan theory with simultaneous two- and three-photon absorption saturation,” Opt. Laser Technol. 44, 390–393 (2012).
    [Crossref]
  51. B. Gu, Y.-X. Fan, J. Chen, H.-T. Wang, J. He, and W. Ji, “Z-scan theory of two-photon absorption saturation and experimental evidence,” J. Appl. Phys. 102, 083101 (2007).
    [Crossref]
  52. J. Chen, K. Zidek, P. Chabera, D. Liu, P. Cheng, L. Nuuttila, M. J. Al-Marri, H. Lehtivuori, M. E. Messing, K. Han, K. Zheng, and T. Pullerits, “Size- and wavelength-dependent two-photon absorption cross-section of CsPbBr3 perovskite quantum dots,” J. Phys. Chem. Lett. 8, 2316–2321 (2017).
    [Crossref]
  53. T.-H. Le, S. Lee, E. Heo, U. Lee, H. Lee, H. Jo, K. S. Yang, M. Chang, and H. Yoon, “Controlled anisotropic growth of layered perovskite nanocrystals for enhanced optoelectronic properties,” Chem. Eng. J. 416, 128045 (2021).
    [Crossref]

2021 (3)

M. Jin, S. Huang, C. Quan, X. Liang, J. Du, Z. Liu, Z. Zhang, and W. Xiang, “Blue low-threshold room-temperature stimulated emission from thermostable perovskite nanocrystals glasses through controlling crystallization,” J. Eur. Ceram. Soc 41, 1579–1585 (2021).
[Crossref]

D. Andres-Penares, J. Navarro-Arenas, R. I. Sánchez-Alarcón, R. Abargues, J. P. Martínez-Pastor, and J. F. Sánchez-Royo, “Enhanced optical response of InSe nanosheet devices decorated with CsPbX3 (X=I, Br) perovskite nanocrystals,” Appl. Surf. Sci. 536, 147939 (2021).
[Crossref]

T.-H. Le, S. Lee, E. Heo, U. Lee, H. Lee, H. Jo, K. S. Yang, M. Chang, and H. Yoon, “Controlled anisotropic growth of layered perovskite nanocrystals for enhanced optoelectronic properties,” Chem. Eng. J. 416, 128045 (2021).
[Crossref]

2020 (4)

L. Y. Bai, S. W. Wang, Y. W. Zhang, K. X. Zhang, and L. X. Yi, “Influence of annealing process on the stable luminous CsPbCl3 perovskite films by thermal evaporation,” J. Lumin. 227, 117592 (2020).
[Crossref]

E. Erol, O. Kıbrıslı, M. Ç. Ersundu, and A. E. Ersundu, “Size-controlled emission of long-time durable CsPbBr3 perovskite quantum dots embedded tellurite glass nanocomposites,” Chem. Eng. J. 401, 126053 (2020).
[Crossref]

V. K. Ravi, S. Saikia, S. Yadav, V. V. Nawale, and A. Nag, “CsPbBr3/ZnS core/shell type nanocrystals for enhancing luminescence lifetime and water stability,” ACS Energy Lett. 5, 1794–1796 (2020).
[Crossref]

J. Li, Q. Jing, S. Xiao, Y. Gao, Y. Wang, W. Zhang, X. W. Sun, K. Wang, and T. He, “Spectral dynamics and multiphoton absorption properties of all-inorganic perovskite nanorods,” J. Phys. Chem. Lett. 11, 4817–4825 (2020).
[Crossref]

2019 (11)

X. Pang, H. Zhang, L. Xie, T. Xuan, Y. Sun, S. Si, B. Jiang, W. Chen, J. Zhuang, C. Hu, Y. Liu, B. Lei, and X. Zhang, “Precipitating CsPbBr3 quantum dots in boro-germanate glass with a dense structure and inert environment toward highly stable and efficient narrow-band green emitters for wide-color-gamut liquid crystal displays,” J. Mater. Chem. C 7, 13139–13148 (2019).
[Crossref]

W. J. Mir, A. Swarnkar, and A. Nag, “Postsynthesis Mn-doping in CsPbI3 nanocrystals to stabilize the black perovskite phase,” Nanoscale 11, 4278–4286 (2019).
[Crossref]

F. Zhang, Z. Shi, S. Li, Z. Ma, Y. Li, L. Wang, D. Wu, Y. Tian, G. Du, X. Li, and C. Shan, “Synergetic effect of the surfactant and silica coating on the enhanced emission and stability of perovskite quantum dots for anticounterfeiting,” ACS Appl. Mater. Interfaces 11, 28013–28022 (2019).
[Crossref]

M. Xia, J. Luo, C. Chen, H. Liu, and J. Tang, “Semiconductor quantum dots-embedded inorganic glasses: fabrication, luminescent properties, and potential applications,” Adv. Opt. Mater. 7, 1900851 (2019).
[Crossref]

Y. Ye, W. Zhang, Z. Zhao, J. Wang, C. Liu, Z. Deng, X. Zhao, and J. Han, “Highly luminescent cesium lead halide perovskite nanocrystals stabilized in glasses for light-emitting applications,” Adv. Opt. Mater. 7, 1801663 (2019).
[Crossref]

Y. Hu, W. Zhang, Y. Ye, Z. Zhao, and C. Liu, “Femtosecond-laser-induced precipitation of CsPbBr3 perovskite nanocrystals in glasses for solar spectral conversion,” ACS Appl. Nano Mater. 3, 850–857 (2019).
[Crossref]

J. He, L. Tao, H. Zhang, B. Zhou, and J. Li, “Emerging 2D materials beyond graphene for ultrashort pulse generation in fiber lasers,” Nanoscale 11, 2577–2593 (2019).
[Crossref]

A. Pramanik, K. Gates, Y. Gao, S. Begum, and P. C. Ray, “Several orders-of-magnitude enhancement of multiphoton absorption property for CsPbX3 perovskite quantum dots by manipulating halide stoichiometry,” J. Phys. Chem. C 123, 5150–5156 (2019).
[Crossref]

K. N. Krishnakanth, S. Seth, A. Samanta, and S. V. Rao, “Broadband ultrafast nonlinear optical studies revealing exciting multi-photon absorption coefficients in phase pure zero-dimensional Cs4PbBr6 perovskite films,” Nanoscale 11, 945–954 (2019).
[Crossref]

L. Wu, Y. Dong, J. Zhao, D. Ma, W. Huang, Y. Zhang, Y. Wang, X. Jiang, Y. Xiang, J. Li, Y. Feng, J. Xu, and H. Zhang, “Kerr nonlinearity in 2D graphdiyne for passive photonic diodes,” Adv. Mater. 31, 1807981 (2019).
[Crossref]

J. Li, F. Zhao, S. Xiao, J. Cheng, X. Qiu, X. Lin, R. Chen, and T. He, “Giant two- to five-photon absorption in CsPbBr2.7I0.3 two-dimensional nanoplatelets,” Opt. Lett. 44, 3873–3876 (2019).
[Crossref]

2018 (10)

Q. Han, W. Wu, W. Liu, Q. Yang, and Y. Yang, “Two-photon absorption and upconversion luminescence of colloidal CsPbX3 quantum dots,” Opt. Mater. 75, 880–886 (2018).
[Crossref]

C. Quan, M. He, C. He, Y. Huang, L. Zhu, Z. Yao, X. Xu, C. Lu, and X. Xu, “Transition from saturable absorption to reverse saturable absorption in MoTe2 nano-films with thickness and pump intensity,” Appl. Surf. Sci. 457, 115–120 (2018).
[Crossref]

X. Jiang, L. Zhang, S. Liu, Y. Zhang, Z. He, W. Li, F. Zhang, Y. Shi, W. Lü, Y. Li, Q. Wen, J. Li, J. Feng, S. Ruan, Y.-J. Zeng, X. Zhu, Y. Lu, and H. Zhang, “Ultrathin metal-organic framework: an emerging broadband nonlinear optical material for ultrafast photonics,” Adv. Opt. Mater. 6, 1800561 (2018).
[Crossref]

G. Tong, H. Li, Z. Zhu, Y. Zhang, L. Yu, J. Xu, and Y. Jiang, “Enhancing hybrid perovskite detectability in the deep ultraviolet region with down-conversion dual-phase (CsPbBr3-Cs4PbBr6) films,” J. Phys. Chem. Lett. 9, 1592–1599 (2018).
[Crossref]

H. C. Wang, Z. Bao, H. Y. Tsai, A. C. Tang, and R. S. Liu, “Perovskite quantum dots and their application in light-emitting diodes,” Small 14, 1702433 (2018).
[Crossref]

X. Qi, Y. Zhang, Q. Ou, S. T. Ha, C. W. Qiu, H. Zhang, Y. B. Cheng, Q. Xiong, and Q. Bao, “Photonics and optoelectronics of 2D metal-halide perovskites,” Small 14, 1800682 (2018).
[Crossref]

S. Yuan, D. Chen, X. Li, J. Zhong, and X. Xu, “In situ crystallization synthesis of CsPbBr3 perovskite quantum dot-embedded glasses with improved stability for solid-state lighting and random upconverted lasing,” ACS Appl. Mater. Interfaces 10, 18918–18926 (2018).
[Crossref]

F. Zhang, Z. F. Shi, Z. Z. Ma, Y. Li, S. Li, D. Wu, T. T. Xu, X. J. Li, C. X. Shan, and G. T. Du, “Silica coating enhances the stability of inorganic perovskite nanocrystals for efficient and stable down-conversion in white light-emitting devices,” Nanoscale 10, 20131–20139 (2018).
[Crossref]

G. Nagamine, J. O. Rocha, L. G. Bonato, A. F. Nogueira, Z. Zaharieva, A. A. R. Watt, C. H. de Brito Cruz, and L. A. Padilha, “Two-photon absorption and two-photon-induced gain in perovskite quantum dots,” J. Phys. Chem. Lett. 9, 3478–3484 (2018).
[Crossref]

J. Z. Li, C. Ren, X. Qiu, X. D. Lin, R. Chen, C. Yin, and T. C. He, “Ultrafast optical nonlinearity of blue-emitting perovskite nanocrystals,” Photon. Res. 6, 554–559 (2018).
[Crossref]

2017 (8)

J. Chen, P. Chabera, T. Pascher, M. E. Messing, R. Schaller, S. Canton, K. Zheng, and T. Pullerits, “Enhanced size selection in two-photon excitation for CsPbBr3 perovskite nanocrystals,” J. Phys. Chem. Lett. 8, 5119–5124 (2017).
[Crossref]

W. Chen, S. Bhaumik, S. A. Veldhuis, G. Xing, Q. Xu, M. Gratzel, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Giant five-photon absorption from multidimensional core-shell halide perovskite colloidal nanocrystals,” Nat. Commun. 8, 15198 (2017).
[Crossref]

J. Butkus, P. Vashishtha, K. Chen, J. K. Gallaher, S. K. K. Prasad, D. Z. Metin, G. Laufersky, N. Gaston, J. E. Halpert, and J. M. Hodgkiss, “The evolution of quantum confinement in CsPbBr3 perovskite nanocrystals,” Chem. Mater. 29, 3644–3652 (2017).
[Crossref]

S. Chen and G. Shi, “Two-dimensional materials for halide perovskite-based optoelectronic devices,” Adv. Mater. 29, 1605448 (2017).
[Crossref]

T. Zhang, M. I. Dar, G. Li, F. Xu, N. Guo, M. Grätzel, and Y. Zhao, “Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells,” Sci. Adv. 3, e1700841 (2017).
[Crossref]

J. Yang, X. Wen, H. Xia, R. Sheng, Q. Ma, J. Kim, P. Tapping, T. Harada, T. W. Kee, F. Huang, Y. B. Cheng, M. Green, A. Ho-Baillie, S. Huang, S. Shrestha, R. Patterson, and G. Conibeer, “Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites,” Nat. Commun. 8, 14120 (2017).
[Crossref]

M. Li, S. Bhaumik, T. W. Goh, M. S. Kumar, N. Yantara, M. Gratzel, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Slow cooling and highly efficient extraction of hot carriers in colloidal perovskite nanocrystals,” Nat. Commun. 8, 14350 (2017).
[Crossref]

J. Chen, K. Zidek, P. Chabera, D. Liu, P. Cheng, L. Nuuttila, M. J. Al-Marri, H. Lehtivuori, M. E. Messing, K. Han, K. Zheng, and T. Pullerits, “Size- and wavelength-dependent two-photon absorption cross-section of CsPbBr3 perovskite quantum dots,” J. Phys. Chem. Lett. 8, 2316–2321 (2017).
[Crossref]

2016 (8)

Y. Wang, X. Li, X. Zhao, L. Xiao, H. Zeng, and H. Sun, “Nonlinear absorption and low-threshold multiphoton pumped stimulated emission from all-inorganic perovskite nanocrystals,” Nano Lett. 16, 448–453 (2016).
[Crossref]

B. Nafradi, P. Szirmai, M. Spina, H. Lee, O. V. Yazyev, A. Arakcheeva, D. Chernyshov, M. Gibert, L. Forro, and E. Horvath, “Optically switched magnetism in photovoltaic perovskite CH3NH3(Mn:Pb)I3,” Nat. Commun. 7, 13406 (2016).
[Crossref]

C. Sun, Y. Zhang, C. Ruan, C. Yin, X. Wang, Y. Wang, and W. W. Yu, “Efficient and stable white LEDs with silica-coated inorganic perovskite quantum dots,” Adv. Mater. 28, 10088–10094 (2016).
[Crossref]

F. Palazon, Q. A. Akkerman, M. Prato, and L. Manna, “X-ray lithography on perovskite nanocrystals films: from patterning with anion-exchange reactions to enhanced stability in air and water,” ACS Nano 10, 1224–1230 (2016).
[Crossref]

J. A. Castaneda, G. Nagamine, E. Yassitepe, L. G. Bonato, O. Voznyy, S. Hoogland, A. F. Nogueira, E. H. Sargent, C. H. Cruz, and L. A. Padilha, “Efficient biexciton interaction in perovskite quantum dots under weak and strong confinement,” ACS Nano 10, 8603–8609 (2016).
[Crossref]

Y. Xu, Q. Chen, C. Zhang, R. Wang, H. Wu, X. Zhang, G. Xing, W. W. Yu, X. Wang, Y. Zhang, and M. Xiao, “Two-photon-pumped perovskite semiconductor nanocrystal lasers,” J. Am. Chem. Soc. 138, 3761–3768 (2016).
[Crossref]

D. N. Dirin, L. Protesescu, D. Trummer, I. V. Kochetygov, S. Yakunin, F. Krumeich, N. P. Stadie, and M. V. Kovalenko, “Harnessing defect-tolerance at the nanoscale: highly luminescent lead halide perovskite nanocrystals in mesoporous silica matrixes,” Nano Lett. 16, 5866–5874 (2016).
[Crossref]

B. Ai, C. Liu, J. Wang, J. Xie, J. Han, X. Zhao, and J. Heo, “Precipitation and optical properties of CsPbBr3 quantum dots in phosphate glasses,” J. Am. Ceram. Soc. 99, 2875–2877 (2016).
[Crossref]

2015 (5)

G. E. Eperon, S. N. Habisreutinger, T. Leijtens, B. J. Bruijnaers, J. J. Franeker, D. W. deQuilettes, S. Pathak, R. J. Sutton, G. Grancini, D. S. Ginger, R. A. J. Janssen, A. Petrozza, and H. J. Snaith, “The importance of moisture in hybrid lead halide perovskite thin film fabrication,” ACS Nano 9, 9380–9393 (2015).
[Crossref]

L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, “Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color Gamut,” Nano Lett. 15, 3692–3696 (2015).
[Crossref]

G. Nedelcu, L. Protesescu, S. Yakunin, M. I. Bodnarchuk, M. J. Grotevent, and M. V. Kovalenko, “Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I),” Nano Lett. 15, 5635–5640 (2015).
[Crossref]

H. Cho, S.-H. Jeong, M.-H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, and T.-W. Lee, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350, 1222–1225 (2015).
[Crossref]

N. D. S. Zhang, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9, 7142–7150 (2015).
[Crossref]

2014 (1)

Z. K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, F. Hanusch, T. Bein, H. J. Snaith, and R. H. Friend, “Bright light-emitting diodes based on organometal halide perovskite,” Nat. Nanotechnol. 9, 687–692 (2014).
[Crossref]

2012 (1)

J. Wang, B. Gu, X.-W. Ni, and H.-T. Wang, “Z-scan theory with simultaneous two- and three-photon absorption saturation,” Opt. Laser Technol. 44, 390–393 (2012).
[Crossref]

2007 (2)

B. Gu, Y.-X. Fan, J. Chen, H.-T. Wang, J. He, and W. Ji, “Z-scan theory of two-photon absorption saturation and experimental evidence,” J. Appl. Phys. 102, 083101 (2007).
[Crossref]

P. A. Kurian, C. Vijayan, C. S. Suchand Sandeep, R. Philip, and K. Sathiyamoorthy, “Two-photon-assisted excited state absorption in nanocomposite films of PbS stabilized in a synthetic glue matrix,” Nanotechnology 18, 075708 (2007).
[Crossref]

Abargues, R.

D. Andres-Penares, J. Navarro-Arenas, R. I. Sánchez-Alarcón, R. Abargues, J. P. Martínez-Pastor, and J. F. Sánchez-Royo, “Enhanced optical response of InSe nanosheet devices decorated with CsPbX3 (X=I, Br) perovskite nanocrystals,” Appl. Surf. Sci. 536, 147939 (2021).
[Crossref]

Ai, B.

B. Ai, C. Liu, J. Wang, J. Xie, J. Han, X. Zhao, and J. Heo, “Precipitation and optical properties of CsPbBr3 quantum dots in phosphate glasses,” J. Am. Ceram. Soc. 99, 2875–2877 (2016).
[Crossref]

Akkerman, Q. A.

F. Palazon, Q. A. Akkerman, M. Prato, and L. Manna, “X-ray lithography on perovskite nanocrystals films: from patterning with anion-exchange reactions to enhanced stability in air and water,” ACS Nano 10, 1224–1230 (2016).
[Crossref]

Al-Marri, M. J.

J. Chen, K. Zidek, P. Chabera, D. Liu, P. Cheng, L. Nuuttila, M. J. Al-Marri, H. Lehtivuori, M. E. Messing, K. Han, K. Zheng, and T. Pullerits, “Size- and wavelength-dependent two-photon absorption cross-section of CsPbBr3 perovskite quantum dots,” J. Phys. Chem. Lett. 8, 2316–2321 (2017).
[Crossref]

Andres-Penares, D.

D. Andres-Penares, J. Navarro-Arenas, R. I. Sánchez-Alarcón, R. Abargues, J. P. Martínez-Pastor, and J. F. Sánchez-Royo, “Enhanced optical response of InSe nanosheet devices decorated with CsPbX3 (X=I, Br) perovskite nanocrystals,” Appl. Surf. Sci. 536, 147939 (2021).
[Crossref]

Arakcheeva, A.

B. Nafradi, P. Szirmai, M. Spina, H. Lee, O. V. Yazyev, A. Arakcheeva, D. Chernyshov, M. Gibert, L. Forro, and E. Horvath, “Optically switched magnetism in photovoltaic perovskite CH3NH3(Mn:Pb)I3,” Nat. Commun. 7, 13406 (2016).
[Crossref]

Bai, L. Y.

L. Y. Bai, S. W. Wang, Y. W. Zhang, K. X. Zhang, and L. X. Yi, “Influence of annealing process on the stable luminous CsPbCl3 perovskite films by thermal evaporation,” J. Lumin. 227, 117592 (2020).
[Crossref]

Bao, Q.

X. Qi, Y. Zhang, Q. Ou, S. T. Ha, C. W. Qiu, H. Zhang, Y. B. Cheng, Q. Xiong, and Q. Bao, “Photonics and optoelectronics of 2D metal-halide perovskites,” Small 14, 1800682 (2018).
[Crossref]

Bao, Z.

H. C. Wang, Z. Bao, H. Y. Tsai, A. C. Tang, and R. S. Liu, “Perovskite quantum dots and their application in light-emitting diodes,” Small 14, 1702433 (2018).
[Crossref]

Begum, S.

A. Pramanik, K. Gates, Y. Gao, S. Begum, and P. C. Ray, “Several orders-of-magnitude enhancement of multiphoton absorption property for CsPbX3 perovskite quantum dots by manipulating halide stoichiometry,” J. Phys. Chem. C 123, 5150–5156 (2019).
[Crossref]

Bein, T.

Z. K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, F. Hanusch, T. Bein, H. J. Snaith, and R. H. Friend, “Bright light-emitting diodes based on organometal halide perovskite,” Nat. Nanotechnol. 9, 687–692 (2014).
[Crossref]

Berner, N. C.

N. D. S. Zhang, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9, 7142–7150 (2015).
[Crossref]

Bhaumik, S.

M. Li, S. Bhaumik, T. W. Goh, M. S. Kumar, N. Yantara, M. Gratzel, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Slow cooling and highly efficient extraction of hot carriers in colloidal perovskite nanocrystals,” Nat. Commun. 8, 14350 (2017).
[Crossref]

W. Chen, S. Bhaumik, S. A. Veldhuis, G. Xing, Q. Xu, M. Gratzel, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Giant five-photon absorption from multidimensional core-shell halide perovskite colloidal nanocrystals,” Nat. Commun. 8, 15198 (2017).
[Crossref]

Bodnarchuk, M. I.

L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, “Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color Gamut,” Nano Lett. 15, 3692–3696 (2015).
[Crossref]

G. Nedelcu, L. Protesescu, S. Yakunin, M. I. Bodnarchuk, M. J. Grotevent, and M. V. Kovalenko, “Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I),” Nano Lett. 15, 5635–5640 (2015).
[Crossref]

Bonato, L. G.

G. Nagamine, J. O. Rocha, L. G. Bonato, A. F. Nogueira, Z. Zaharieva, A. A. R. Watt, C. H. de Brito Cruz, and L. A. Padilha, “Two-photon absorption and two-photon-induced gain in perovskite quantum dots,” J. Phys. Chem. Lett. 9, 3478–3484 (2018).
[Crossref]

J. A. Castaneda, G. Nagamine, E. Yassitepe, L. G. Bonato, O. Voznyy, S. Hoogland, A. F. Nogueira, E. H. Sargent, C. H. Cruz, and L. A. Padilha, “Efficient biexciton interaction in perovskite quantum dots under weak and strong confinement,” ACS Nano 10, 8603–8609 (2016).
[Crossref]

Bruijnaers, B. J.

G. E. Eperon, S. N. Habisreutinger, T. Leijtens, B. J. Bruijnaers, J. J. Franeker, D. W. deQuilettes, S. Pathak, R. J. Sutton, G. Grancini, D. S. Ginger, R. A. J. Janssen, A. Petrozza, and H. J. Snaith, “The importance of moisture in hybrid lead halide perovskite thin film fabrication,” ACS Nano 9, 9380–9393 (2015).
[Crossref]

Butkus, J.

J. Butkus, P. Vashishtha, K. Chen, J. K. Gallaher, S. K. K. Prasad, D. Z. Metin, G. Laufersky, N. Gaston, J. E. Halpert, and J. M. Hodgkiss, “The evolution of quantum confinement in CsPbBr3 perovskite nanocrystals,” Chem. Mater. 29, 3644–3652 (2017).
[Crossref]

Canton, S.

J. Chen, P. Chabera, T. Pascher, M. E. Messing, R. Schaller, S. Canton, K. Zheng, and T. Pullerits, “Enhanced size selection in two-photon excitation for CsPbBr3 perovskite nanocrystals,” J. Phys. Chem. Lett. 8, 5119–5124 (2017).
[Crossref]

Caputo, R.

L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, “Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color Gamut,” Nano Lett. 15, 3692–3696 (2015).
[Crossref]

Castaneda, J. A.

J. A. Castaneda, G. Nagamine, E. Yassitepe, L. G. Bonato, O. Voznyy, S. Hoogland, A. F. Nogueira, E. H. Sargent, C. H. Cruz, and L. A. Padilha, “Efficient biexciton interaction in perovskite quantum dots under weak and strong confinement,” ACS Nano 10, 8603–8609 (2016).
[Crossref]

Chabera, P.

J. Chen, P. Chabera, T. Pascher, M. E. Messing, R. Schaller, S. Canton, K. Zheng, and T. Pullerits, “Enhanced size selection in two-photon excitation for CsPbBr3 perovskite nanocrystals,” J. Phys. Chem. Lett. 8, 5119–5124 (2017).
[Crossref]

J. Chen, K. Zidek, P. Chabera, D. Liu, P. Cheng, L. Nuuttila, M. J. Al-Marri, H. Lehtivuori, M. E. Messing, K. Han, K. Zheng, and T. Pullerits, “Size- and wavelength-dependent two-photon absorption cross-section of CsPbBr3 perovskite quantum dots,” J. Phys. Chem. Lett. 8, 2316–2321 (2017).
[Crossref]

Chang, M.

T.-H. Le, S. Lee, E. Heo, U. Lee, H. Lee, H. Jo, K. S. Yang, M. Chang, and H. Yoon, “Controlled anisotropic growth of layered perovskite nanocrystals for enhanced optoelectronic properties,” Chem. Eng. J. 416, 128045 (2021).
[Crossref]

Chen, C.

M. Xia, J. Luo, C. Chen, H. Liu, and J. Tang, “Semiconductor quantum dots-embedded inorganic glasses: fabrication, luminescent properties, and potential applications,” Adv. Opt. Mater. 7, 1900851 (2019).
[Crossref]

Chen, D.

S. Yuan, D. Chen, X. Li, J. Zhong, and X. Xu, “In situ crystallization synthesis of CsPbBr3 perovskite quantum dot-embedded glasses with improved stability for solid-state lighting and random upconverted lasing,” ACS Appl. Mater. Interfaces 10, 18918–18926 (2018).
[Crossref]

Chen, J.

J. Chen, P. Chabera, T. Pascher, M. E. Messing, R. Schaller, S. Canton, K. Zheng, and T. Pullerits, “Enhanced size selection in two-photon excitation for CsPbBr3 perovskite nanocrystals,” J. Phys. Chem. Lett. 8, 5119–5124 (2017).
[Crossref]

J. Chen, K. Zidek, P. Chabera, D. Liu, P. Cheng, L. Nuuttila, M. J. Al-Marri, H. Lehtivuori, M. E. Messing, K. Han, K. Zheng, and T. Pullerits, “Size- and wavelength-dependent two-photon absorption cross-section of CsPbBr3 perovskite quantum dots,” J. Phys. Chem. Lett. 8, 2316–2321 (2017).
[Crossref]

B. Gu, Y.-X. Fan, J. Chen, H.-T. Wang, J. He, and W. Ji, “Z-scan theory of two-photon absorption saturation and experimental evidence,” J. Appl. Phys. 102, 083101 (2007).
[Crossref]

Chen, K.

J. Butkus, P. Vashishtha, K. Chen, J. K. Gallaher, S. K. K. Prasad, D. Z. Metin, G. Laufersky, N. Gaston, J. E. Halpert, and J. M. Hodgkiss, “The evolution of quantum confinement in CsPbBr3 perovskite nanocrystals,” Chem. Mater. 29, 3644–3652 (2017).
[Crossref]

Chen, Q.

Y. Xu, Q. Chen, C. Zhang, R. Wang, H. Wu, X. Zhang, G. Xing, W. W. Yu, X. Wang, Y. Zhang, and M. Xiao, “Two-photon-pumped perovskite semiconductor nanocrystal lasers,” J. Am. Chem. Soc. 138, 3761–3768 (2016).
[Crossref]

Chen, R.

Chen, S.

S. Chen and G. Shi, “Two-dimensional materials for halide perovskite-based optoelectronic devices,” Adv. Mater. 29, 1605448 (2017).
[Crossref]

Chen, W.

X. Pang, H. Zhang, L. Xie, T. Xuan, Y. Sun, S. Si, B. Jiang, W. Chen, J. Zhuang, C. Hu, Y. Liu, B. Lei, and X. Zhang, “Precipitating CsPbBr3 quantum dots in boro-germanate glass with a dense structure and inert environment toward highly stable and efficient narrow-band green emitters for wide-color-gamut liquid crystal displays,” J. Mater. Chem. C 7, 13139–13148 (2019).
[Crossref]

W. Chen, S. Bhaumik, S. A. Veldhuis, G. Xing, Q. Xu, M. Gratzel, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Giant five-photon absorption from multidimensional core-shell halide perovskite colloidal nanocrystals,” Nat. Commun. 8, 15198 (2017).
[Crossref]

Chen, Z.

N. D. S. Zhang, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9, 7142–7150 (2015).
[Crossref]

Cheng, J.

Cheng, P.

J. Chen, K. Zidek, P. Chabera, D. Liu, P. Cheng, L. Nuuttila, M. J. Al-Marri, H. Lehtivuori, M. E. Messing, K. Han, K. Zheng, and T. Pullerits, “Size- and wavelength-dependent two-photon absorption cross-section of CsPbBr3 perovskite quantum dots,” J. Phys. Chem. Lett. 8, 2316–2321 (2017).
[Crossref]

Cheng, Y. B.

X. Qi, Y. Zhang, Q. Ou, S. T. Ha, C. W. Qiu, H. Zhang, Y. B. Cheng, Q. Xiong, and Q. Bao, “Photonics and optoelectronics of 2D metal-halide perovskites,” Small 14, 1800682 (2018).
[Crossref]

J. Yang, X. Wen, H. Xia, R. Sheng, Q. Ma, J. Kim, P. Tapping, T. Harada, T. W. Kee, F. Huang, Y. B. Cheng, M. Green, A. Ho-Baillie, S. Huang, S. Shrestha, R. Patterson, and G. Conibeer, “Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites,” Nat. Commun. 8, 14120 (2017).
[Crossref]

Chernyshov, D.

B. Nafradi, P. Szirmai, M. Spina, H. Lee, O. V. Yazyev, A. Arakcheeva, D. Chernyshov, M. Gibert, L. Forro, and E. Horvath, “Optically switched magnetism in photovoltaic perovskite CH3NH3(Mn:Pb)I3,” Nat. Commun. 7, 13406 (2016).
[Crossref]

Cho, H.

H. Cho, S.-H. Jeong, M.-H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, and T.-W. Lee, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350, 1222–1225 (2015).
[Crossref]

Conibeer, G.

J. Yang, X. Wen, H. Xia, R. Sheng, Q. Ma, J. Kim, P. Tapping, T. Harada, T. W. Kee, F. Huang, Y. B. Cheng, M. Green, A. Ho-Baillie, S. Huang, S. Shrestha, R. Patterson, and G. Conibeer, “Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites,” Nat. Commun. 8, 14120 (2017).
[Crossref]

Credgington, D.

Z. K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, F. Hanusch, T. Bein, H. J. Snaith, and R. H. Friend, “Bright light-emitting diodes based on organometal halide perovskite,” Nat. Nanotechnol. 9, 687–692 (2014).
[Crossref]

Cruz, C. H.

J. A. Castaneda, G. Nagamine, E. Yassitepe, L. G. Bonato, O. Voznyy, S. Hoogland, A. F. Nogueira, E. H. Sargent, C. H. Cruz, and L. A. Padilha, “Efficient biexciton interaction in perovskite quantum dots under weak and strong confinement,” ACS Nano 10, 8603–8609 (2016).
[Crossref]

Dar, M. I.

T. Zhang, M. I. Dar, G. Li, F. Xu, N. Guo, M. Grätzel, and Y. Zhao, “Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells,” Sci. Adv. 3, e1700841 (2017).
[Crossref]

de Brito Cruz, C. H.

G. Nagamine, J. O. Rocha, L. G. Bonato, A. F. Nogueira, Z. Zaharieva, A. A. R. Watt, C. H. de Brito Cruz, and L. A. Padilha, “Two-photon absorption and two-photon-induced gain in perovskite quantum dots,” J. Phys. Chem. Lett. 9, 3478–3484 (2018).
[Crossref]

Deng, Z.

Y. Ye, W. Zhang, Z. Zhao, J. Wang, C. Liu, Z. Deng, X. Zhao, and J. Han, “Highly luminescent cesium lead halide perovskite nanocrystals stabilized in glasses for light-emitting applications,” Adv. Opt. Mater. 7, 1801663 (2019).
[Crossref]

deQuilettes, D. W.

G. E. Eperon, S. N. Habisreutinger, T. Leijtens, B. J. Bruijnaers, J. J. Franeker, D. W. deQuilettes, S. Pathak, R. J. Sutton, G. Grancini, D. S. Ginger, R. A. J. Janssen, A. Petrozza, and H. J. Snaith, “The importance of moisture in hybrid lead halide perovskite thin film fabrication,” ACS Nano 9, 9380–9393 (2015).
[Crossref]

Deschler, F.

Z. K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, F. Hanusch, T. Bein, H. J. Snaith, and R. H. Friend, “Bright light-emitting diodes based on organometal halide perovskite,” Nat. Nanotechnol. 9, 687–692 (2014).
[Crossref]

Dirin, D. N.

D. N. Dirin, L. Protesescu, D. Trummer, I. V. Kochetygov, S. Yakunin, F. Krumeich, N. P. Stadie, and M. V. Kovalenko, “Harnessing defect-tolerance at the nanoscale: highly luminescent lead halide perovskite nanocrystals in mesoporous silica matrixes,” Nano Lett. 16, 5866–5874 (2016).
[Crossref]

Docampo, P.

Z. K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, F. Hanusch, T. Bein, H. J. Snaith, and R. H. Friend, “Bright light-emitting diodes based on organometal halide perovskite,” Nat. Nanotechnol. 9, 687–692 (2014).
[Crossref]

Dong, Y.

L. Wu, Y. Dong, J. Zhao, D. Ma, W. Huang, Y. Zhang, Y. Wang, X. Jiang, Y. Xiang, J. Li, Y. Feng, J. Xu, and H. Zhang, “Kerr nonlinearity in 2D graphdiyne for passive photonic diodes,” Adv. Mater. 31, 1807981 (2019).
[Crossref]

Du, G.

F. Zhang, Z. Shi, S. Li, Z. Ma, Y. Li, L. Wang, D. Wu, Y. Tian, G. Du, X. Li, and C. Shan, “Synergetic effect of the surfactant and silica coating on the enhanced emission and stability of perovskite quantum dots for anticounterfeiting,” ACS Appl. Mater. Interfaces 11, 28013–28022 (2019).
[Crossref]

Du, G. T.

F. Zhang, Z. F. Shi, Z. Z. Ma, Y. Li, S. Li, D. Wu, T. T. Xu, X. J. Li, C. X. Shan, and G. T. Du, “Silica coating enhances the stability of inorganic perovskite nanocrystals for efficient and stable down-conversion in white light-emitting devices,” Nanoscale 10, 20131–20139 (2018).
[Crossref]

Du, J.

M. Jin, S. Huang, C. Quan, X. Liang, J. Du, Z. Liu, Z. Zhang, and W. Xiang, “Blue low-threshold room-temperature stimulated emission from thermostable perovskite nanocrystals glasses through controlling crystallization,” J. Eur. Ceram. Soc 41, 1579–1585 (2021).
[Crossref]

Duesberg, G. S.

N. D. S. Zhang, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9, 7142–7150 (2015).
[Crossref]

Eperon, G. E.

G. E. Eperon, S. N. Habisreutinger, T. Leijtens, B. J. Bruijnaers, J. J. Franeker, D. W. deQuilettes, S. Pathak, R. J. Sutton, G. Grancini, D. S. Ginger, R. A. J. Janssen, A. Petrozza, and H. J. Snaith, “The importance of moisture in hybrid lead halide perovskite thin film fabrication,” ACS Nano 9, 9380–9393 (2015).
[Crossref]

Erol, E.

E. Erol, O. Kıbrıslı, M. Ç. Ersundu, and A. E. Ersundu, “Size-controlled emission of long-time durable CsPbBr3 perovskite quantum dots embedded tellurite glass nanocomposites,” Chem. Eng. J. 401, 126053 (2020).
[Crossref]

Ersundu, A. E.

E. Erol, O. Kıbrıslı, M. Ç. Ersundu, and A. E. Ersundu, “Size-controlled emission of long-time durable CsPbBr3 perovskite quantum dots embedded tellurite glass nanocomposites,” Chem. Eng. J. 401, 126053 (2020).
[Crossref]

Ersundu, M. Ç.

E. Erol, O. Kıbrıslı, M. Ç. Ersundu, and A. E. Ersundu, “Size-controlled emission of long-time durable CsPbBr3 perovskite quantum dots embedded tellurite glass nanocomposites,” Chem. Eng. J. 401, 126053 (2020).
[Crossref]

Fan, Y.-X.

B. Gu, Y.-X. Fan, J. Chen, H.-T. Wang, J. He, and W. Ji, “Z-scan theory of two-photon absorption saturation and experimental evidence,” J. Appl. Phys. 102, 083101 (2007).
[Crossref]

Feng, J.

X. Jiang, L. Zhang, S. Liu, Y. Zhang, Z. He, W. Li, F. Zhang, Y. Shi, W. Lü, Y. Li, Q. Wen, J. Li, J. Feng, S. Ruan, Y.-J. Zeng, X. Zhu, Y. Lu, and H. Zhang, “Ultrathin metal-organic framework: an emerging broadband nonlinear optical material for ultrafast photonics,” Adv. Opt. Mater. 6, 1800561 (2018).
[Crossref]

Feng, Y.

L. Wu, Y. Dong, J. Zhao, D. Ma, W. Huang, Y. Zhang, Y. Wang, X. Jiang, Y. Xiang, J. Li, Y. Feng, J. Xu, and H. Zhang, “Kerr nonlinearity in 2D graphdiyne for passive photonic diodes,” Adv. Mater. 31, 1807981 (2019).
[Crossref]

Forro, L.

B. Nafradi, P. Szirmai, M. Spina, H. Lee, O. V. Yazyev, A. Arakcheeva, D. Chernyshov, M. Gibert, L. Forro, and E. Horvath, “Optically switched magnetism in photovoltaic perovskite CH3NH3(Mn:Pb)I3,” Nat. Commun. 7, 13406 (2016).
[Crossref]

Franeker, J. J.

G. E. Eperon, S. N. Habisreutinger, T. Leijtens, B. J. Bruijnaers, J. J. Franeker, D. W. deQuilettes, S. Pathak, R. J. Sutton, G. Grancini, D. S. Ginger, R. A. J. Janssen, A. Petrozza, and H. J. Snaith, “The importance of moisture in hybrid lead halide perovskite thin film fabrication,” ACS Nano 9, 9380–9393 (2015).
[Crossref]

Friend, R. H.

H. Cho, S.-H. Jeong, M.-H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, and T.-W. Lee, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350, 1222–1225 (2015).
[Crossref]

Z. K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, F. Hanusch, T. Bein, H. J. Snaith, and R. H. Friend, “Bright light-emitting diodes based on organometal halide perovskite,” Nat. Nanotechnol. 9, 687–692 (2014).
[Crossref]

Gallaher, J. K.

J. Butkus, P. Vashishtha, K. Chen, J. K. Gallaher, S. K. K. Prasad, D. Z. Metin, G. Laufersky, N. Gaston, J. E. Halpert, and J. M. Hodgkiss, “The evolution of quantum confinement in CsPbBr3 perovskite nanocrystals,” Chem. Mater. 29, 3644–3652 (2017).
[Crossref]

Gao, Y.

J. Li, Q. Jing, S. Xiao, Y. Gao, Y. Wang, W. Zhang, X. W. Sun, K. Wang, and T. He, “Spectral dynamics and multiphoton absorption properties of all-inorganic perovskite nanorods,” J. Phys. Chem. Lett. 11, 4817–4825 (2020).
[Crossref]

A. Pramanik, K. Gates, Y. Gao, S. Begum, and P. C. Ray, “Several orders-of-magnitude enhancement of multiphoton absorption property for CsPbX3 perovskite quantum dots by manipulating halide stoichiometry,” J. Phys. Chem. C 123, 5150–5156 (2019).
[Crossref]

Gaston, N.

J. Butkus, P. Vashishtha, K. Chen, J. K. Gallaher, S. K. K. Prasad, D. Z. Metin, G. Laufersky, N. Gaston, J. E. Halpert, and J. M. Hodgkiss, “The evolution of quantum confinement in CsPbBr3 perovskite nanocrystals,” Chem. Mater. 29, 3644–3652 (2017).
[Crossref]

Gates, K.

A. Pramanik, K. Gates, Y. Gao, S. Begum, and P. C. Ray, “Several orders-of-magnitude enhancement of multiphoton absorption property for CsPbX3 perovskite quantum dots by manipulating halide stoichiometry,” J. Phys. Chem. C 123, 5150–5156 (2019).
[Crossref]

Gibert, M.

B. Nafradi, P. Szirmai, M. Spina, H. Lee, O. V. Yazyev, A. Arakcheeva, D. Chernyshov, M. Gibert, L. Forro, and E. Horvath, “Optically switched magnetism in photovoltaic perovskite CH3NH3(Mn:Pb)I3,” Nat. Commun. 7, 13406 (2016).
[Crossref]

Ginger, D. S.

G. E. Eperon, S. N. Habisreutinger, T. Leijtens, B. J. Bruijnaers, J. J. Franeker, D. W. deQuilettes, S. Pathak, R. J. Sutton, G. Grancini, D. S. Ginger, R. A. J. Janssen, A. Petrozza, and H. J. Snaith, “The importance of moisture in hybrid lead halide perovskite thin film fabrication,” ACS Nano 9, 9380–9393 (2015).
[Crossref]

Goh, T. W.

M. Li, S. Bhaumik, T. W. Goh, M. S. Kumar, N. Yantara, M. Gratzel, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Slow cooling and highly efficient extraction of hot carriers in colloidal perovskite nanocrystals,” Nat. Commun. 8, 14350 (2017).
[Crossref]

Grancini, G.

G. E. Eperon, S. N. Habisreutinger, T. Leijtens, B. J. Bruijnaers, J. J. Franeker, D. W. deQuilettes, S. Pathak, R. J. Sutton, G. Grancini, D. S. Ginger, R. A. J. Janssen, A. Petrozza, and H. J. Snaith, “The importance of moisture in hybrid lead halide perovskite thin film fabrication,” ACS Nano 9, 9380–9393 (2015).
[Crossref]

Gratzel, M.

M. Li, S. Bhaumik, T. W. Goh, M. S. Kumar, N. Yantara, M. Gratzel, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Slow cooling and highly efficient extraction of hot carriers in colloidal perovskite nanocrystals,” Nat. Commun. 8, 14350 (2017).
[Crossref]

W. Chen, S. Bhaumik, S. A. Veldhuis, G. Xing, Q. Xu, M. Gratzel, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Giant five-photon absorption from multidimensional core-shell halide perovskite colloidal nanocrystals,” Nat. Commun. 8, 15198 (2017).
[Crossref]

Grätzel, M.

T. Zhang, M. I. Dar, G. Li, F. Xu, N. Guo, M. Grätzel, and Y. Zhao, “Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells,” Sci. Adv. 3, e1700841 (2017).
[Crossref]

Green, M.

J. Yang, X. Wen, H. Xia, R. Sheng, Q. Ma, J. Kim, P. Tapping, T. Harada, T. W. Kee, F. Huang, Y. B. Cheng, M. Green, A. Ho-Baillie, S. Huang, S. Shrestha, R. Patterson, and G. Conibeer, “Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites,” Nat. Commun. 8, 14120 (2017).
[Crossref]

Grotevent, M. J.

G. Nedelcu, L. Protesescu, S. Yakunin, M. I. Bodnarchuk, M. J. Grotevent, and M. V. Kovalenko, “Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I),” Nano Lett. 15, 5635–5640 (2015).
[Crossref]

Gu, B.

J. Wang, B. Gu, X.-W. Ni, and H.-T. Wang, “Z-scan theory with simultaneous two- and three-photon absorption saturation,” Opt. Laser Technol. 44, 390–393 (2012).
[Crossref]

B. Gu, Y.-X. Fan, J. Chen, H.-T. Wang, J. He, and W. Ji, “Z-scan theory of two-photon absorption saturation and experimental evidence,” J. Appl. Phys. 102, 083101 (2007).
[Crossref]

Guo, N.

T. Zhang, M. I. Dar, G. Li, F. Xu, N. Guo, M. Grätzel, and Y. Zhao, “Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells,” Sci. Adv. 3, e1700841 (2017).
[Crossref]

Ha, S. T.

X. Qi, Y. Zhang, Q. Ou, S. T. Ha, C. W. Qiu, H. Zhang, Y. B. Cheng, Q. Xiong, and Q. Bao, “Photonics and optoelectronics of 2D metal-halide perovskites,” Small 14, 1800682 (2018).
[Crossref]

Habisreutinger, S. N.

G. E. Eperon, S. N. Habisreutinger, T. Leijtens, B. J. Bruijnaers, J. J. Franeker, D. W. deQuilettes, S. Pathak, R. J. Sutton, G. Grancini, D. S. Ginger, R. A. J. Janssen, A. Petrozza, and H. J. Snaith, “The importance of moisture in hybrid lead halide perovskite thin film fabrication,” ACS Nano 9, 9380–9393 (2015).
[Crossref]

Halpert, J. E.

J. Butkus, P. Vashishtha, K. Chen, J. K. Gallaher, S. K. K. Prasad, D. Z. Metin, G. Laufersky, N. Gaston, J. E. Halpert, and J. M. Hodgkiss, “The evolution of quantum confinement in CsPbBr3 perovskite nanocrystals,” Chem. Mater. 29, 3644–3652 (2017).
[Crossref]

Han, J.

Y. Ye, W. Zhang, Z. Zhao, J. Wang, C. Liu, Z. Deng, X. Zhao, and J. Han, “Highly luminescent cesium lead halide perovskite nanocrystals stabilized in glasses for light-emitting applications,” Adv. Opt. Mater. 7, 1801663 (2019).
[Crossref]

B. Ai, C. Liu, J. Wang, J. Xie, J. Han, X. Zhao, and J. Heo, “Precipitation and optical properties of CsPbBr3 quantum dots in phosphate glasses,” J. Am. Ceram. Soc. 99, 2875–2877 (2016).
[Crossref]

Han, K.

J. Chen, K. Zidek, P. Chabera, D. Liu, P. Cheng, L. Nuuttila, M. J. Al-Marri, H. Lehtivuori, M. E. Messing, K. Han, K. Zheng, and T. Pullerits, “Size- and wavelength-dependent two-photon absorption cross-section of CsPbBr3 perovskite quantum dots,” J. Phys. Chem. Lett. 8, 2316–2321 (2017).
[Crossref]

Han, Q.

Q. Han, W. Wu, W. Liu, Q. Yang, and Y. Yang, “Two-photon absorption and upconversion luminescence of colloidal CsPbX3 quantum dots,” Opt. Mater. 75, 880–886 (2018).
[Crossref]

Hanusch, F.

Z. K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, F. Hanusch, T. Bein, H. J. Snaith, and R. H. Friend, “Bright light-emitting diodes based on organometal halide perovskite,” Nat. Nanotechnol. 9, 687–692 (2014).
[Crossref]

Harada, T.

J. Yang, X. Wen, H. Xia, R. Sheng, Q. Ma, J. Kim, P. Tapping, T. Harada, T. W. Kee, F. Huang, Y. B. Cheng, M. Green, A. Ho-Baillie, S. Huang, S. Shrestha, R. Patterson, and G. Conibeer, “Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites,” Nat. Commun. 8, 14120 (2017).
[Crossref]

He, C.

C. Quan, M. He, C. He, Y. Huang, L. Zhu, Z. Yao, X. Xu, C. Lu, and X. Xu, “Transition from saturable absorption to reverse saturable absorption in MoTe2 nano-films with thickness and pump intensity,” Appl. Surf. Sci. 457, 115–120 (2018).
[Crossref]

He, J.

J. He, L. Tao, H. Zhang, B. Zhou, and J. Li, “Emerging 2D materials beyond graphene for ultrashort pulse generation in fiber lasers,” Nanoscale 11, 2577–2593 (2019).
[Crossref]

B. Gu, Y.-X. Fan, J. Chen, H.-T. Wang, J. He, and W. Ji, “Z-scan theory of two-photon absorption saturation and experimental evidence,” J. Appl. Phys. 102, 083101 (2007).
[Crossref]

He, M.

C. Quan, M. He, C. He, Y. Huang, L. Zhu, Z. Yao, X. Xu, C. Lu, and X. Xu, “Transition from saturable absorption to reverse saturable absorption in MoTe2 nano-films with thickness and pump intensity,” Appl. Surf. Sci. 457, 115–120 (2018).
[Crossref]

He, T.

J. Li, Q. Jing, S. Xiao, Y. Gao, Y. Wang, W. Zhang, X. W. Sun, K. Wang, and T. He, “Spectral dynamics and multiphoton absorption properties of all-inorganic perovskite nanorods,” J. Phys. Chem. Lett. 11, 4817–4825 (2020).
[Crossref]

J. Li, F. Zhao, S. Xiao, J. Cheng, X. Qiu, X. Lin, R. Chen, and T. He, “Giant two- to five-photon absorption in CsPbBr2.7I0.3 two-dimensional nanoplatelets,” Opt. Lett. 44, 3873–3876 (2019).
[Crossref]

He, T. C.

He, Z.

X. Jiang, L. Zhang, S. Liu, Y. Zhang, Z. He, W. Li, F. Zhang, Y. Shi, W. Lü, Y. Li, Q. Wen, J. Li, J. Feng, S. Ruan, Y.-J. Zeng, X. Zhu, Y. Lu, and H. Zhang, “Ultrathin metal-organic framework: an emerging broadband nonlinear optical material for ultrafast photonics,” Adv. Opt. Mater. 6, 1800561 (2018).
[Crossref]

Hendon, C. H.

L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, “Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color Gamut,” Nano Lett. 15, 3692–3696 (2015).
[Crossref]

Heo, E.

T.-H. Le, S. Lee, E. Heo, U. Lee, H. Lee, H. Jo, K. S. Yang, M. Chang, and H. Yoon, “Controlled anisotropic growth of layered perovskite nanocrystals for enhanced optoelectronic properties,” Chem. Eng. J. 416, 128045 (2021).
[Crossref]

Heo, J.

B. Ai, C. Liu, J. Wang, J. Xie, J. Han, X. Zhao, and J. Heo, “Precipitation and optical properties of CsPbBr3 quantum dots in phosphate glasses,” J. Am. Ceram. Soc. 99, 2875–2877 (2016).
[Crossref]

Heo, J. H.

H. Cho, S.-H. Jeong, M.-H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, and T.-W. Lee, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350, 1222–1225 (2015).
[Crossref]

Higler, R.

Z. K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, F. Hanusch, T. Bein, H. J. Snaith, and R. H. Friend, “Bright light-emitting diodes based on organometal halide perovskite,” Nat. Nanotechnol. 9, 687–692 (2014).
[Crossref]

Ho-Baillie, A.

J. Yang, X. Wen, H. Xia, R. Sheng, Q. Ma, J. Kim, P. Tapping, T. Harada, T. W. Kee, F. Huang, Y. B. Cheng, M. Green, A. Ho-Baillie, S. Huang, S. Shrestha, R. Patterson, and G. Conibeer, “Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites,” Nat. Commun. 8, 14120 (2017).
[Crossref]

Hodgkiss, J. M.

J. Butkus, P. Vashishtha, K. Chen, J. K. Gallaher, S. K. K. Prasad, D. Z. Metin, G. Laufersky, N. Gaston, J. E. Halpert, and J. M. Hodgkiss, “The evolution of quantum confinement in CsPbBr3 perovskite nanocrystals,” Chem. Mater. 29, 3644–3652 (2017).
[Crossref]

Hoogland, S.

J. A. Castaneda, G. Nagamine, E. Yassitepe, L. G. Bonato, O. Voznyy, S. Hoogland, A. F. Nogueira, E. H. Sargent, C. H. Cruz, and L. A. Padilha, “Efficient biexciton interaction in perovskite quantum dots under weak and strong confinement,” ACS Nano 10, 8603–8609 (2016).
[Crossref]

Horvath, E.

B. Nafradi, P. Szirmai, M. Spina, H. Lee, O. V. Yazyev, A. Arakcheeva, D. Chernyshov, M. Gibert, L. Forro, and E. Horvath, “Optically switched magnetism in photovoltaic perovskite CH3NH3(Mn:Pb)I3,” Nat. Commun. 7, 13406 (2016).
[Crossref]

Hu, C.

X. Pang, H. Zhang, L. Xie, T. Xuan, Y. Sun, S. Si, B. Jiang, W. Chen, J. Zhuang, C. Hu, Y. Liu, B. Lei, and X. Zhang, “Precipitating CsPbBr3 quantum dots in boro-germanate glass with a dense structure and inert environment toward highly stable and efficient narrow-band green emitters for wide-color-gamut liquid crystal displays,” J. Mater. Chem. C 7, 13139–13148 (2019).
[Crossref]

Hu, Y.

Y. Hu, W. Zhang, Y. Ye, Z. Zhao, and C. Liu, “Femtosecond-laser-induced precipitation of CsPbBr3 perovskite nanocrystals in glasses for solar spectral conversion,” ACS Appl. Nano Mater. 3, 850–857 (2019).
[Crossref]

Huang, F.

J. Yang, X. Wen, H. Xia, R. Sheng, Q. Ma, J. Kim, P. Tapping, T. Harada, T. W. Kee, F. Huang, Y. B. Cheng, M. Green, A. Ho-Baillie, S. Huang, S. Shrestha, R. Patterson, and G. Conibeer, “Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites,” Nat. Commun. 8, 14120 (2017).
[Crossref]

Huang, S.

M. Jin, S. Huang, C. Quan, X. Liang, J. Du, Z. Liu, Z. Zhang, and W. Xiang, “Blue low-threshold room-temperature stimulated emission from thermostable perovskite nanocrystals glasses through controlling crystallization,” J. Eur. Ceram. Soc 41, 1579–1585 (2021).
[Crossref]

J. Yang, X. Wen, H. Xia, R. Sheng, Q. Ma, J. Kim, P. Tapping, T. Harada, T. W. Kee, F. Huang, Y. B. Cheng, M. Green, A. Ho-Baillie, S. Huang, S. Shrestha, R. Patterson, and G. Conibeer, “Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites,” Nat. Commun. 8, 14120 (2017).
[Crossref]

Huang, W.

L. Wu, Y. Dong, J. Zhao, D. Ma, W. Huang, Y. Zhang, Y. Wang, X. Jiang, Y. Xiang, J. Li, Y. Feng, J. Xu, and H. Zhang, “Kerr nonlinearity in 2D graphdiyne for passive photonic diodes,” Adv. Mater. 31, 1807981 (2019).
[Crossref]

Huang, Y.

C. Quan, M. He, C. He, Y. Huang, L. Zhu, Z. Yao, X. Xu, C. Lu, and X. Xu, “Transition from saturable absorption to reverse saturable absorption in MoTe2 nano-films with thickness and pump intensity,” Appl. Surf. Sci. 457, 115–120 (2018).
[Crossref]

Im, S. H.

H. Cho, S.-H. Jeong, M.-H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, and T.-W. Lee, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350, 1222–1225 (2015).
[Crossref]

Janssen, R. A. J.

G. E. Eperon, S. N. Habisreutinger, T. Leijtens, B. J. Bruijnaers, J. J. Franeker, D. W. deQuilettes, S. Pathak, R. J. Sutton, G. Grancini, D. S. Ginger, R. A. J. Janssen, A. Petrozza, and H. J. Snaith, “The importance of moisture in hybrid lead halide perovskite thin film fabrication,” ACS Nano 9, 9380–9393 (2015).
[Crossref]

Jeong, S.-H.

H. Cho, S.-H. Jeong, M.-H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, and T.-W. Lee, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350, 1222–1225 (2015).
[Crossref]

Ji, W.

B. Gu, Y.-X. Fan, J. Chen, H.-T. Wang, J. He, and W. Ji, “Z-scan theory of two-photon absorption saturation and experimental evidence,” J. Appl. Phys. 102, 083101 (2007).
[Crossref]

Jiang, B.

X. Pang, H. Zhang, L. Xie, T. Xuan, Y. Sun, S. Si, B. Jiang, W. Chen, J. Zhuang, C. Hu, Y. Liu, B. Lei, and X. Zhang, “Precipitating CsPbBr3 quantum dots in boro-germanate glass with a dense structure and inert environment toward highly stable and efficient narrow-band green emitters for wide-color-gamut liquid crystal displays,” J. Mater. Chem. C 7, 13139–13148 (2019).
[Crossref]

Jiang, X.

L. Wu, Y. Dong, J. Zhao, D. Ma, W. Huang, Y. Zhang, Y. Wang, X. Jiang, Y. Xiang, J. Li, Y. Feng, J. Xu, and H. Zhang, “Kerr nonlinearity in 2D graphdiyne for passive photonic diodes,” Adv. Mater. 31, 1807981 (2019).
[Crossref]

X. Jiang, L. Zhang, S. Liu, Y. Zhang, Z. He, W. Li, F. Zhang, Y. Shi, W. Lü, Y. Li, Q. Wen, J. Li, J. Feng, S. Ruan, Y.-J. Zeng, X. Zhu, Y. Lu, and H. Zhang, “Ultrathin metal-organic framework: an emerging broadband nonlinear optical material for ultrafast photonics,” Adv. Opt. Mater. 6, 1800561 (2018).
[Crossref]

Jiang, Y.

G. Tong, H. Li, Z. Zhu, Y. Zhang, L. Yu, J. Xu, and Y. Jiang, “Enhancing hybrid perovskite detectability in the deep ultraviolet region with down-conversion dual-phase (CsPbBr3-Cs4PbBr6) films,” J. Phys. Chem. Lett. 9, 1592–1599 (2018).
[Crossref]

Jin, M.

M. Jin, S. Huang, C. Quan, X. Liang, J. Du, Z. Liu, Z. Zhang, and W. Xiang, “Blue low-threshold room-temperature stimulated emission from thermostable perovskite nanocrystals glasses through controlling crystallization,” J. Eur. Ceram. Soc 41, 1579–1585 (2021).
[Crossref]

Jing, Q.

J. Li, Q. Jing, S. Xiao, Y. Gao, Y. Wang, W. Zhang, X. W. Sun, K. Wang, and T. He, “Spectral dynamics and multiphoton absorption properties of all-inorganic perovskite nanorods,” J. Phys. Chem. Lett. 11, 4817–4825 (2020).
[Crossref]

Jo, H.

T.-H. Le, S. Lee, E. Heo, U. Lee, H. Lee, H. Jo, K. S. Yang, M. Chang, and H. Yoon, “Controlled anisotropic growth of layered perovskite nanocrystals for enhanced optoelectronic properties,” Chem. Eng. J. 416, 128045 (2021).
[Crossref]

Kee, T. W.

J. Yang, X. Wen, H. Xia, R. Sheng, Q. Ma, J. Kim, P. Tapping, T. Harada, T. W. Kee, F. Huang, Y. B. Cheng, M. Green, A. Ho-Baillie, S. Huang, S. Shrestha, R. Patterson, and G. Conibeer, “Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites,” Nat. Commun. 8, 14120 (2017).
[Crossref]

Kibrisli, O.

E. Erol, O. Kıbrıslı, M. Ç. Ersundu, and A. E. Ersundu, “Size-controlled emission of long-time durable CsPbBr3 perovskite quantum dots embedded tellurite glass nanocomposites,” Chem. Eng. J. 401, 126053 (2020).
[Crossref]

Kim, J.

J. Yang, X. Wen, H. Xia, R. Sheng, Q. Ma, J. Kim, P. Tapping, T. Harada, T. W. Kee, F. Huang, Y. B. Cheng, M. Green, A. Ho-Baillie, S. Huang, S. Shrestha, R. Patterson, and G. Conibeer, “Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites,” Nat. Commun. 8, 14120 (2017).
[Crossref]

Kim, Y.-H.

H. Cho, S.-H. Jeong, M.-H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, and T.-W. Lee, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350, 1222–1225 (2015).
[Crossref]

Kochetygov, I. V.

D. N. Dirin, L. Protesescu, D. Trummer, I. V. Kochetygov, S. Yakunin, F. Krumeich, N. P. Stadie, and M. V. Kovalenko, “Harnessing defect-tolerance at the nanoscale: highly luminescent lead halide perovskite nanocrystals in mesoporous silica matrixes,” Nano Lett. 16, 5866–5874 (2016).
[Crossref]

Kovalenko, M. V.

D. N. Dirin, L. Protesescu, D. Trummer, I. V. Kochetygov, S. Yakunin, F. Krumeich, N. P. Stadie, and M. V. Kovalenko, “Harnessing defect-tolerance at the nanoscale: highly luminescent lead halide perovskite nanocrystals in mesoporous silica matrixes,” Nano Lett. 16, 5866–5874 (2016).
[Crossref]

G. Nedelcu, L. Protesescu, S. Yakunin, M. I. Bodnarchuk, M. J. Grotevent, and M. V. Kovalenko, “Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I),” Nano Lett. 15, 5635–5640 (2015).
[Crossref]

L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, “Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color Gamut,” Nano Lett. 15, 3692–3696 (2015).
[Crossref]

Krieg, F.

L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, “Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color Gamut,” Nano Lett. 15, 3692–3696 (2015).
[Crossref]

Krishnakanth, K. N.

K. N. Krishnakanth, S. Seth, A. Samanta, and S. V. Rao, “Broadband ultrafast nonlinear optical studies revealing exciting multi-photon absorption coefficients in phase pure zero-dimensional Cs4PbBr6 perovskite films,” Nanoscale 11, 945–954 (2019).
[Crossref]

Krumeich, F.

D. N. Dirin, L. Protesescu, D. Trummer, I. V. Kochetygov, S. Yakunin, F. Krumeich, N. P. Stadie, and M. V. Kovalenko, “Harnessing defect-tolerance at the nanoscale: highly luminescent lead halide perovskite nanocrystals in mesoporous silica matrixes,” Nano Lett. 16, 5866–5874 (2016).
[Crossref]

Kumar, M. S.

M. Li, S. Bhaumik, T. W. Goh, M. S. Kumar, N. Yantara, M. Gratzel, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Slow cooling and highly efficient extraction of hot carriers in colloidal perovskite nanocrystals,” Nat. Commun. 8, 14350 (2017).
[Crossref]

Kurian, P. A.

P. A. Kurian, C. Vijayan, C. S. Suchand Sandeep, R. Philip, and K. Sathiyamoorthy, “Two-photon-assisted excited state absorption in nanocomposite films of PbS stabilized in a synthetic glue matrix,” Nanotechnology 18, 075708 (2007).
[Crossref]

Lai, M. L.

Z. K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, F. Hanusch, T. Bein, H. J. Snaith, and R. H. Friend, “Bright light-emitting diodes based on organometal halide perovskite,” Nat. Nanotechnol. 9, 687–692 (2014).
[Crossref]

Laufersky, G.

J. Butkus, P. Vashishtha, K. Chen, J. K. Gallaher, S. K. K. Prasad, D. Z. Metin, G. Laufersky, N. Gaston, J. E. Halpert, and J. M. Hodgkiss, “The evolution of quantum confinement in CsPbBr3 perovskite nanocrystals,” Chem. Mater. 29, 3644–3652 (2017).
[Crossref]

Le, T.-H.

T.-H. Le, S. Lee, E. Heo, U. Lee, H. Lee, H. Jo, K. S. Yang, M. Chang, and H. Yoon, “Controlled anisotropic growth of layered perovskite nanocrystals for enhanced optoelectronic properties,” Chem. Eng. J. 416, 128045 (2021).
[Crossref]

Lee, C.-L.

H. Cho, S.-H. Jeong, M.-H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, and T.-W. Lee, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350, 1222–1225 (2015).
[Crossref]

Lee, H.

T.-H. Le, S. Lee, E. Heo, U. Lee, H. Lee, H. Jo, K. S. Yang, M. Chang, and H. Yoon, “Controlled anisotropic growth of layered perovskite nanocrystals for enhanced optoelectronic properties,” Chem. Eng. J. 416, 128045 (2021).
[Crossref]

B. Nafradi, P. Szirmai, M. Spina, H. Lee, O. V. Yazyev, A. Arakcheeva, D. Chernyshov, M. Gibert, L. Forro, and E. Horvath, “Optically switched magnetism in photovoltaic perovskite CH3NH3(Mn:Pb)I3,” Nat. Commun. 7, 13406 (2016).
[Crossref]

Lee, S.

T.-H. Le, S. Lee, E. Heo, U. Lee, H. Lee, H. Jo, K. S. Yang, M. Chang, and H. Yoon, “Controlled anisotropic growth of layered perovskite nanocrystals for enhanced optoelectronic properties,” Chem. Eng. J. 416, 128045 (2021).
[Crossref]

Lee, T.-W.

H. Cho, S.-H. Jeong, M.-H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, and T.-W. Lee, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350, 1222–1225 (2015).
[Crossref]

Lee, U.

T.-H. Le, S. Lee, E. Heo, U. Lee, H. Lee, H. Jo, K. S. Yang, M. Chang, and H. Yoon, “Controlled anisotropic growth of layered perovskite nanocrystals for enhanced optoelectronic properties,” Chem. Eng. J. 416, 128045 (2021).
[Crossref]

Lehtivuori, H.

J. Chen, K. Zidek, P. Chabera, D. Liu, P. Cheng, L. Nuuttila, M. J. Al-Marri, H. Lehtivuori, M. E. Messing, K. Han, K. Zheng, and T. Pullerits, “Size- and wavelength-dependent two-photon absorption cross-section of CsPbBr3 perovskite quantum dots,” J. Phys. Chem. Lett. 8, 2316–2321 (2017).
[Crossref]

Lei, B.

X. Pang, H. Zhang, L. Xie, T. Xuan, Y. Sun, S. Si, B. Jiang, W. Chen, J. Zhuang, C. Hu, Y. Liu, B. Lei, and X. Zhang, “Precipitating CsPbBr3 quantum dots in boro-germanate glass with a dense structure and inert environment toward highly stable and efficient narrow-band green emitters for wide-color-gamut liquid crystal displays,” J. Mater. Chem. C 7, 13139–13148 (2019).
[Crossref]

Leijtens, T.

G. E. Eperon, S. N. Habisreutinger, T. Leijtens, B. J. Bruijnaers, J. J. Franeker, D. W. deQuilettes, S. Pathak, R. J. Sutton, G. Grancini, D. S. Ginger, R. A. J. Janssen, A. Petrozza, and H. J. Snaith, “The importance of moisture in hybrid lead halide perovskite thin film fabrication,” ACS Nano 9, 9380–9393 (2015).
[Crossref]

Li, G.

T. Zhang, M. I. Dar, G. Li, F. Xu, N. Guo, M. Grätzel, and Y. Zhao, “Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells,” Sci. Adv. 3, e1700841 (2017).
[Crossref]

Li, H.

G. Tong, H. Li, Z. Zhu, Y. Zhang, L. Yu, J. Xu, and Y. Jiang, “Enhancing hybrid perovskite detectability in the deep ultraviolet region with down-conversion dual-phase (CsPbBr3-Cs4PbBr6) films,” J. Phys. Chem. Lett. 9, 1592–1599 (2018).
[Crossref]

Li, J.

J. Li, Q. Jing, S. Xiao, Y. Gao, Y. Wang, W. Zhang, X. W. Sun, K. Wang, and T. He, “Spectral dynamics and multiphoton absorption properties of all-inorganic perovskite nanorods,” J. Phys. Chem. Lett. 11, 4817–4825 (2020).
[Crossref]

J. Li, F. Zhao, S. Xiao, J. Cheng, X. Qiu, X. Lin, R. Chen, and T. He, “Giant two- to five-photon absorption in CsPbBr2.7I0.3 two-dimensional nanoplatelets,” Opt. Lett. 44, 3873–3876 (2019).
[Crossref]

J. He, L. Tao, H. Zhang, B. Zhou, and J. Li, “Emerging 2D materials beyond graphene for ultrashort pulse generation in fiber lasers,” Nanoscale 11, 2577–2593 (2019).
[Crossref]

L. Wu, Y. Dong, J. Zhao, D. Ma, W. Huang, Y. Zhang, Y. Wang, X. Jiang, Y. Xiang, J. Li, Y. Feng, J. Xu, and H. Zhang, “Kerr nonlinearity in 2D graphdiyne for passive photonic diodes,” Adv. Mater. 31, 1807981 (2019).
[Crossref]

X. Jiang, L. Zhang, S. Liu, Y. Zhang, Z. He, W. Li, F. Zhang, Y. Shi, W. Lü, Y. Li, Q. Wen, J. Li, J. Feng, S. Ruan, Y.-J. Zeng, X. Zhu, Y. Lu, and H. Zhang, “Ultrathin metal-organic framework: an emerging broadband nonlinear optical material for ultrafast photonics,” Adv. Opt. Mater. 6, 1800561 (2018).
[Crossref]

Li, J. Z.

Li, M.

M. Li, S. Bhaumik, T. W. Goh, M. S. Kumar, N. Yantara, M. Gratzel, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Slow cooling and highly efficient extraction of hot carriers in colloidal perovskite nanocrystals,” Nat. Commun. 8, 14350 (2017).
[Crossref]

Li, S.

F. Zhang, Z. Shi, S. Li, Z. Ma, Y. Li, L. Wang, D. Wu, Y. Tian, G. Du, X. Li, and C. Shan, “Synergetic effect of the surfactant and silica coating on the enhanced emission and stability of perovskite quantum dots for anticounterfeiting,” ACS Appl. Mater. Interfaces 11, 28013–28022 (2019).
[Crossref]

F. Zhang, Z. F. Shi, Z. Z. Ma, Y. Li, S. Li, D. Wu, T. T. Xu, X. J. Li, C. X. Shan, and G. T. Du, “Silica coating enhances the stability of inorganic perovskite nanocrystals for efficient and stable down-conversion in white light-emitting devices,” Nanoscale 10, 20131–20139 (2018).
[Crossref]

Li, W.

X. Jiang, L. Zhang, S. Liu, Y. Zhang, Z. He, W. Li, F. Zhang, Y. Shi, W. Lü, Y. Li, Q. Wen, J. Li, J. Feng, S. Ruan, Y.-J. Zeng, X. Zhu, Y. Lu, and H. Zhang, “Ultrathin metal-organic framework: an emerging broadband nonlinear optical material for ultrafast photonics,” Adv. Opt. Mater. 6, 1800561 (2018).
[Crossref]

Li, X.

F. Zhang, Z. Shi, S. Li, Z. Ma, Y. Li, L. Wang, D. Wu, Y. Tian, G. Du, X. Li, and C. Shan, “Synergetic effect of the surfactant and silica coating on the enhanced emission and stability of perovskite quantum dots for anticounterfeiting,” ACS Appl. Mater. Interfaces 11, 28013–28022 (2019).
[Crossref]

S. Yuan, D. Chen, X. Li, J. Zhong, and X. Xu, “In situ crystallization synthesis of CsPbBr3 perovskite quantum dot-embedded glasses with improved stability for solid-state lighting and random upconverted lasing,” ACS Appl. Mater. Interfaces 10, 18918–18926 (2018).
[Crossref]

Y. Wang, X. Li, X. Zhao, L. Xiao, H. Zeng, and H. Sun, “Nonlinear absorption and low-threshold multiphoton pumped stimulated emission from all-inorganic perovskite nanocrystals,” Nano Lett. 16, 448–453 (2016).
[Crossref]

Li, X. J.

F. Zhang, Z. F. Shi, Z. Z. Ma, Y. Li, S. Li, D. Wu, T. T. Xu, X. J. Li, C. X. Shan, and G. T. Du, “Silica coating enhances the stability of inorganic perovskite nanocrystals for efficient and stable down-conversion in white light-emitting devices,” Nanoscale 10, 20131–20139 (2018).
[Crossref]

Li, Y.

F. Zhang, Z. Shi, S. Li, Z. Ma, Y. Li, L. Wang, D. Wu, Y. Tian, G. Du, X. Li, and C. Shan, “Synergetic effect of the surfactant and silica coating on the enhanced emission and stability of perovskite quantum dots for anticounterfeiting,” ACS Appl. Mater. Interfaces 11, 28013–28022 (2019).
[Crossref]

F. Zhang, Z. F. Shi, Z. Z. Ma, Y. Li, S. Li, D. Wu, T. T. Xu, X. J. Li, C. X. Shan, and G. T. Du, “Silica coating enhances the stability of inorganic perovskite nanocrystals for efficient and stable down-conversion in white light-emitting devices,” Nanoscale 10, 20131–20139 (2018).
[Crossref]

X. Jiang, L. Zhang, S. Liu, Y. Zhang, Z. He, W. Li, F. Zhang, Y. Shi, W. Lü, Y. Li, Q. Wen, J. Li, J. Feng, S. Ruan, Y.-J. Zeng, X. Zhu, Y. Lu, and H. Zhang, “Ultrathin metal-organic framework: an emerging broadband nonlinear optical material for ultrafast photonics,” Adv. Opt. Mater. 6, 1800561 (2018).
[Crossref]

N. D. S. Zhang, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9, 7142–7150 (2015).
[Crossref]

Liang, X.

M. Jin, S. Huang, C. Quan, X. Liang, J. Du, Z. Liu, Z. Zhang, and W. Xiang, “Blue low-threshold room-temperature stimulated emission from thermostable perovskite nanocrystals glasses through controlling crystallization,” J. Eur. Ceram. Soc 41, 1579–1585 (2021).
[Crossref]

Lin, X.

Lin, X. D.

Liu, C.

Y. Hu, W. Zhang, Y. Ye, Z. Zhao, and C. Liu, “Femtosecond-laser-induced precipitation of CsPbBr3 perovskite nanocrystals in glasses for solar spectral conversion,” ACS Appl. Nano Mater. 3, 850–857 (2019).
[Crossref]

Y. Ye, W. Zhang, Z. Zhao, J. Wang, C. Liu, Z. Deng, X. Zhao, and J. Han, “Highly luminescent cesium lead halide perovskite nanocrystals stabilized in glasses for light-emitting applications,” Adv. Opt. Mater. 7, 1801663 (2019).
[Crossref]

B. Ai, C. Liu, J. Wang, J. Xie, J. Han, X. Zhao, and J. Heo, “Precipitation and optical properties of CsPbBr3 quantum dots in phosphate glasses,” J. Am. Ceram. Soc. 99, 2875–2877 (2016).
[Crossref]

Liu, D.

J. Chen, K. Zidek, P. Chabera, D. Liu, P. Cheng, L. Nuuttila, M. J. Al-Marri, H. Lehtivuori, M. E. Messing, K. Han, K. Zheng, and T. Pullerits, “Size- and wavelength-dependent two-photon absorption cross-section of CsPbBr3 perovskite quantum dots,” J. Phys. Chem. Lett. 8, 2316–2321 (2017).
[Crossref]

Liu, H.

M. Xia, J. Luo, C. Chen, H. Liu, and J. Tang, “Semiconductor quantum dots-embedded inorganic glasses: fabrication, luminescent properties, and potential applications,” Adv. Opt. Mater. 7, 1900851 (2019).
[Crossref]

Liu, R. S.

H. C. Wang, Z. Bao, H. Y. Tsai, A. C. Tang, and R. S. Liu, “Perovskite quantum dots and their application in light-emitting diodes,” Small 14, 1702433 (2018).
[Crossref]

Liu, S.

X. Jiang, L. Zhang, S. Liu, Y. Zhang, Z. He, W. Li, F. Zhang, Y. Shi, W. Lü, Y. Li, Q. Wen, J. Li, J. Feng, S. Ruan, Y.-J. Zeng, X. Zhu, Y. Lu, and H. Zhang, “Ultrathin metal-organic framework: an emerging broadband nonlinear optical material for ultrafast photonics,” Adv. Opt. Mater. 6, 1800561 (2018).
[Crossref]

Liu, W.

Q. Han, W. Wu, W. Liu, Q. Yang, and Y. Yang, “Two-photon absorption and upconversion luminescence of colloidal CsPbX3 quantum dots,” Opt. Mater. 75, 880–886 (2018).
[Crossref]

Liu, Y.

X. Pang, H. Zhang, L. Xie, T. Xuan, Y. Sun, S. Si, B. Jiang, W. Chen, J. Zhuang, C. Hu, Y. Liu, B. Lei, and X. Zhang, “Precipitating CsPbBr3 quantum dots in boro-germanate glass with a dense structure and inert environment toward highly stable and efficient narrow-band green emitters for wide-color-gamut liquid crystal displays,” J. Mater. Chem. C 7, 13139–13148 (2019).
[Crossref]

Liu, Z.

M. Jin, S. Huang, C. Quan, X. Liang, J. Du, Z. Liu, Z. Zhang, and W. Xiang, “Blue low-threshold room-temperature stimulated emission from thermostable perovskite nanocrystals glasses through controlling crystallization,” J. Eur. Ceram. Soc 41, 1579–1585 (2021).
[Crossref]

Lu, C.

C. Quan, M. He, C. He, Y. Huang, L. Zhu, Z. Yao, X. Xu, C. Lu, and X. Xu, “Transition from saturable absorption to reverse saturable absorption in MoTe2 nano-films with thickness and pump intensity,” Appl. Surf. Sci. 457, 115–120 (2018).
[Crossref]

Lu, Y.

X. Jiang, L. Zhang, S. Liu, Y. Zhang, Z. He, W. Li, F. Zhang, Y. Shi, W. Lü, Y. Li, Q. Wen, J. Li, J. Feng, S. Ruan, Y.-J. Zeng, X. Zhu, Y. Lu, and H. Zhang, “Ultrathin metal-organic framework: an emerging broadband nonlinear optical material for ultrafast photonics,” Adv. Opt. Mater. 6, 1800561 (2018).
[Crossref]

Lü, W.

X. Jiang, L. Zhang, S. Liu, Y. Zhang, Z. He, W. Li, F. Zhang, Y. Shi, W. Lü, Y. Li, Q. Wen, J. Li, J. Feng, S. Ruan, Y.-J. Zeng, X. Zhu, Y. Lu, and H. Zhang, “Ultrathin metal-organic framework: an emerging broadband nonlinear optical material for ultrafast photonics,” Adv. Opt. Mater. 6, 1800561 (2018).
[Crossref]

Luo, J.

M. Xia, J. Luo, C. Chen, H. Liu, and J. Tang, “Semiconductor quantum dots-embedded inorganic glasses: fabrication, luminescent properties, and potential applications,” Adv. Opt. Mater. 7, 1900851 (2019).
[Crossref]

Ma, D.

L. Wu, Y. Dong, J. Zhao, D. Ma, W. Huang, Y. Zhang, Y. Wang, X. Jiang, Y. Xiang, J. Li, Y. Feng, J. Xu, and H. Zhang, “Kerr nonlinearity in 2D graphdiyne for passive photonic diodes,” Adv. Mater. 31, 1807981 (2019).
[Crossref]

Ma, Q.

J. Yang, X. Wen, H. Xia, R. Sheng, Q. Ma, J. Kim, P. Tapping, T. Harada, T. W. Kee, F. Huang, Y. B. Cheng, M. Green, A. Ho-Baillie, S. Huang, S. Shrestha, R. Patterson, and G. Conibeer, “Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites,” Nat. Commun. 8, 14120 (2017).
[Crossref]

Ma, Z.

F. Zhang, Z. Shi, S. Li, Z. Ma, Y. Li, L. Wang, D. Wu, Y. Tian, G. Du, X. Li, and C. Shan, “Synergetic effect of the surfactant and silica coating on the enhanced emission and stability of perovskite quantum dots for anticounterfeiting,” ACS Appl. Mater. Interfaces 11, 28013–28022 (2019).
[Crossref]

Ma, Z. Z.

F. Zhang, Z. F. Shi, Z. Z. Ma, Y. Li, S. Li, D. Wu, T. T. Xu, X. J. Li, C. X. Shan, and G. T. Du, “Silica coating enhances the stability of inorganic perovskite nanocrystals for efficient and stable down-conversion in white light-emitting devices,” Nanoscale 10, 20131–20139 (2018).
[Crossref]

Manna, L.

F. Palazon, Q. A. Akkerman, M. Prato, and L. Manna, “X-ray lithography on perovskite nanocrystals films: from patterning with anion-exchange reactions to enhanced stability in air and water,” ACS Nano 10, 1224–1230 (2016).
[Crossref]

Martínez-Pastor, J. P.

D. Andres-Penares, J. Navarro-Arenas, R. I. Sánchez-Alarcón, R. Abargues, J. P. Martínez-Pastor, and J. F. Sánchez-Royo, “Enhanced optical response of InSe nanosheet devices decorated with CsPbX3 (X=I, Br) perovskite nanocrystals,” Appl. Surf. Sci. 536, 147939 (2021).
[Crossref]

Mathews, N.

M. Li, S. Bhaumik, T. W. Goh, M. S. Kumar, N. Yantara, M. Gratzel, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Slow cooling and highly efficient extraction of hot carriers in colloidal perovskite nanocrystals,” Nat. Commun. 8, 14350 (2017).
[Crossref]

W. Chen, S. Bhaumik, S. A. Veldhuis, G. Xing, Q. Xu, M. Gratzel, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Giant five-photon absorption from multidimensional core-shell halide perovskite colloidal nanocrystals,” Nat. Commun. 8, 15198 (2017).
[Crossref]

McEvoy, N.

N. D. S. Zhang, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9, 7142–7150 (2015).
[Crossref]

Messing, M. E.

J. Chen, K. Zidek, P. Chabera, D. Liu, P. Cheng, L. Nuuttila, M. J. Al-Marri, H. Lehtivuori, M. E. Messing, K. Han, K. Zheng, and T. Pullerits, “Size- and wavelength-dependent two-photon absorption cross-section of CsPbBr3 perovskite quantum dots,” J. Phys. Chem. Lett. 8, 2316–2321 (2017).
[Crossref]

J. Chen, P. Chabera, T. Pascher, M. E. Messing, R. Schaller, S. Canton, K. Zheng, and T. Pullerits, “Enhanced size selection in two-photon excitation for CsPbBr3 perovskite nanocrystals,” J. Phys. Chem. Lett. 8, 5119–5124 (2017).
[Crossref]

Metin, D. Z.

J. Butkus, P. Vashishtha, K. Chen, J. K. Gallaher, S. K. K. Prasad, D. Z. Metin, G. Laufersky, N. Gaston, J. E. Halpert, and J. M. Hodgkiss, “The evolution of quantum confinement in CsPbBr3 perovskite nanocrystals,” Chem. Mater. 29, 3644–3652 (2017).
[Crossref]

Mhaisalkar, S.

M. Li, S. Bhaumik, T. W. Goh, M. S. Kumar, N. Yantara, M. Gratzel, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Slow cooling and highly efficient extraction of hot carriers in colloidal perovskite nanocrystals,” Nat. Commun. 8, 14350 (2017).
[Crossref]

W. Chen, S. Bhaumik, S. A. Veldhuis, G. Xing, Q. Xu, M. Gratzel, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Giant five-photon absorption from multidimensional core-shell halide perovskite colloidal nanocrystals,” Nat. Commun. 8, 15198 (2017).
[Crossref]

Mir, W. J.

W. J. Mir, A. Swarnkar, and A. Nag, “Postsynthesis Mn-doping in CsPbI3 nanocrystals to stabilize the black perovskite phase,” Nanoscale 11, 4278–4286 (2019).
[Crossref]

Moghaddam, R. S.

Z. K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, F. Hanusch, T. Bein, H. J. Snaith, and R. H. Friend, “Bright light-emitting diodes based on organometal halide perovskite,” Nat. Nanotechnol. 9, 687–692 (2014).
[Crossref]

Myoung, N.

H. Cho, S.-H. Jeong, M.-H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, and T.-W. Lee, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350, 1222–1225 (2015).
[Crossref]

Nafradi, B.

B. Nafradi, P. Szirmai, M. Spina, H. Lee, O. V. Yazyev, A. Arakcheeva, D. Chernyshov, M. Gibert, L. Forro, and E. Horvath, “Optically switched magnetism in photovoltaic perovskite CH3NH3(Mn:Pb)I3,” Nat. Commun. 7, 13406 (2016).
[Crossref]

Nag, A.

V. K. Ravi, S. Saikia, S. Yadav, V. V. Nawale, and A. Nag, “CsPbBr3/ZnS core/shell type nanocrystals for enhancing luminescence lifetime and water stability,” ACS Energy Lett. 5, 1794–1796 (2020).
[Crossref]

W. J. Mir, A. Swarnkar, and A. Nag, “Postsynthesis Mn-doping in CsPbI3 nanocrystals to stabilize the black perovskite phase,” Nanoscale 11, 4278–4286 (2019).
[Crossref]

Nagamine, G.

G. Nagamine, J. O. Rocha, L. G. Bonato, A. F. Nogueira, Z. Zaharieva, A. A. R. Watt, C. H. de Brito Cruz, and L. A. Padilha, “Two-photon absorption and two-photon-induced gain in perovskite quantum dots,” J. Phys. Chem. Lett. 9, 3478–3484 (2018).
[Crossref]

J. A. Castaneda, G. Nagamine, E. Yassitepe, L. G. Bonato, O. Voznyy, S. Hoogland, A. F. Nogueira, E. H. Sargent, C. H. Cruz, and L. A. Padilha, “Efficient biexciton interaction in perovskite quantum dots under weak and strong confinement,” ACS Nano 10, 8603–8609 (2016).
[Crossref]

Navarro-Arenas, J.

D. Andres-Penares, J. Navarro-Arenas, R. I. Sánchez-Alarcón, R. Abargues, J. P. Martínez-Pastor, and J. F. Sánchez-Royo, “Enhanced optical response of InSe nanosheet devices decorated with CsPbX3 (X=I, Br) perovskite nanocrystals,” Appl. Surf. Sci. 536, 147939 (2021).
[Crossref]

Nawale, V. V.

V. K. Ravi, S. Saikia, S. Yadav, V. V. Nawale, and A. Nag, “CsPbBr3/ZnS core/shell type nanocrystals for enhancing luminescence lifetime and water stability,” ACS Energy Lett. 5, 1794–1796 (2020).
[Crossref]

Nedelcu, G.

G. Nedelcu, L. Protesescu, S. Yakunin, M. I. Bodnarchuk, M. J. Grotevent, and M. V. Kovalenko, “Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I),” Nano Lett. 15, 5635–5640 (2015).
[Crossref]

Ni, X.-W.

J. Wang, B. Gu, X.-W. Ni, and H.-T. Wang, “Z-scan theory with simultaneous two- and three-photon absorption saturation,” Opt. Laser Technol. 44, 390–393 (2012).
[Crossref]

Nogueira, A. F.

G. Nagamine, J. O. Rocha, L. G. Bonato, A. F. Nogueira, Z. Zaharieva, A. A. R. Watt, C. H. de Brito Cruz, and L. A. Padilha, “Two-photon absorption and two-photon-induced gain in perovskite quantum dots,” J. Phys. Chem. Lett. 9, 3478–3484 (2018).
[Crossref]

J. A. Castaneda, G. Nagamine, E. Yassitepe, L. G. Bonato, O. Voznyy, S. Hoogland, A. F. Nogueira, E. H. Sargent, C. H. Cruz, and L. A. Padilha, “Efficient biexciton interaction in perovskite quantum dots under weak and strong confinement,” ACS Nano 10, 8603–8609 (2016).
[Crossref]

Nuuttila, L.

J. Chen, K. Zidek, P. Chabera, D. Liu, P. Cheng, L. Nuuttila, M. J. Al-Marri, H. Lehtivuori, M. E. Messing, K. Han, K. Zheng, and T. Pullerits, “Size- and wavelength-dependent two-photon absorption cross-section of CsPbBr3 perovskite quantum dots,” J. Phys. Chem. Lett. 8, 2316–2321 (2017).
[Crossref]

O’Brien, M.

N. D. S. Zhang, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9, 7142–7150 (2015).
[Crossref]

Ou, Q.

X. Qi, Y. Zhang, Q. Ou, S. T. Ha, C. W. Qiu, H. Zhang, Y. B. Cheng, Q. Xiong, and Q. Bao, “Photonics and optoelectronics of 2D metal-halide perovskites,” Small 14, 1800682 (2018).
[Crossref]

Padilha, L. A.

G. Nagamine, J. O. Rocha, L. G. Bonato, A. F. Nogueira, Z. Zaharieva, A. A. R. Watt, C. H. de Brito Cruz, and L. A. Padilha, “Two-photon absorption and two-photon-induced gain in perovskite quantum dots,” J. Phys. Chem. Lett. 9, 3478–3484 (2018).
[Crossref]

J. A. Castaneda, G. Nagamine, E. Yassitepe, L. G. Bonato, O. Voznyy, S. Hoogland, A. F. Nogueira, E. H. Sargent, C. H. Cruz, and L. A. Padilha, “Efficient biexciton interaction in perovskite quantum dots under weak and strong confinement,” ACS Nano 10, 8603–8609 (2016).
[Crossref]

Palazon, F.

F. Palazon, Q. A. Akkerman, M. Prato, and L. Manna, “X-ray lithography on perovskite nanocrystals films: from patterning with anion-exchange reactions to enhanced stability in air and water,” ACS Nano 10, 1224–1230 (2016).
[Crossref]

Pang, X.

X. Pang, H. Zhang, L. Xie, T. Xuan, Y. Sun, S. Si, B. Jiang, W. Chen, J. Zhuang, C. Hu, Y. Liu, B. Lei, and X. Zhang, “Precipitating CsPbBr3 quantum dots in boro-germanate glass with a dense structure and inert environment toward highly stable and efficient narrow-band green emitters for wide-color-gamut liquid crystal displays,” J. Mater. Chem. C 7, 13139–13148 (2019).
[Crossref]

Park, M.-H.

H. Cho, S.-H. Jeong, M.-H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, and T.-W. Lee, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350, 1222–1225 (2015).
[Crossref]

Pascher, T.

J. Chen, P. Chabera, T. Pascher, M. E. Messing, R. Schaller, S. Canton, K. Zheng, and T. Pullerits, “Enhanced size selection in two-photon excitation for CsPbBr3 perovskite nanocrystals,” J. Phys. Chem. Lett. 8, 5119–5124 (2017).
[Crossref]

Pathak, S.

G. E. Eperon, S. N. Habisreutinger, T. Leijtens, B. J. Bruijnaers, J. J. Franeker, D. W. deQuilettes, S. Pathak, R. J. Sutton, G. Grancini, D. S. Ginger, R. A. J. Janssen, A. Petrozza, and H. J. Snaith, “The importance of moisture in hybrid lead halide perovskite thin film fabrication,” ACS Nano 9, 9380–9393 (2015).
[Crossref]

Patterson, R.

J. Yang, X. Wen, H. Xia, R. Sheng, Q. Ma, J. Kim, P. Tapping, T. Harada, T. W. Kee, F. Huang, Y. B. Cheng, M. Green, A. Ho-Baillie, S. Huang, S. Shrestha, R. Patterson, and G. Conibeer, “Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites,” Nat. Commun. 8, 14120 (2017).
[Crossref]

Pazos, L. M.

Z. K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, F. Hanusch, T. Bein, H. J. Snaith, and R. H. Friend, “Bright light-emitting diodes based on organometal halide perovskite,” Nat. Nanotechnol. 9, 687–692 (2014).
[Crossref]

Petrozza, A.

G. E. Eperon, S. N. Habisreutinger, T. Leijtens, B. J. Bruijnaers, J. J. Franeker, D. W. deQuilettes, S. Pathak, R. J. Sutton, G. Grancini, D. S. Ginger, R. A. J. Janssen, A. Petrozza, and H. J. Snaith, “The importance of moisture in hybrid lead halide perovskite thin film fabrication,” ACS Nano 9, 9380–9393 (2015).
[Crossref]

Philip, R.

P. A. Kurian, C. Vijayan, C. S. Suchand Sandeep, R. Philip, and K. Sathiyamoorthy, “Two-photon-assisted excited state absorption in nanocomposite films of PbS stabilized in a synthetic glue matrix,” Nanotechnology 18, 075708 (2007).
[Crossref]

Pramanik, A.

A. Pramanik, K. Gates, Y. Gao, S. Begum, and P. C. Ray, “Several orders-of-magnitude enhancement of multiphoton absorption property for CsPbX3 perovskite quantum dots by manipulating halide stoichiometry,” J. Phys. Chem. C 123, 5150–5156 (2019).
[Crossref]

Prasad, S. K. K.

J. Butkus, P. Vashishtha, K. Chen, J. K. Gallaher, S. K. K. Prasad, D. Z. Metin, G. Laufersky, N. Gaston, J. E. Halpert, and J. M. Hodgkiss, “The evolution of quantum confinement in CsPbBr3 perovskite nanocrystals,” Chem. Mater. 29, 3644–3652 (2017).
[Crossref]

Prato, M.

F. Palazon, Q. A. Akkerman, M. Prato, and L. Manna, “X-ray lithography on perovskite nanocrystals films: from patterning with anion-exchange reactions to enhanced stability in air and water,” ACS Nano 10, 1224–1230 (2016).
[Crossref]

Price, M.

Z. K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, F. Hanusch, T. Bein, H. J. Snaith, and R. H. Friend, “Bright light-emitting diodes based on organometal halide perovskite,” Nat. Nanotechnol. 9, 687–692 (2014).
[Crossref]

Protesescu, L.

D. N. Dirin, L. Protesescu, D. Trummer, I. V. Kochetygov, S. Yakunin, F. Krumeich, N. P. Stadie, and M. V. Kovalenko, “Harnessing defect-tolerance at the nanoscale: highly luminescent lead halide perovskite nanocrystals in mesoporous silica matrixes,” Nano Lett. 16, 5866–5874 (2016).
[Crossref]

G. Nedelcu, L. Protesescu, S. Yakunin, M. I. Bodnarchuk, M. J. Grotevent, and M. V. Kovalenko, “Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I),” Nano Lett. 15, 5635–5640 (2015).
[Crossref]

L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, “Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color Gamut,” Nano Lett. 15, 3692–3696 (2015).
[Crossref]

Pullerits, T.

J. Chen, P. Chabera, T. Pascher, M. E. Messing, R. Schaller, S. Canton, K. Zheng, and T. Pullerits, “Enhanced size selection in two-photon excitation for CsPbBr3 perovskite nanocrystals,” J. Phys. Chem. Lett. 8, 5119–5124 (2017).
[Crossref]

J. Chen, K. Zidek, P. Chabera, D. Liu, P. Cheng, L. Nuuttila, M. J. Al-Marri, H. Lehtivuori, M. E. Messing, K. Han, K. Zheng, and T. Pullerits, “Size- and wavelength-dependent two-photon absorption cross-section of CsPbBr3 perovskite quantum dots,” J. Phys. Chem. Lett. 8, 2316–2321 (2017).
[Crossref]

Qi, X.

X. Qi, Y. Zhang, Q. Ou, S. T. Ha, C. W. Qiu, H. Zhang, Y. B. Cheng, Q. Xiong, and Q. Bao, “Photonics and optoelectronics of 2D metal-halide perovskites,” Small 14, 1800682 (2018).
[Crossref]

Qiu, C. W.

X. Qi, Y. Zhang, Q. Ou, S. T. Ha, C. W. Qiu, H. Zhang, Y. B. Cheng, Q. Xiong, and Q. Bao, “Photonics and optoelectronics of 2D metal-halide perovskites,” Small 14, 1800682 (2018).
[Crossref]

Qiu, X.

Quan, C.

M. Jin, S. Huang, C. Quan, X. Liang, J. Du, Z. Liu, Z. Zhang, and W. Xiang, “Blue low-threshold room-temperature stimulated emission from thermostable perovskite nanocrystals glasses through controlling crystallization,” J. Eur. Ceram. Soc 41, 1579–1585 (2021).
[Crossref]

C. Quan, M. He, C. He, Y. Huang, L. Zhu, Z. Yao, X. Xu, C. Lu, and X. Xu, “Transition from saturable absorption to reverse saturable absorption in MoTe2 nano-films with thickness and pump intensity,” Appl. Surf. Sci. 457, 115–120 (2018).
[Crossref]

Rao, S. V.

K. N. Krishnakanth, S. Seth, A. Samanta, and S. V. Rao, “Broadband ultrafast nonlinear optical studies revealing exciting multi-photon absorption coefficients in phase pure zero-dimensional Cs4PbBr6 perovskite films,” Nanoscale 11, 945–954 (2019).
[Crossref]

Ravi, V. K.

V. K. Ravi, S. Saikia, S. Yadav, V. V. Nawale, and A. Nag, “CsPbBr3/ZnS core/shell type nanocrystals for enhancing luminescence lifetime and water stability,” ACS Energy Lett. 5, 1794–1796 (2020).
[Crossref]

Ray, P. C.

A. Pramanik, K. Gates, Y. Gao, S. Begum, and P. C. Ray, “Several orders-of-magnitude enhancement of multiphoton absorption property for CsPbX3 perovskite quantum dots by manipulating halide stoichiometry,” J. Phys. Chem. C 123, 5150–5156 (2019).
[Crossref]

Ren, C.

Rocha, J. O.

G. Nagamine, J. O. Rocha, L. G. Bonato, A. F. Nogueira, Z. Zaharieva, A. A. R. Watt, C. H. de Brito Cruz, and L. A. Padilha, “Two-photon absorption and two-photon-induced gain in perovskite quantum dots,” J. Phys. Chem. Lett. 9, 3478–3484 (2018).
[Crossref]

Ruan, C.

C. Sun, Y. Zhang, C. Ruan, C. Yin, X. Wang, Y. Wang, and W. W. Yu, “Efficient and stable white LEDs with silica-coated inorganic perovskite quantum dots,” Adv. Mater. 28, 10088–10094 (2016).
[Crossref]

Ruan, S.

X. Jiang, L. Zhang, S. Liu, Y. Zhang, Z. He, W. Li, F. Zhang, Y. Shi, W. Lü, Y. Li, Q. Wen, J. Li, J. Feng, S. Ruan, Y.-J. Zeng, X. Zhu, Y. Lu, and H. Zhang, “Ultrathin metal-organic framework: an emerging broadband nonlinear optical material for ultrafast photonics,” Adv. Opt. Mater. 6, 1800561 (2018).
[Crossref]

Sadhanala, A.

H. Cho, S.-H. Jeong, M.-H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, and T.-W. Lee, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350, 1222–1225 (2015).
[Crossref]

Z. K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, F. Hanusch, T. Bein, H. J. Snaith, and R. H. Friend, “Bright light-emitting diodes based on organometal halide perovskite,” Nat. Nanotechnol. 9, 687–692 (2014).
[Crossref]

Saikia, S.

V. K. Ravi, S. Saikia, S. Yadav, V. V. Nawale, and A. Nag, “CsPbBr3/ZnS core/shell type nanocrystals for enhancing luminescence lifetime and water stability,” ACS Energy Lett. 5, 1794–1796 (2020).
[Crossref]

Samanta, A.

K. N. Krishnakanth, S. Seth, A. Samanta, and S. V. Rao, “Broadband ultrafast nonlinear optical studies revealing exciting multi-photon absorption coefficients in phase pure zero-dimensional Cs4PbBr6 perovskite films,” Nanoscale 11, 945–954 (2019).
[Crossref]

Sánchez-Alarcón, R. I.

D. Andres-Penares, J. Navarro-Arenas, R. I. Sánchez-Alarcón, R. Abargues, J. P. Martínez-Pastor, and J. F. Sánchez-Royo, “Enhanced optical response of InSe nanosheet devices decorated with CsPbX3 (X=I, Br) perovskite nanocrystals,” Appl. Surf. Sci. 536, 147939 (2021).
[Crossref]

Sánchez-Royo, J. F.

D. Andres-Penares, J. Navarro-Arenas, R. I. Sánchez-Alarcón, R. Abargues, J. P. Martínez-Pastor, and J. F. Sánchez-Royo, “Enhanced optical response of InSe nanosheet devices decorated with CsPbX3 (X=I, Br) perovskite nanocrystals,” Appl. Surf. Sci. 536, 147939 (2021).
[Crossref]

Sargent, E. H.

J. A. Castaneda, G. Nagamine, E. Yassitepe, L. G. Bonato, O. Voznyy, S. Hoogland, A. F. Nogueira, E. H. Sargent, C. H. Cruz, and L. A. Padilha, “Efficient biexciton interaction in perovskite quantum dots under weak and strong confinement,” ACS Nano 10, 8603–8609 (2016).
[Crossref]

Sathiyamoorthy, K.

P. A. Kurian, C. Vijayan, C. S. Suchand Sandeep, R. Philip, and K. Sathiyamoorthy, “Two-photon-assisted excited state absorption in nanocomposite films of PbS stabilized in a synthetic glue matrix,” Nanotechnology 18, 075708 (2007).
[Crossref]

Schaller, R.

J. Chen, P. Chabera, T. Pascher, M. E. Messing, R. Schaller, S. Canton, K. Zheng, and T. Pullerits, “Enhanced size selection in two-photon excitation for CsPbBr3 perovskite nanocrystals,” J. Phys. Chem. Lett. 8, 5119–5124 (2017).
[Crossref]

Seth, S.

K. N. Krishnakanth, S. Seth, A. Samanta, and S. V. Rao, “Broadband ultrafast nonlinear optical studies revealing exciting multi-photon absorption coefficients in phase pure zero-dimensional Cs4PbBr6 perovskite films,” Nanoscale 11, 945–954 (2019).
[Crossref]

Shan, C.

F. Zhang, Z. Shi, S. Li, Z. Ma, Y. Li, L. Wang, D. Wu, Y. Tian, G. Du, X. Li, and C. Shan, “Synergetic effect of the surfactant and silica coating on the enhanced emission and stability of perovskite quantum dots for anticounterfeiting,” ACS Appl. Mater. Interfaces 11, 28013–28022 (2019).
[Crossref]

Shan, C. X.

F. Zhang, Z. F. Shi, Z. Z. Ma, Y. Li, S. Li, D. Wu, T. T. Xu, X. J. Li, C. X. Shan, and G. T. Du, “Silica coating enhances the stability of inorganic perovskite nanocrystals for efficient and stable down-conversion in white light-emitting devices,” Nanoscale 10, 20131–20139 (2018).
[Crossref]

Sheng, R.

J. Yang, X. Wen, H. Xia, R. Sheng, Q. Ma, J. Kim, P. Tapping, T. Harada, T. W. Kee, F. Huang, Y. B. Cheng, M. Green, A. Ho-Baillie, S. Huang, S. Shrestha, R. Patterson, and G. Conibeer, “Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites,” Nat. Commun. 8, 14120 (2017).
[Crossref]

Shi, G.

S. Chen and G. Shi, “Two-dimensional materials for halide perovskite-based optoelectronic devices,” Adv. Mater. 29, 1605448 (2017).
[Crossref]

Shi, Y.

X. Jiang, L. Zhang, S. Liu, Y. Zhang, Z. He, W. Li, F. Zhang, Y. Shi, W. Lü, Y. Li, Q. Wen, J. Li, J. Feng, S. Ruan, Y.-J. Zeng, X. Zhu, Y. Lu, and H. Zhang, “Ultrathin metal-organic framework: an emerging broadband nonlinear optical material for ultrafast photonics,” Adv. Opt. Mater. 6, 1800561 (2018).
[Crossref]

Shi, Z.

F. Zhang, Z. Shi, S. Li, Z. Ma, Y. Li, L. Wang, D. Wu, Y. Tian, G. Du, X. Li, and C. Shan, “Synergetic effect of the surfactant and silica coating on the enhanced emission and stability of perovskite quantum dots for anticounterfeiting,” ACS Appl. Mater. Interfaces 11, 28013–28022 (2019).
[Crossref]

Shi, Z. F.

F. Zhang, Z. F. Shi, Z. Z. Ma, Y. Li, S. Li, D. Wu, T. T. Xu, X. J. Li, C. X. Shan, and G. T. Du, “Silica coating enhances the stability of inorganic perovskite nanocrystals for efficient and stable down-conversion in white light-emitting devices,” Nanoscale 10, 20131–20139 (2018).
[Crossref]

Shrestha, S.

J. Yang, X. Wen, H. Xia, R. Sheng, Q. Ma, J. Kim, P. Tapping, T. Harada, T. W. Kee, F. Huang, Y. B. Cheng, M. Green, A. Ho-Baillie, S. Huang, S. Shrestha, R. Patterson, and G. Conibeer, “Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites,” Nat. Commun. 8, 14120 (2017).
[Crossref]

Si, S.

X. Pang, H. Zhang, L. Xie, T. Xuan, Y. Sun, S. Si, B. Jiang, W. Chen, J. Zhuang, C. Hu, Y. Liu, B. Lei, and X. Zhang, “Precipitating CsPbBr3 quantum dots in boro-germanate glass with a dense structure and inert environment toward highly stable and efficient narrow-band green emitters for wide-color-gamut liquid crystal displays,” J. Mater. Chem. C 7, 13139–13148 (2019).
[Crossref]

Snaith, H. J.

G. E. Eperon, S. N. Habisreutinger, T. Leijtens, B. J. Bruijnaers, J. J. Franeker, D. W. deQuilettes, S. Pathak, R. J. Sutton, G. Grancini, D. S. Ginger, R. A. J. Janssen, A. Petrozza, and H. J. Snaith, “The importance of moisture in hybrid lead halide perovskite thin film fabrication,” ACS Nano 9, 9380–9393 (2015).
[Crossref]

Z. K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, F. Hanusch, T. Bein, H. J. Snaith, and R. H. Friend, “Bright light-emitting diodes based on organometal halide perovskite,” Nat. Nanotechnol. 9, 687–692 (2014).
[Crossref]

Spina, M.

B. Nafradi, P. Szirmai, M. Spina, H. Lee, O. V. Yazyev, A. Arakcheeva, D. Chernyshov, M. Gibert, L. Forro, and E. Horvath, “Optically switched magnetism in photovoltaic perovskite CH3NH3(Mn:Pb)I3,” Nat. Commun. 7, 13406 (2016).
[Crossref]

Stadie, N. P.

D. N. Dirin, L. Protesescu, D. Trummer, I. V. Kochetygov, S. Yakunin, F. Krumeich, N. P. Stadie, and M. V. Kovalenko, “Harnessing defect-tolerance at the nanoscale: highly luminescent lead halide perovskite nanocrystals in mesoporous silica matrixes,” Nano Lett. 16, 5866–5874 (2016).
[Crossref]

Suchand Sandeep, C. S.

P. A. Kurian, C. Vijayan, C. S. Suchand Sandeep, R. Philip, and K. Sathiyamoorthy, “Two-photon-assisted excited state absorption in nanocomposite films of PbS stabilized in a synthetic glue matrix,” Nanotechnology 18, 075708 (2007).
[Crossref]

Sum, T. C.

W. Chen, S. Bhaumik, S. A. Veldhuis, G. Xing, Q. Xu, M. Gratzel, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Giant five-photon absorption from multidimensional core-shell halide perovskite colloidal nanocrystals,” Nat. Commun. 8, 15198 (2017).
[Crossref]

M. Li, S. Bhaumik, T. W. Goh, M. S. Kumar, N. Yantara, M. Gratzel, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Slow cooling and highly efficient extraction of hot carriers in colloidal perovskite nanocrystals,” Nat. Commun. 8, 14350 (2017).
[Crossref]

Sun, C.

C. Sun, Y. Zhang, C. Ruan, C. Yin, X. Wang, Y. Wang, and W. W. Yu, “Efficient and stable white LEDs with silica-coated inorganic perovskite quantum dots,” Adv. Mater. 28, 10088–10094 (2016).
[Crossref]

Sun, H.

Y. Wang, X. Li, X. Zhao, L. Xiao, H. Zeng, and H. Sun, “Nonlinear absorption and low-threshold multiphoton pumped stimulated emission from all-inorganic perovskite nanocrystals,” Nano Lett. 16, 448–453 (2016).
[Crossref]

Sun, X. W.

J. Li, Q. Jing, S. Xiao, Y. Gao, Y. Wang, W. Zhang, X. W. Sun, K. Wang, and T. He, “Spectral dynamics and multiphoton absorption properties of all-inorganic perovskite nanorods,” J. Phys. Chem. Lett. 11, 4817–4825 (2020).
[Crossref]

Sun, Y.

X. Pang, H. Zhang, L. Xie, T. Xuan, Y. Sun, S. Si, B. Jiang, W. Chen, J. Zhuang, C. Hu, Y. Liu, B. Lei, and X. Zhang, “Precipitating CsPbBr3 quantum dots in boro-germanate glass with a dense structure and inert environment toward highly stable and efficient narrow-band green emitters for wide-color-gamut liquid crystal displays,” J. Mater. Chem. C 7, 13139–13148 (2019).
[Crossref]

Sutton, R. J.

G. E. Eperon, S. N. Habisreutinger, T. Leijtens, B. J. Bruijnaers, J. J. Franeker, D. W. deQuilettes, S. Pathak, R. J. Sutton, G. Grancini, D. S. Ginger, R. A. J. Janssen, A. Petrozza, and H. J. Snaith, “The importance of moisture in hybrid lead halide perovskite thin film fabrication,” ACS Nano 9, 9380–9393 (2015).
[Crossref]

Swarnkar, A.

W. J. Mir, A. Swarnkar, and A. Nag, “Postsynthesis Mn-doping in CsPbI3 nanocrystals to stabilize the black perovskite phase,” Nanoscale 11, 4278–4286 (2019).
[Crossref]

Szirmai, P.

B. Nafradi, P. Szirmai, M. Spina, H. Lee, O. V. Yazyev, A. Arakcheeva, D. Chernyshov, M. Gibert, L. Forro, and E. Horvath, “Optically switched magnetism in photovoltaic perovskite CH3NH3(Mn:Pb)I3,” Nat. Commun. 7, 13406 (2016).
[Crossref]

Tan, Z. K.

Z. K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, F. Hanusch, T. Bein, H. J. Snaith, and R. H. Friend, “Bright light-emitting diodes based on organometal halide perovskite,” Nat. Nanotechnol. 9, 687–692 (2014).
[Crossref]

Tang, A. C.

H. C. Wang, Z. Bao, H. Y. Tsai, A. C. Tang, and R. S. Liu, “Perovskite quantum dots and their application in light-emitting diodes,” Small 14, 1702433 (2018).
[Crossref]

Tang, J.

M. Xia, J. Luo, C. Chen, H. Liu, and J. Tang, “Semiconductor quantum dots-embedded inorganic glasses: fabrication, luminescent properties, and potential applications,” Adv. Opt. Mater. 7, 1900851 (2019).
[Crossref]

Tao, L.

J. He, L. Tao, H. Zhang, B. Zhou, and J. Li, “Emerging 2D materials beyond graphene for ultrashort pulse generation in fiber lasers,” Nanoscale 11, 2577–2593 (2019).
[Crossref]

Tapping, P.

J. Yang, X. Wen, H. Xia, R. Sheng, Q. Ma, J. Kim, P. Tapping, T. Harada, T. W. Kee, F. Huang, Y. B. Cheng, M. Green, A. Ho-Baillie, S. Huang, S. Shrestha, R. Patterson, and G. Conibeer, “Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites,” Nat. Commun. 8, 14120 (2017).
[Crossref]

Tian, Y.

F. Zhang, Z. Shi, S. Li, Z. Ma, Y. Li, L. Wang, D. Wu, Y. Tian, G. Du, X. Li, and C. Shan, “Synergetic effect of the surfactant and silica coating on the enhanced emission and stability of perovskite quantum dots for anticounterfeiting,” ACS Appl. Mater. Interfaces 11, 28013–28022 (2019).
[Crossref]

Tong, G.

G. Tong, H. Li, Z. Zhu, Y. Zhang, L. Yu, J. Xu, and Y. Jiang, “Enhancing hybrid perovskite detectability in the deep ultraviolet region with down-conversion dual-phase (CsPbBr3-Cs4PbBr6) films,” J. Phys. Chem. Lett. 9, 1592–1599 (2018).
[Crossref]

Trummer, D.

D. N. Dirin, L. Protesescu, D. Trummer, I. V. Kochetygov, S. Yakunin, F. Krumeich, N. P. Stadie, and M. V. Kovalenko, “Harnessing defect-tolerance at the nanoscale: highly luminescent lead halide perovskite nanocrystals in mesoporous silica matrixes,” Nano Lett. 16, 5866–5874 (2016).
[Crossref]

Tsai, H. Y.

H. C. Wang, Z. Bao, H. Y. Tsai, A. C. Tang, and R. S. Liu, “Perovskite quantum dots and their application in light-emitting diodes,” Small 14, 1702433 (2018).
[Crossref]

Vashishtha, P.

J. Butkus, P. Vashishtha, K. Chen, J. K. Gallaher, S. K. K. Prasad, D. Z. Metin, G. Laufersky, N. Gaston, J. E. Halpert, and J. M. Hodgkiss, “The evolution of quantum confinement in CsPbBr3 perovskite nanocrystals,” Chem. Mater. 29, 3644–3652 (2017).
[Crossref]

Veldhuis, S. A.

W. Chen, S. Bhaumik, S. A. Veldhuis, G. Xing, Q. Xu, M. Gratzel, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Giant five-photon absorption from multidimensional core-shell halide perovskite colloidal nanocrystals,” Nat. Commun. 8, 15198 (2017).
[Crossref]

Vijayan, C.

P. A. Kurian, C. Vijayan, C. S. Suchand Sandeep, R. Philip, and K. Sathiyamoorthy, “Two-photon-assisted excited state absorption in nanocomposite films of PbS stabilized in a synthetic glue matrix,” Nanotechnology 18, 075708 (2007).
[Crossref]

Voznyy, O.

J. A. Castaneda, G. Nagamine, E. Yassitepe, L. G. Bonato, O. Voznyy, S. Hoogland, A. F. Nogueira, E. H. Sargent, C. H. Cruz, and L. A. Padilha, “Efficient biexciton interaction in perovskite quantum dots under weak and strong confinement,” ACS Nano 10, 8603–8609 (2016).
[Crossref]

Walsh, A.

L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, “Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color Gamut,” Nano Lett. 15, 3692–3696 (2015).
[Crossref]

Wang, H. C.

H. C. Wang, Z. Bao, H. Y. Tsai, A. C. Tang, and R. S. Liu, “Perovskite quantum dots and their application in light-emitting diodes,” Small 14, 1702433 (2018).
[Crossref]

Wang, H.-T.

J. Wang, B. Gu, X.-W. Ni, and H.-T. Wang, “Z-scan theory with simultaneous two- and three-photon absorption saturation,” Opt. Laser Technol. 44, 390–393 (2012).
[Crossref]

B. Gu, Y.-X. Fan, J. Chen, H.-T. Wang, J. He, and W. Ji, “Z-scan theory of two-photon absorption saturation and experimental evidence,” J. Appl. Phys. 102, 083101 (2007).
[Crossref]

Wang, J.

Y. Ye, W. Zhang, Z. Zhao, J. Wang, C. Liu, Z. Deng, X. Zhao, and J. Han, “Highly luminescent cesium lead halide perovskite nanocrystals stabilized in glasses for light-emitting applications,” Adv. Opt. Mater. 7, 1801663 (2019).
[Crossref]

B. Ai, C. Liu, J. Wang, J. Xie, J. Han, X. Zhao, and J. Heo, “Precipitation and optical properties of CsPbBr3 quantum dots in phosphate glasses,” J. Am. Ceram. Soc. 99, 2875–2877 (2016).
[Crossref]

N. D. S. Zhang, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9, 7142–7150 (2015).
[Crossref]

J. Wang, B. Gu, X.-W. Ni, and H.-T. Wang, “Z-scan theory with simultaneous two- and three-photon absorption saturation,” Opt. Laser Technol. 44, 390–393 (2012).
[Crossref]

Wang, K.

J. Li, Q. Jing, S. Xiao, Y. Gao, Y. Wang, W. Zhang, X. W. Sun, K. Wang, and T. He, “Spectral dynamics and multiphoton absorption properties of all-inorganic perovskite nanorods,” J. Phys. Chem. Lett. 11, 4817–4825 (2020).
[Crossref]

Wang, L.

F. Zhang, Z. Shi, S. Li, Z. Ma, Y. Li, L. Wang, D. Wu, Y. Tian, G. Du, X. Li, and C. Shan, “Synergetic effect of the surfactant and silica coating on the enhanced emission and stability of perovskite quantum dots for anticounterfeiting,” ACS Appl. Mater. Interfaces 11, 28013–28022 (2019).
[Crossref]

Wang, R.

Y. Xu, Q. Chen, C. Zhang, R. Wang, H. Wu, X. Zhang, G. Xing, W. W. Yu, X. Wang, Y. Zhang, and M. Xiao, “Two-photon-pumped perovskite semiconductor nanocrystal lasers,” J. Am. Chem. Soc. 138, 3761–3768 (2016).
[Crossref]

Wang, S. W.

L. Y. Bai, S. W. Wang, Y. W. Zhang, K. X. Zhang, and L. X. Yi, “Influence of annealing process on the stable luminous CsPbCl3 perovskite films by thermal evaporation,” J. Lumin. 227, 117592 (2020).
[Crossref]

Wang, X.

Y. Xu, Q. Chen, C. Zhang, R. Wang, H. Wu, X. Zhang, G. Xing, W. W. Yu, X. Wang, Y. Zhang, and M. Xiao, “Two-photon-pumped perovskite semiconductor nanocrystal lasers,” J. Am. Chem. Soc. 138, 3761–3768 (2016).
[Crossref]

C. Sun, Y. Zhang, C. Ruan, C. Yin, X. Wang, Y. Wang, and W. W. Yu, “Efficient and stable white LEDs with silica-coated inorganic perovskite quantum dots,” Adv. Mater. 28, 10088–10094 (2016).
[Crossref]

Wang, Y.

J. Li, Q. Jing, S. Xiao, Y. Gao, Y. Wang, W. Zhang, X. W. Sun, K. Wang, and T. He, “Spectral dynamics and multiphoton absorption properties of all-inorganic perovskite nanorods,” J. Phys. Chem. Lett. 11, 4817–4825 (2020).
[Crossref]

L. Wu, Y. Dong, J. Zhao, D. Ma, W. Huang, Y. Zhang, Y. Wang, X. Jiang, Y. Xiang, J. Li, Y. Feng, J. Xu, and H. Zhang, “Kerr nonlinearity in 2D graphdiyne for passive photonic diodes,” Adv. Mater. 31, 1807981 (2019).
[Crossref]

Y. Wang, X. Li, X. Zhao, L. Xiao, H. Zeng, and H. Sun, “Nonlinear absorption and low-threshold multiphoton pumped stimulated emission from all-inorganic perovskite nanocrystals,” Nano Lett. 16, 448–453 (2016).
[Crossref]

C. Sun, Y. Zhang, C. Ruan, C. Yin, X. Wang, Y. Wang, and W. W. Yu, “Efficient and stable white LEDs with silica-coated inorganic perovskite quantum dots,” Adv. Mater. 28, 10088–10094 (2016).
[Crossref]

Watt, A. A. R.

G. Nagamine, J. O. Rocha, L. G. Bonato, A. F. Nogueira, Z. Zaharieva, A. A. R. Watt, C. H. de Brito Cruz, and L. A. Padilha, “Two-photon absorption and two-photon-induced gain in perovskite quantum dots,” J. Phys. Chem. Lett. 9, 3478–3484 (2018).
[Crossref]

Wen, Q.

X. Jiang, L. Zhang, S. Liu, Y. Zhang, Z. He, W. Li, F. Zhang, Y. Shi, W. Lü, Y. Li, Q. Wen, J. Li, J. Feng, S. Ruan, Y.-J. Zeng, X. Zhu, Y. Lu, and H. Zhang, “Ultrathin metal-organic framework: an emerging broadband nonlinear optical material for ultrafast photonics,” Adv. Opt. Mater. 6, 1800561 (2018).
[Crossref]

Wen, X.

J. Yang, X. Wen, H. Xia, R. Sheng, Q. Ma, J. Kim, P. Tapping, T. Harada, T. W. Kee, F. Huang, Y. B. Cheng, M. Green, A. Ho-Baillie, S. Huang, S. Shrestha, R. Patterson, and G. Conibeer, “Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites,” Nat. Commun. 8, 14120 (2017).
[Crossref]

Winters, S.

N. D. S. Zhang, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9, 7142–7150 (2015).
[Crossref]

Wolf, C.

H. Cho, S.-H. Jeong, M.-H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, and T.-W. Lee, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350, 1222–1225 (2015).
[Crossref]

Wu, D.

F. Zhang, Z. Shi, S. Li, Z. Ma, Y. Li, L. Wang, D. Wu, Y. Tian, G. Du, X. Li, and C. Shan, “Synergetic effect of the surfactant and silica coating on the enhanced emission and stability of perovskite quantum dots for anticounterfeiting,” ACS Appl. Mater. Interfaces 11, 28013–28022 (2019).
[Crossref]

F. Zhang, Z. F. Shi, Z. Z. Ma, Y. Li, S. Li, D. Wu, T. T. Xu, X. J. Li, C. X. Shan, and G. T. Du, “Silica coating enhances the stability of inorganic perovskite nanocrystals for efficient and stable down-conversion in white light-emitting devices,” Nanoscale 10, 20131–20139 (2018).
[Crossref]

Wu, H.

Y. Xu, Q. Chen, C. Zhang, R. Wang, H. Wu, X. Zhang, G. Xing, W. W. Yu, X. Wang, Y. Zhang, and M. Xiao, “Two-photon-pumped perovskite semiconductor nanocrystal lasers,” J. Am. Chem. Soc. 138, 3761–3768 (2016).
[Crossref]

Wu, L.

L. Wu, Y. Dong, J. Zhao, D. Ma, W. Huang, Y. Zhang, Y. Wang, X. Jiang, Y. Xiang, J. Li, Y. Feng, J. Xu, and H. Zhang, “Kerr nonlinearity in 2D graphdiyne for passive photonic diodes,” Adv. Mater. 31, 1807981 (2019).
[Crossref]

Wu, W.

Q. Han, W. Wu, W. Liu, Q. Yang, and Y. Yang, “Two-photon absorption and upconversion luminescence of colloidal CsPbX3 quantum dots,” Opt. Mater. 75, 880–886 (2018).
[Crossref]

Xia, H.

J. Yang, X. Wen, H. Xia, R. Sheng, Q. Ma, J. Kim, P. Tapping, T. Harada, T. W. Kee, F. Huang, Y. B. Cheng, M. Green, A. Ho-Baillie, S. Huang, S. Shrestha, R. Patterson, and G. Conibeer, “Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites,” Nat. Commun. 8, 14120 (2017).
[Crossref]

Xia, M.

M. Xia, J. Luo, C. Chen, H. Liu, and J. Tang, “Semiconductor quantum dots-embedded inorganic glasses: fabrication, luminescent properties, and potential applications,” Adv. Opt. Mater. 7, 1900851 (2019).
[Crossref]

Xiang, W.

M. Jin, S. Huang, C. Quan, X. Liang, J. Du, Z. Liu, Z. Zhang, and W. Xiang, “Blue low-threshold room-temperature stimulated emission from thermostable perovskite nanocrystals glasses through controlling crystallization,” J. Eur. Ceram. Soc 41, 1579–1585 (2021).
[Crossref]

Xiang, Y.

L. Wu, Y. Dong, J. Zhao, D. Ma, W. Huang, Y. Zhang, Y. Wang, X. Jiang, Y. Xiang, J. Li, Y. Feng, J. Xu, and H. Zhang, “Kerr nonlinearity in 2D graphdiyne for passive photonic diodes,” Adv. Mater. 31, 1807981 (2019).
[Crossref]

Xiao, L.

Y. Wang, X. Li, X. Zhao, L. Xiao, H. Zeng, and H. Sun, “Nonlinear absorption and low-threshold multiphoton pumped stimulated emission from all-inorganic perovskite nanocrystals,” Nano Lett. 16, 448–453 (2016).
[Crossref]

Xiao, M.

Y. Xu, Q. Chen, C. Zhang, R. Wang, H. Wu, X. Zhang, G. Xing, W. W. Yu, X. Wang, Y. Zhang, and M. Xiao, “Two-photon-pumped perovskite semiconductor nanocrystal lasers,” J. Am. Chem. Soc. 138, 3761–3768 (2016).
[Crossref]

Xiao, S.

J. Li, Q. Jing, S. Xiao, Y. Gao, Y. Wang, W. Zhang, X. W. Sun, K. Wang, and T. He, “Spectral dynamics and multiphoton absorption properties of all-inorganic perovskite nanorods,” J. Phys. Chem. Lett. 11, 4817–4825 (2020).
[Crossref]

J. Li, F. Zhao, S. Xiao, J. Cheng, X. Qiu, X. Lin, R. Chen, and T. He, “Giant two- to five-photon absorption in CsPbBr2.7I0.3 two-dimensional nanoplatelets,” Opt. Lett. 44, 3873–3876 (2019).
[Crossref]

Xie, J.

B. Ai, C. Liu, J. Wang, J. Xie, J. Han, X. Zhao, and J. Heo, “Precipitation and optical properties of CsPbBr3 quantum dots in phosphate glasses,” J. Am. Ceram. Soc. 99, 2875–2877 (2016).
[Crossref]

Xie, L.

X. Pang, H. Zhang, L. Xie, T. Xuan, Y. Sun, S. Si, B. Jiang, W. Chen, J. Zhuang, C. Hu, Y. Liu, B. Lei, and X. Zhang, “Precipitating CsPbBr3 quantum dots in boro-germanate glass with a dense structure and inert environment toward highly stable and efficient narrow-band green emitters for wide-color-gamut liquid crystal displays,” J. Mater. Chem. C 7, 13139–13148 (2019).
[Crossref]

Xing, G.

W. Chen, S. Bhaumik, S. A. Veldhuis, G. Xing, Q. Xu, M. Gratzel, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Giant five-photon absorption from multidimensional core-shell halide perovskite colloidal nanocrystals,” Nat. Commun. 8, 15198 (2017).
[Crossref]

Y. Xu, Q. Chen, C. Zhang, R. Wang, H. Wu, X. Zhang, G. Xing, W. W. Yu, X. Wang, Y. Zhang, and M. Xiao, “Two-photon-pumped perovskite semiconductor nanocrystal lasers,” J. Am. Chem. Soc. 138, 3761–3768 (2016).
[Crossref]

Xiong, Q.

X. Qi, Y. Zhang, Q. Ou, S. T. Ha, C. W. Qiu, H. Zhang, Y. B. Cheng, Q. Xiong, and Q. Bao, “Photonics and optoelectronics of 2D metal-halide perovskites,” Small 14, 1800682 (2018).
[Crossref]

Xu, F.

T. Zhang, M. I. Dar, G. Li, F. Xu, N. Guo, M. Grätzel, and Y. Zhao, “Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells,” Sci. Adv. 3, e1700841 (2017).
[Crossref]

Xu, J.

L. Wu, Y. Dong, J. Zhao, D. Ma, W. Huang, Y. Zhang, Y. Wang, X. Jiang, Y. Xiang, J. Li, Y. Feng, J. Xu, and H. Zhang, “Kerr nonlinearity in 2D graphdiyne for passive photonic diodes,” Adv. Mater. 31, 1807981 (2019).
[Crossref]

G. Tong, H. Li, Z. Zhu, Y. Zhang, L. Yu, J. Xu, and Y. Jiang, “Enhancing hybrid perovskite detectability in the deep ultraviolet region with down-conversion dual-phase (CsPbBr3-Cs4PbBr6) films,” J. Phys. Chem. Lett. 9, 1592–1599 (2018).
[Crossref]

Xu, Q.

W. Chen, S. Bhaumik, S. A. Veldhuis, G. Xing, Q. Xu, M. Gratzel, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Giant five-photon absorption from multidimensional core-shell halide perovskite colloidal nanocrystals,” Nat. Commun. 8, 15198 (2017).
[Crossref]

Xu, T. T.

F. Zhang, Z. F. Shi, Z. Z. Ma, Y. Li, S. Li, D. Wu, T. T. Xu, X. J. Li, C. X. Shan, and G. T. Du, “Silica coating enhances the stability of inorganic perovskite nanocrystals for efficient and stable down-conversion in white light-emitting devices,” Nanoscale 10, 20131–20139 (2018).
[Crossref]

Xu, X.

S. Yuan, D. Chen, X. Li, J. Zhong, and X. Xu, “In situ crystallization synthesis of CsPbBr3 perovskite quantum dot-embedded glasses with improved stability for solid-state lighting and random upconverted lasing,” ACS Appl. Mater. Interfaces 10, 18918–18926 (2018).
[Crossref]

C. Quan, M. He, C. He, Y. Huang, L. Zhu, Z. Yao, X. Xu, C. Lu, and X. Xu, “Transition from saturable absorption to reverse saturable absorption in MoTe2 nano-films with thickness and pump intensity,” Appl. Surf. Sci. 457, 115–120 (2018).
[Crossref]

C. Quan, M. He, C. He, Y. Huang, L. Zhu, Z. Yao, X. Xu, C. Lu, and X. Xu, “Transition from saturable absorption to reverse saturable absorption in MoTe2 nano-films with thickness and pump intensity,” Appl. Surf. Sci. 457, 115–120 (2018).
[Crossref]

Xu, Y.

Y. Xu, Q. Chen, C. Zhang, R. Wang, H. Wu, X. Zhang, G. Xing, W. W. Yu, X. Wang, Y. Zhang, and M. Xiao, “Two-photon-pumped perovskite semiconductor nanocrystal lasers,” J. Am. Chem. Soc. 138, 3761–3768 (2016).
[Crossref]

Xuan, T.

X. Pang, H. Zhang, L. Xie, T. Xuan, Y. Sun, S. Si, B. Jiang, W. Chen, J. Zhuang, C. Hu, Y. Liu, B. Lei, and X. Zhang, “Precipitating CsPbBr3 quantum dots in boro-germanate glass with a dense structure and inert environment toward highly stable and efficient narrow-band green emitters for wide-color-gamut liquid crystal displays,” J. Mater. Chem. C 7, 13139–13148 (2019).
[Crossref]

Yadav, S.

V. K. Ravi, S. Saikia, S. Yadav, V. V. Nawale, and A. Nag, “CsPbBr3/ZnS core/shell type nanocrystals for enhancing luminescence lifetime and water stability,” ACS Energy Lett. 5, 1794–1796 (2020).
[Crossref]

Yakunin, S.

D. N. Dirin, L. Protesescu, D. Trummer, I. V. Kochetygov, S. Yakunin, F. Krumeich, N. P. Stadie, and M. V. Kovalenko, “Harnessing defect-tolerance at the nanoscale: highly luminescent lead halide perovskite nanocrystals in mesoporous silica matrixes,” Nano Lett. 16, 5866–5874 (2016).
[Crossref]

L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, “Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color Gamut,” Nano Lett. 15, 3692–3696 (2015).
[Crossref]

G. Nedelcu, L. Protesescu, S. Yakunin, M. I. Bodnarchuk, M. J. Grotevent, and M. V. Kovalenko, “Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I),” Nano Lett. 15, 5635–5640 (2015).
[Crossref]

Yang, J.

J. Yang, X. Wen, H. Xia, R. Sheng, Q. Ma, J. Kim, P. Tapping, T. Harada, T. W. Kee, F. Huang, Y. B. Cheng, M. Green, A. Ho-Baillie, S. Huang, S. Shrestha, R. Patterson, and G. Conibeer, “Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites,” Nat. Commun. 8, 14120 (2017).
[Crossref]

Yang, K. S.

T.-H. Le, S. Lee, E. Heo, U. Lee, H. Lee, H. Jo, K. S. Yang, M. Chang, and H. Yoon, “Controlled anisotropic growth of layered perovskite nanocrystals for enhanced optoelectronic properties,” Chem. Eng. J. 416, 128045 (2021).
[Crossref]

Yang, Q.

Q. Han, W. Wu, W. Liu, Q. Yang, and Y. Yang, “Two-photon absorption and upconversion luminescence of colloidal CsPbX3 quantum dots,” Opt. Mater. 75, 880–886 (2018).
[Crossref]

Yang, R. X.

L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, “Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color Gamut,” Nano Lett. 15, 3692–3696 (2015).
[Crossref]

Yang, Y.

Q. Han, W. Wu, W. Liu, Q. Yang, and Y. Yang, “Two-photon absorption and upconversion luminescence of colloidal CsPbX3 quantum dots,” Opt. Mater. 75, 880–886 (2018).
[Crossref]

Yantara, N.

M. Li, S. Bhaumik, T. W. Goh, M. S. Kumar, N. Yantara, M. Gratzel, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Slow cooling and highly efficient extraction of hot carriers in colloidal perovskite nanocrystals,” Nat. Commun. 8, 14350 (2017).
[Crossref]

Yao, Z.

C. Quan, M. He, C. He, Y. Huang, L. Zhu, Z. Yao, X. Xu, C. Lu, and X. Xu, “Transition from saturable absorption to reverse saturable absorption in MoTe2 nano-films with thickness and pump intensity,” Appl. Surf. Sci. 457, 115–120 (2018).
[Crossref]

Yassitepe, E.

J. A. Castaneda, G. Nagamine, E. Yassitepe, L. G. Bonato, O. Voznyy, S. Hoogland, A. F. Nogueira, E. H. Sargent, C. H. Cruz, and L. A. Padilha, “Efficient biexciton interaction in perovskite quantum dots under weak and strong confinement,” ACS Nano 10, 8603–8609 (2016).
[Crossref]

Yazyev, O. V.

B. Nafradi, P. Szirmai, M. Spina, H. Lee, O. V. Yazyev, A. Arakcheeva, D. Chernyshov, M. Gibert, L. Forro, and E. Horvath, “Optically switched magnetism in photovoltaic perovskite CH3NH3(Mn:Pb)I3,” Nat. Commun. 7, 13406 (2016).
[Crossref]

Ye, Y.

Y. Hu, W. Zhang, Y. Ye, Z. Zhao, and C. Liu, “Femtosecond-laser-induced precipitation of CsPbBr3 perovskite nanocrystals in glasses for solar spectral conversion,” ACS Appl. Nano Mater. 3, 850–857 (2019).
[Crossref]

Y. Ye, W. Zhang, Z. Zhao, J. Wang, C. Liu, Z. Deng, X. Zhao, and J. Han, “Highly luminescent cesium lead halide perovskite nanocrystals stabilized in glasses for light-emitting applications,” Adv. Opt. Mater. 7, 1801663 (2019).
[Crossref]

Yi, L. X.

L. Y. Bai, S. W. Wang, Y. W. Zhang, K. X. Zhang, and L. X. Yi, “Influence of annealing process on the stable luminous CsPbCl3 perovskite films by thermal evaporation,” J. Lumin. 227, 117592 (2020).
[Crossref]

Yim, C.

N. D. S. Zhang, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9, 7142–7150 (2015).
[Crossref]

Yin, C.

J. Z. Li, C. Ren, X. Qiu, X. D. Lin, R. Chen, C. Yin, and T. C. He, “Ultrafast optical nonlinearity of blue-emitting perovskite nanocrystals,” Photon. Res. 6, 554–559 (2018).
[Crossref]

C. Sun, Y. Zhang, C. Ruan, C. Yin, X. Wang, Y. Wang, and W. W. Yu, “Efficient and stable white LEDs with silica-coated inorganic perovskite quantum dots,” Adv. Mater. 28, 10088–10094 (2016).
[Crossref]

Yoo, S.

H. Cho, S.-H. Jeong, M.-H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, and T.-W. Lee, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350, 1222–1225 (2015).
[Crossref]

Yoon, H.

T.-H. Le, S. Lee, E. Heo, U. Lee, H. Lee, H. Jo, K. S. Yang, M. Chang, and H. Yoon, “Controlled anisotropic growth of layered perovskite nanocrystals for enhanced optoelectronic properties,” Chem. Eng. J. 416, 128045 (2021).
[Crossref]

Yu, L.

G. Tong, H. Li, Z. Zhu, Y. Zhang, L. Yu, J. Xu, and Y. Jiang, “Enhancing hybrid perovskite detectability in the deep ultraviolet region with down-conversion dual-phase (CsPbBr3-Cs4PbBr6) films,” J. Phys. Chem. Lett. 9, 1592–1599 (2018).
[Crossref]

Yu, W. W.

C. Sun, Y. Zhang, C. Ruan, C. Yin, X. Wang, Y. Wang, and W. W. Yu, “Efficient and stable white LEDs with silica-coated inorganic perovskite quantum dots,” Adv. Mater. 28, 10088–10094 (2016).
[Crossref]

Y. Xu, Q. Chen, C. Zhang, R. Wang, H. Wu, X. Zhang, G. Xing, W. W. Yu, X. Wang, Y. Zhang, and M. Xiao, “Two-photon-pumped perovskite semiconductor nanocrystal lasers,” J. Am. Chem. Soc. 138, 3761–3768 (2016).
[Crossref]

Yuan, S.

S. Yuan, D. Chen, X. Li, J. Zhong, and X. Xu, “In situ crystallization synthesis of CsPbBr3 perovskite quantum dot-embedded glasses with improved stability for solid-state lighting and random upconverted lasing,” ACS Appl. Mater. Interfaces 10, 18918–18926 (2018).
[Crossref]

Zaharieva, Z.

G. Nagamine, J. O. Rocha, L. G. Bonato, A. F. Nogueira, Z. Zaharieva, A. A. R. Watt, C. H. de Brito Cruz, and L. A. Padilha, “Two-photon absorption and two-photon-induced gain in perovskite quantum dots,” J. Phys. Chem. Lett. 9, 3478–3484 (2018).
[Crossref]

Zeng, H.

Y. Wang, X. Li, X. Zhao, L. Xiao, H. Zeng, and H. Sun, “Nonlinear absorption and low-threshold multiphoton pumped stimulated emission from all-inorganic perovskite nanocrystals,” Nano Lett. 16, 448–453 (2016).
[Crossref]

Zeng, Y.-J.

X. Jiang, L. Zhang, S. Liu, Y. Zhang, Z. He, W. Li, F. Zhang, Y. Shi, W. Lü, Y. Li, Q. Wen, J. Li, J. Feng, S. Ruan, Y.-J. Zeng, X. Zhu, Y. Lu, and H. Zhang, “Ultrathin metal-organic framework: an emerging broadband nonlinear optical material for ultrafast photonics,” Adv. Opt. Mater. 6, 1800561 (2018).
[Crossref]

Zhang, C.

Y. Xu, Q. Chen, C. Zhang, R. Wang, H. Wu, X. Zhang, G. Xing, W. W. Yu, X. Wang, Y. Zhang, and M. Xiao, “Two-photon-pumped perovskite semiconductor nanocrystal lasers,” J. Am. Chem. Soc. 138, 3761–3768 (2016).
[Crossref]

Zhang, F.

F. Zhang, Z. Shi, S. Li, Z. Ma, Y. Li, L. Wang, D. Wu, Y. Tian, G. Du, X. Li, and C. Shan, “Synergetic effect of the surfactant and silica coating on the enhanced emission and stability of perovskite quantum dots for anticounterfeiting,” ACS Appl. Mater. Interfaces 11, 28013–28022 (2019).
[Crossref]

F. Zhang, Z. F. Shi, Z. Z. Ma, Y. Li, S. Li, D. Wu, T. T. Xu, X. J. Li, C. X. Shan, and G. T. Du, “Silica coating enhances the stability of inorganic perovskite nanocrystals for efficient and stable down-conversion in white light-emitting devices,” Nanoscale 10, 20131–20139 (2018).
[Crossref]

X. Jiang, L. Zhang, S. Liu, Y. Zhang, Z. He, W. Li, F. Zhang, Y. Shi, W. Lü, Y. Li, Q. Wen, J. Li, J. Feng, S. Ruan, Y.-J. Zeng, X. Zhu, Y. Lu, and H. Zhang, “Ultrathin metal-organic framework: an emerging broadband nonlinear optical material for ultrafast photonics,” Adv. Opt. Mater. 6, 1800561 (2018).
[Crossref]

Zhang, H.

L. Wu, Y. Dong, J. Zhao, D. Ma, W. Huang, Y. Zhang, Y. Wang, X. Jiang, Y. Xiang, J. Li, Y. Feng, J. Xu, and H. Zhang, “Kerr nonlinearity in 2D graphdiyne for passive photonic diodes,” Adv. Mater. 31, 1807981 (2019).
[Crossref]

X. Pang, H. Zhang, L. Xie, T. Xuan, Y. Sun, S. Si, B. Jiang, W. Chen, J. Zhuang, C. Hu, Y. Liu, B. Lei, and X. Zhang, “Precipitating CsPbBr3 quantum dots in boro-germanate glass with a dense structure and inert environment toward highly stable and efficient narrow-band green emitters for wide-color-gamut liquid crystal displays,” J. Mater. Chem. C 7, 13139–13148 (2019).
[Crossref]

J. He, L. Tao, H. Zhang, B. Zhou, and J. Li, “Emerging 2D materials beyond graphene for ultrashort pulse generation in fiber lasers,” Nanoscale 11, 2577–2593 (2019).
[Crossref]

X. Qi, Y. Zhang, Q. Ou, S. T. Ha, C. W. Qiu, H. Zhang, Y. B. Cheng, Q. Xiong, and Q. Bao, “Photonics and optoelectronics of 2D metal-halide perovskites,” Small 14, 1800682 (2018).
[Crossref]

X. Jiang, L. Zhang, S. Liu, Y. Zhang, Z. He, W. Li, F. Zhang, Y. Shi, W. Lü, Y. Li, Q. Wen, J. Li, J. Feng, S. Ruan, Y.-J. Zeng, X. Zhu, Y. Lu, and H. Zhang, “Ultrathin metal-organic framework: an emerging broadband nonlinear optical material for ultrafast photonics,” Adv. Opt. Mater. 6, 1800561 (2018).
[Crossref]

Zhang, K. X.

L. Y. Bai, S. W. Wang, Y. W. Zhang, K. X. Zhang, and L. X. Yi, “Influence of annealing process on the stable luminous CsPbCl3 perovskite films by thermal evaporation,” J. Lumin. 227, 117592 (2020).
[Crossref]

Zhang, L.

X. Jiang, L. Zhang, S. Liu, Y. Zhang, Z. He, W. Li, F. Zhang, Y. Shi, W. Lü, Y. Li, Q. Wen, J. Li, J. Feng, S. Ruan, Y.-J. Zeng, X. Zhu, Y. Lu, and H. Zhang, “Ultrathin metal-organic framework: an emerging broadband nonlinear optical material for ultrafast photonics,” Adv. Opt. Mater. 6, 1800561 (2018).
[Crossref]

Zhang, N. D. S.

N. D. S. Zhang, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9, 7142–7150 (2015).
[Crossref]

Zhang, T.

T. Zhang, M. I. Dar, G. Li, F. Xu, N. Guo, M. Grätzel, and Y. Zhao, “Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells,” Sci. Adv. 3, e1700841 (2017).
[Crossref]

Zhang, W.

J. Li, Q. Jing, S. Xiao, Y. Gao, Y. Wang, W. Zhang, X. W. Sun, K. Wang, and T. He, “Spectral dynamics and multiphoton absorption properties of all-inorganic perovskite nanorods,” J. Phys. Chem. Lett. 11, 4817–4825 (2020).
[Crossref]

Y. Hu, W. Zhang, Y. Ye, Z. Zhao, and C. Liu, “Femtosecond-laser-induced precipitation of CsPbBr3 perovskite nanocrystals in glasses for solar spectral conversion,” ACS Appl. Nano Mater. 3, 850–857 (2019).
[Crossref]

Y. Ye, W. Zhang, Z. Zhao, J. Wang, C. Liu, Z. Deng, X. Zhao, and J. Han, “Highly luminescent cesium lead halide perovskite nanocrystals stabilized in glasses for light-emitting applications,” Adv. Opt. Mater. 7, 1801663 (2019).
[Crossref]

Zhang, X.

X. Pang, H. Zhang, L. Xie, T. Xuan, Y. Sun, S. Si, B. Jiang, W. Chen, J. Zhuang, C. Hu, Y. Liu, B. Lei, and X. Zhang, “Precipitating CsPbBr3 quantum dots in boro-germanate glass with a dense structure and inert environment toward highly stable and efficient narrow-band green emitters for wide-color-gamut liquid crystal displays,” J. Mater. Chem. C 7, 13139–13148 (2019).
[Crossref]

Y. Xu, Q. Chen, C. Zhang, R. Wang, H. Wu, X. Zhang, G. Xing, W. W. Yu, X. Wang, Y. Zhang, and M. Xiao, “Two-photon-pumped perovskite semiconductor nanocrystal lasers,” J. Am. Chem. Soc. 138, 3761–3768 (2016).
[Crossref]

N. D. S. Zhang, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9, 7142–7150 (2015).
[Crossref]

Zhang, Y.

L. Wu, Y. Dong, J. Zhao, D. Ma, W. Huang, Y. Zhang, Y. Wang, X. Jiang, Y. Xiang, J. Li, Y. Feng, J. Xu, and H. Zhang, “Kerr nonlinearity in 2D graphdiyne for passive photonic diodes,” Adv. Mater. 31, 1807981 (2019).
[Crossref]

X. Jiang, L. Zhang, S. Liu, Y. Zhang, Z. He, W. Li, F. Zhang, Y. Shi, W. Lü, Y. Li, Q. Wen, J. Li, J. Feng, S. Ruan, Y.-J. Zeng, X. Zhu, Y. Lu, and H. Zhang, “Ultrathin metal-organic framework: an emerging broadband nonlinear optical material for ultrafast photonics,” Adv. Opt. Mater. 6, 1800561 (2018).
[Crossref]

G. Tong, H. Li, Z. Zhu, Y. Zhang, L. Yu, J. Xu, and Y. Jiang, “Enhancing hybrid perovskite detectability in the deep ultraviolet region with down-conversion dual-phase (CsPbBr3-Cs4PbBr6) films,” J. Phys. Chem. Lett. 9, 1592–1599 (2018).
[Crossref]

X. Qi, Y. Zhang, Q. Ou, S. T. Ha, C. W. Qiu, H. Zhang, Y. B. Cheng, Q. Xiong, and Q. Bao, “Photonics and optoelectronics of 2D metal-halide perovskites,” Small 14, 1800682 (2018).
[Crossref]

C. Sun, Y. Zhang, C. Ruan, C. Yin, X. Wang, Y. Wang, and W. W. Yu, “Efficient and stable white LEDs with silica-coated inorganic perovskite quantum dots,” Adv. Mater. 28, 10088–10094 (2016).
[Crossref]

Y. Xu, Q. Chen, C. Zhang, R. Wang, H. Wu, X. Zhang, G. Xing, W. W. Yu, X. Wang, Y. Zhang, and M. Xiao, “Two-photon-pumped perovskite semiconductor nanocrystal lasers,” J. Am. Chem. Soc. 138, 3761–3768 (2016).
[Crossref]

Zhang, Y. W.

L. Y. Bai, S. W. Wang, Y. W. Zhang, K. X. Zhang, and L. X. Yi, “Influence of annealing process on the stable luminous CsPbCl3 perovskite films by thermal evaporation,” J. Lumin. 227, 117592 (2020).
[Crossref]

Zhang, Z.

M. Jin, S. Huang, C. Quan, X. Liang, J. Du, Z. Liu, Z. Zhang, and W. Xiang, “Blue low-threshold room-temperature stimulated emission from thermostable perovskite nanocrystals glasses through controlling crystallization,” J. Eur. Ceram. Soc 41, 1579–1585 (2021).
[Crossref]

Zhao, F.

Zhao, J.

L. Wu, Y. Dong, J. Zhao, D. Ma, W. Huang, Y. Zhang, Y. Wang, X. Jiang, Y. Xiang, J. Li, Y. Feng, J. Xu, and H. Zhang, “Kerr nonlinearity in 2D graphdiyne for passive photonic diodes,” Adv. Mater. 31, 1807981 (2019).
[Crossref]

Zhao, X.

Y. Ye, W. Zhang, Z. Zhao, J. Wang, C. Liu, Z. Deng, X. Zhao, and J. Han, “Highly luminescent cesium lead halide perovskite nanocrystals stabilized in glasses for light-emitting applications,” Adv. Opt. Mater. 7, 1801663 (2019).
[Crossref]

B. Ai, C. Liu, J. Wang, J. Xie, J. Han, X. Zhao, and J. Heo, “Precipitation and optical properties of CsPbBr3 quantum dots in phosphate glasses,” J. Am. Ceram. Soc. 99, 2875–2877 (2016).
[Crossref]

Y. Wang, X. Li, X. Zhao, L. Xiao, H. Zeng, and H. Sun, “Nonlinear absorption and low-threshold multiphoton pumped stimulated emission from all-inorganic perovskite nanocrystals,” Nano Lett. 16, 448–453 (2016).
[Crossref]

Zhao, Y.

T. Zhang, M. I. Dar, G. Li, F. Xu, N. Guo, M. Grätzel, and Y. Zhao, “Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells,” Sci. Adv. 3, e1700841 (2017).
[Crossref]

Zhao, Z.

Y. Ye, W. Zhang, Z. Zhao, J. Wang, C. Liu, Z. Deng, X. Zhao, and J. Han, “Highly luminescent cesium lead halide perovskite nanocrystals stabilized in glasses for light-emitting applications,” Adv. Opt. Mater. 7, 1801663 (2019).
[Crossref]

Y. Hu, W. Zhang, Y. Ye, Z. Zhao, and C. Liu, “Femtosecond-laser-induced precipitation of CsPbBr3 perovskite nanocrystals in glasses for solar spectral conversion,” ACS Appl. Nano Mater. 3, 850–857 (2019).
[Crossref]

Zheng, K.

J. Chen, P. Chabera, T. Pascher, M. E. Messing, R. Schaller, S. Canton, K. Zheng, and T. Pullerits, “Enhanced size selection in two-photon excitation for CsPbBr3 perovskite nanocrystals,” J. Phys. Chem. Lett. 8, 5119–5124 (2017).
[Crossref]

J. Chen, K. Zidek, P. Chabera, D. Liu, P. Cheng, L. Nuuttila, M. J. Al-Marri, H. Lehtivuori, M. E. Messing, K. Han, K. Zheng, and T. Pullerits, “Size- and wavelength-dependent two-photon absorption cross-section of CsPbBr3 perovskite quantum dots,” J. Phys. Chem. Lett. 8, 2316–2321 (2017).
[Crossref]

Zhong, J.

S. Yuan, D. Chen, X. Li, J. Zhong, and X. Xu, “In situ crystallization synthesis of CsPbBr3 perovskite quantum dot-embedded glasses with improved stability for solid-state lighting and random upconverted lasing,” ACS Appl. Mater. Interfaces 10, 18918–18926 (2018).
[Crossref]

Zhou, B.

J. He, L. Tao, H. Zhang, B. Zhou, and J. Li, “Emerging 2D materials beyond graphene for ultrashort pulse generation in fiber lasers,” Nanoscale 11, 2577–2593 (2019).
[Crossref]

Zhu, L.

C. Quan, M. He, C. He, Y. Huang, L. Zhu, Z. Yao, X. Xu, C. Lu, and X. Xu, “Transition from saturable absorption to reverse saturable absorption in MoTe2 nano-films with thickness and pump intensity,” Appl. Surf. Sci. 457, 115–120 (2018).
[Crossref]

Zhu, X.

X. Jiang, L. Zhang, S. Liu, Y. Zhang, Z. He, W. Li, F. Zhang, Y. Shi, W. Lü, Y. Li, Q. Wen, J. Li, J. Feng, S. Ruan, Y.-J. Zeng, X. Zhu, Y. Lu, and H. Zhang, “Ultrathin metal-organic framework: an emerging broadband nonlinear optical material for ultrafast photonics,” Adv. Opt. Mater. 6, 1800561 (2018).
[Crossref]

Zhu, Z.

G. Tong, H. Li, Z. Zhu, Y. Zhang, L. Yu, J. Xu, and Y. Jiang, “Enhancing hybrid perovskite detectability in the deep ultraviolet region with down-conversion dual-phase (CsPbBr3-Cs4PbBr6) films,” J. Phys. Chem. Lett. 9, 1592–1599 (2018).
[Crossref]

Zhuang, J.

X. Pang, H. Zhang, L. Xie, T. Xuan, Y. Sun, S. Si, B. Jiang, W. Chen, J. Zhuang, C. Hu, Y. Liu, B. Lei, and X. Zhang, “Precipitating CsPbBr3 quantum dots in boro-germanate glass with a dense structure and inert environment toward highly stable and efficient narrow-band green emitters for wide-color-gamut liquid crystal displays,” J. Mater. Chem. C 7, 13139–13148 (2019).
[Crossref]

Zidek, K.

J. Chen, K. Zidek, P. Chabera, D. Liu, P. Cheng, L. Nuuttila, M. J. Al-Marri, H. Lehtivuori, M. E. Messing, K. Han, K. Zheng, and T. Pullerits, “Size- and wavelength-dependent two-photon absorption cross-section of CsPbBr3 perovskite quantum dots,” J. Phys. Chem. Lett. 8, 2316–2321 (2017).
[Crossref]

ACS Appl. Mater. Interfaces (2)

F. Zhang, Z. Shi, S. Li, Z. Ma, Y. Li, L. Wang, D. Wu, Y. Tian, G. Du, X. Li, and C. Shan, “Synergetic effect of the surfactant and silica coating on the enhanced emission and stability of perovskite quantum dots for anticounterfeiting,” ACS Appl. Mater. Interfaces 11, 28013–28022 (2019).
[Crossref]

S. Yuan, D. Chen, X. Li, J. Zhong, and X. Xu, “In situ crystallization synthesis of CsPbBr3 perovskite quantum dot-embedded glasses with improved stability for solid-state lighting and random upconverted lasing,” ACS Appl. Mater. Interfaces 10, 18918–18926 (2018).
[Crossref]

ACS Appl. Nano Mater. (1)

Y. Hu, W. Zhang, Y. Ye, Z. Zhao, and C. Liu, “Femtosecond-laser-induced precipitation of CsPbBr3 perovskite nanocrystals in glasses for solar spectral conversion,” ACS Appl. Nano Mater. 3, 850–857 (2019).
[Crossref]

ACS Energy Lett. (1)

V. K. Ravi, S. Saikia, S. Yadav, V. V. Nawale, and A. Nag, “CsPbBr3/ZnS core/shell type nanocrystals for enhancing luminescence lifetime and water stability,” ACS Energy Lett. 5, 1794–1796 (2020).
[Crossref]

ACS Nano (4)

J. A. Castaneda, G. Nagamine, E. Yassitepe, L. G. Bonato, O. Voznyy, S. Hoogland, A. F. Nogueira, E. H. Sargent, C. H. Cruz, and L. A. Padilha, “Efficient biexciton interaction in perovskite quantum dots under weak and strong confinement,” ACS Nano 10, 8603–8609 (2016).
[Crossref]

G. E. Eperon, S. N. Habisreutinger, T. Leijtens, B. J. Bruijnaers, J. J. Franeker, D. W. deQuilettes, S. Pathak, R. J. Sutton, G. Grancini, D. S. Ginger, R. A. J. Janssen, A. Petrozza, and H. J. Snaith, “The importance of moisture in hybrid lead halide perovskite thin film fabrication,” ACS Nano 9, 9380–9393 (2015).
[Crossref]

F. Palazon, Q. A. Akkerman, M. Prato, and L. Manna, “X-ray lithography on perovskite nanocrystals films: from patterning with anion-exchange reactions to enhanced stability in air and water,” ACS Nano 10, 1224–1230 (2016).
[Crossref]

N. D. S. Zhang, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, G. S. Duesberg, and J. Wang, “Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films,” ACS Nano 9, 7142–7150 (2015).
[Crossref]

Adv. Mater. (3)

L. Wu, Y. Dong, J. Zhao, D. Ma, W. Huang, Y. Zhang, Y. Wang, X. Jiang, Y. Xiang, J. Li, Y. Feng, J. Xu, and H. Zhang, “Kerr nonlinearity in 2D graphdiyne for passive photonic diodes,” Adv. Mater. 31, 1807981 (2019).
[Crossref]

C. Sun, Y. Zhang, C. Ruan, C. Yin, X. Wang, Y. Wang, and W. W. Yu, “Efficient and stable white LEDs with silica-coated inorganic perovskite quantum dots,” Adv. Mater. 28, 10088–10094 (2016).
[Crossref]

S. Chen and G. Shi, “Two-dimensional materials for halide perovskite-based optoelectronic devices,” Adv. Mater. 29, 1605448 (2017).
[Crossref]

Adv. Opt. Mater. (3)

M. Xia, J. Luo, C. Chen, H. Liu, and J. Tang, “Semiconductor quantum dots-embedded inorganic glasses: fabrication, luminescent properties, and potential applications,” Adv. Opt. Mater. 7, 1900851 (2019).
[Crossref]

Y. Ye, W. Zhang, Z. Zhao, J. Wang, C. Liu, Z. Deng, X. Zhao, and J. Han, “Highly luminescent cesium lead halide perovskite nanocrystals stabilized in glasses for light-emitting applications,” Adv. Opt. Mater. 7, 1801663 (2019).
[Crossref]

X. Jiang, L. Zhang, S. Liu, Y. Zhang, Z. He, W. Li, F. Zhang, Y. Shi, W. Lü, Y. Li, Q. Wen, J. Li, J. Feng, S. Ruan, Y.-J. Zeng, X. Zhu, Y. Lu, and H. Zhang, “Ultrathin metal-organic framework: an emerging broadband nonlinear optical material for ultrafast photonics,” Adv. Opt. Mater. 6, 1800561 (2018).
[Crossref]

Appl. Surf. Sci. (2)

D. Andres-Penares, J. Navarro-Arenas, R. I. Sánchez-Alarcón, R. Abargues, J. P. Martínez-Pastor, and J. F. Sánchez-Royo, “Enhanced optical response of InSe nanosheet devices decorated with CsPbX3 (X=I, Br) perovskite nanocrystals,” Appl. Surf. Sci. 536, 147939 (2021).
[Crossref]

C. Quan, M. He, C. He, Y. Huang, L. Zhu, Z. Yao, X. Xu, C. Lu, and X. Xu, “Transition from saturable absorption to reverse saturable absorption in MoTe2 nano-films with thickness and pump intensity,” Appl. Surf. Sci. 457, 115–120 (2018).
[Crossref]

Chem. Eng. J. (2)

E. Erol, O. Kıbrıslı, M. Ç. Ersundu, and A. E. Ersundu, “Size-controlled emission of long-time durable CsPbBr3 perovskite quantum dots embedded tellurite glass nanocomposites,” Chem. Eng. J. 401, 126053 (2020).
[Crossref]

T.-H. Le, S. Lee, E. Heo, U. Lee, H. Lee, H. Jo, K. S. Yang, M. Chang, and H. Yoon, “Controlled anisotropic growth of layered perovskite nanocrystals for enhanced optoelectronic properties,” Chem. Eng. J. 416, 128045 (2021).
[Crossref]

Chem. Mater. (1)

J. Butkus, P. Vashishtha, K. Chen, J. K. Gallaher, S. K. K. Prasad, D. Z. Metin, G. Laufersky, N. Gaston, J. E. Halpert, and J. M. Hodgkiss, “The evolution of quantum confinement in CsPbBr3 perovskite nanocrystals,” Chem. Mater. 29, 3644–3652 (2017).
[Crossref]

J. Am. Ceram. Soc. (1)

B. Ai, C. Liu, J. Wang, J. Xie, J. Han, X. Zhao, and J. Heo, “Precipitation and optical properties of CsPbBr3 quantum dots in phosphate glasses,” J. Am. Ceram. Soc. 99, 2875–2877 (2016).
[Crossref]

J. Am. Chem. Soc. (1)

Y. Xu, Q. Chen, C. Zhang, R. Wang, H. Wu, X. Zhang, G. Xing, W. W. Yu, X. Wang, Y. Zhang, and M. Xiao, “Two-photon-pumped perovskite semiconductor nanocrystal lasers,” J. Am. Chem. Soc. 138, 3761–3768 (2016).
[Crossref]

J. Appl. Phys. (1)

B. Gu, Y.-X. Fan, J. Chen, H.-T. Wang, J. He, and W. Ji, “Z-scan theory of two-photon absorption saturation and experimental evidence,” J. Appl. Phys. 102, 083101 (2007).
[Crossref]

J. Eur. Ceram. Soc (1)

M. Jin, S. Huang, C. Quan, X. Liang, J. Du, Z. Liu, Z. Zhang, and W. Xiang, “Blue low-threshold room-temperature stimulated emission from thermostable perovskite nanocrystals glasses through controlling crystallization,” J. Eur. Ceram. Soc 41, 1579–1585 (2021).
[Crossref]

J. Lumin. (1)

L. Y. Bai, S. W. Wang, Y. W. Zhang, K. X. Zhang, and L. X. Yi, “Influence of annealing process on the stable luminous CsPbCl3 perovskite films by thermal evaporation,” J. Lumin. 227, 117592 (2020).
[Crossref]

J. Mater. Chem. C (1)

X. Pang, H. Zhang, L. Xie, T. Xuan, Y. Sun, S. Si, B. Jiang, W. Chen, J. Zhuang, C. Hu, Y. Liu, B. Lei, and X. Zhang, “Precipitating CsPbBr3 quantum dots in boro-germanate glass with a dense structure and inert environment toward highly stable and efficient narrow-band green emitters for wide-color-gamut liquid crystal displays,” J. Mater. Chem. C 7, 13139–13148 (2019).
[Crossref]

J. Phys. Chem. C (1)

A. Pramanik, K. Gates, Y. Gao, S. Begum, and P. C. Ray, “Several orders-of-magnitude enhancement of multiphoton absorption property for CsPbX3 perovskite quantum dots by manipulating halide stoichiometry,” J. Phys. Chem. C 123, 5150–5156 (2019).
[Crossref]

J. Phys. Chem. Lett. (5)

J. Li, Q. Jing, S. Xiao, Y. Gao, Y. Wang, W. Zhang, X. W. Sun, K. Wang, and T. He, “Spectral dynamics and multiphoton absorption properties of all-inorganic perovskite nanorods,” J. Phys. Chem. Lett. 11, 4817–4825 (2020).
[Crossref]

J. Chen, P. Chabera, T. Pascher, M. E. Messing, R. Schaller, S. Canton, K. Zheng, and T. Pullerits, “Enhanced size selection in two-photon excitation for CsPbBr3 perovskite nanocrystals,” J. Phys. Chem. Lett. 8, 5119–5124 (2017).
[Crossref]

G. Nagamine, J. O. Rocha, L. G. Bonato, A. F. Nogueira, Z. Zaharieva, A. A. R. Watt, C. H. de Brito Cruz, and L. A. Padilha, “Two-photon absorption and two-photon-induced gain in perovskite quantum dots,” J. Phys. Chem. Lett. 9, 3478–3484 (2018).
[Crossref]

J. Chen, K. Zidek, P. Chabera, D. Liu, P. Cheng, L. Nuuttila, M. J. Al-Marri, H. Lehtivuori, M. E. Messing, K. Han, K. Zheng, and T. Pullerits, “Size- and wavelength-dependent two-photon absorption cross-section of CsPbBr3 perovskite quantum dots,” J. Phys. Chem. Lett. 8, 2316–2321 (2017).
[Crossref]

G. Tong, H. Li, Z. Zhu, Y. Zhang, L. Yu, J. Xu, and Y. Jiang, “Enhancing hybrid perovskite detectability in the deep ultraviolet region with down-conversion dual-phase (CsPbBr3-Cs4PbBr6) films,” J. Phys. Chem. Lett. 9, 1592–1599 (2018).
[Crossref]

Nano Lett. (4)

Y. Wang, X. Li, X. Zhao, L. Xiao, H. Zeng, and H. Sun, “Nonlinear absorption and low-threshold multiphoton pumped stimulated emission from all-inorganic perovskite nanocrystals,” Nano Lett. 16, 448–453 (2016).
[Crossref]

D. N. Dirin, L. Protesescu, D. Trummer, I. V. Kochetygov, S. Yakunin, F. Krumeich, N. P. Stadie, and M. V. Kovalenko, “Harnessing defect-tolerance at the nanoscale: highly luminescent lead halide perovskite nanocrystals in mesoporous silica matrixes,” Nano Lett. 16, 5866–5874 (2016).
[Crossref]

L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, “Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color Gamut,” Nano Lett. 15, 3692–3696 (2015).
[Crossref]

G. Nedelcu, L. Protesescu, S. Yakunin, M. I. Bodnarchuk, M. J. Grotevent, and M. V. Kovalenko, “Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I),” Nano Lett. 15, 5635–5640 (2015).
[Crossref]

Nanoscale (4)

J. He, L. Tao, H. Zhang, B. Zhou, and J. Li, “Emerging 2D materials beyond graphene for ultrashort pulse generation in fiber lasers,” Nanoscale 11, 2577–2593 (2019).
[Crossref]

W. J. Mir, A. Swarnkar, and A. Nag, “Postsynthesis Mn-doping in CsPbI3 nanocrystals to stabilize the black perovskite phase,” Nanoscale 11, 4278–4286 (2019).
[Crossref]

F. Zhang, Z. F. Shi, Z. Z. Ma, Y. Li, S. Li, D. Wu, T. T. Xu, X. J. Li, C. X. Shan, and G. T. Du, “Silica coating enhances the stability of inorganic perovskite nanocrystals for efficient and stable down-conversion in white light-emitting devices,” Nanoscale 10, 20131–20139 (2018).
[Crossref]

K. N. Krishnakanth, S. Seth, A. Samanta, and S. V. Rao, “Broadband ultrafast nonlinear optical studies revealing exciting multi-photon absorption coefficients in phase pure zero-dimensional Cs4PbBr6 perovskite films,” Nanoscale 11, 945–954 (2019).
[Crossref]

Nanotechnology (1)

P. A. Kurian, C. Vijayan, C. S. Suchand Sandeep, R. Philip, and K. Sathiyamoorthy, “Two-photon-assisted excited state absorption in nanocomposite films of PbS stabilized in a synthetic glue matrix,” Nanotechnology 18, 075708 (2007).
[Crossref]

Nat. Commun. (4)

B. Nafradi, P. Szirmai, M. Spina, H. Lee, O. V. Yazyev, A. Arakcheeva, D. Chernyshov, M. Gibert, L. Forro, and E. Horvath, “Optically switched magnetism in photovoltaic perovskite CH3NH3(Mn:Pb)I3,” Nat. Commun. 7, 13406 (2016).
[Crossref]

W. Chen, S. Bhaumik, S. A. Veldhuis, G. Xing, Q. Xu, M. Gratzel, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Giant five-photon absorption from multidimensional core-shell halide perovskite colloidal nanocrystals,” Nat. Commun. 8, 15198 (2017).
[Crossref]

J. Yang, X. Wen, H. Xia, R. Sheng, Q. Ma, J. Kim, P. Tapping, T. Harada, T. W. Kee, F. Huang, Y. B. Cheng, M. Green, A. Ho-Baillie, S. Huang, S. Shrestha, R. Patterson, and G. Conibeer, “Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites,” Nat. Commun. 8, 14120 (2017).
[Crossref]

M. Li, S. Bhaumik, T. W. Goh, M. S. Kumar, N. Yantara, M. Gratzel, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Slow cooling and highly efficient extraction of hot carriers in colloidal perovskite nanocrystals,” Nat. Commun. 8, 14350 (2017).
[Crossref]

Nat. Nanotechnol. (1)

Z. K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, F. Hanusch, T. Bein, H. J. Snaith, and R. H. Friend, “Bright light-emitting diodes based on organometal halide perovskite,” Nat. Nanotechnol. 9, 687–692 (2014).
[Crossref]

Opt. Laser Technol. (1)

J. Wang, B. Gu, X.-W. Ni, and H.-T. Wang, “Z-scan theory with simultaneous two- and three-photon absorption saturation,” Opt. Laser Technol. 44, 390–393 (2012).
[Crossref]

Opt. Lett. (1)

Opt. Mater. (1)

Q. Han, W. Wu, W. Liu, Q. Yang, and Y. Yang, “Two-photon absorption and upconversion luminescence of colloidal CsPbX3 quantum dots,” Opt. Mater. 75, 880–886 (2018).
[Crossref]

Photon. Res. (1)

Sci. Adv. (1)

T. Zhang, M. I. Dar, G. Li, F. Xu, N. Guo, M. Grätzel, and Y. Zhao, “Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells,” Sci. Adv. 3, e1700841 (2017).
[Crossref]

Science (1)

H. Cho, S.-H. Jeong, M.-H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, and T.-W. Lee, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350, 1222–1225 (2015).
[Crossref]

Small (2)

X. Qi, Y. Zhang, Q. Ou, S. T. Ha, C. W. Qiu, H. Zhang, Y. B. Cheng, Q. Xiong, and Q. Bao, “Photonics and optoelectronics of 2D metal-halide perovskites,” Small 14, 1800682 (2018).
[Crossref]

H. C. Wang, Z. Bao, H. Y. Tsai, A. C. Tang, and R. S. Liu, “Perovskite quantum dots and their application in light-emitting diodes,” Small 14, 1702433 (2018).
[Crossref]

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Experimental setup for the Z-scan technique.
Fig. 2.
Fig. 2. (a) XRD patterns and (b) PL emission spectra of CsPbCl1.5Br1.5 NCs glasses under different treatment temperature excited by femtosecond pulses at 365 nm.
Fig. 3.
Fig. 3. OA Z-scan results of CsPbCl1.5Br1.5 NCs glasses with different treatment temperatures. (a) Under pump intensity 25.5GW/cm2 at a wavelength of 800 nm and (b) under pump intensity 217GW/cm2 at a wavelength of 1300 nm. (The balls are the experimental data, and the solid lines are fitting curves.) The fitting results of (c) β and (d) γ of CsPbCl1.5Br1.5 NCs glass with different treatment temperatures. (Inset, the schematic of a two-level model.)
Fig. 4.
Fig. 4. (a) OA Z-scan curves and (b) corresponding fitting results of β (black ball), Imχ(3) (pink), and FOM (blue) of the CsPbCl1.5Br1.5 NCs glass at the wavelength of 800 nm with different incident pump intensity.
Fig. 5.
Fig. 5. OA Z-scan results of CsPbClxBr3x (x=1, 1.5, 2) NCs glasses. (a) Under pump intensity 178GW/cm2 at a wavelength of 800 nm and (b) under pump intensity 535GW/cm2 at a wavelength of 1300 nm. (The balls are the experimental data, and the solid lines are fitting curves.) (c) PL emission spectra of CsPbClxBr3x (x=1, 1.5, 2) NCs glasses for 500°C treatment temperature excited by femtosecond pulses at 365 nm; (d) fitting the results of 2PA coefficient (β, purple bar) and 3PA coefficient (γ, red bar) obtained in (a) and (b), respectively.
Fig. 6.
Fig. 6. (a) Transmission electron microscopy (TEM) images of CsPbClxBr3-x (x = 1, 1.5, 2) NCs and (b) high-resolution TEM images of CsPbCl1.5Br1.5 NCs.
Fig. 7.
Fig. 7. (a) Amplified spontaneous emission (ASE) measurement on CsPbCl1.5Br1.5 NCs glass under an 800 nm pulsed laser at room temperature and (b) corresponding full-width at half-maxima (FWHM) and output as a function of incident pump intensity.
Fig. 8.
Fig. 8. (αhυ)2-hυ plot of CsPbClxBr3-x (x=1,2,3) NCs glass.
Fig. 9.
Fig. 9. Open-aperture Z-scan curves of the (a) CsPbCl1Br2 and (b) CsPbCl2Br1 NCs glasses at the wavelength of 800 nm with different incident pump intensity.

Tables (3)

Tables Icon

Table 1. Summary of the Measured 2PA and 3PA Parameters of CsPbCl1.5Br1.5 NCs Glasses at Wavelengths of 800 nm and 1300 nma

Tables Icon

Table 2. 2PA Parameters of the CsPbCl1.5Br1.5 NCs Glass Measured by an OA Z-Scan at 800 nm under Different Pump Intensitya

Tables Icon

Table 3. Summary of the Measured 2PA and 3PA Parameters of CsPbClxBr3-x NCs Glasses at Wavelengths of 800 nm and 1300 nma

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

TOA(nPA)=1{1+(n1)αNLLeff{I0/[1+(z/z0)2]}n1}1/n1(n=1,2,3),
Imχ(3)=c2ε0n02βω,

Metrics