Abstract

We demonstrate low-loss hydrogenated amorphous silicon (a-Si:H) waveguides by hot-wire chemical vapor deposition (HWCVD). The effect of hydrogenation in a-Si at different deposition temperatures has been investigated and analyzed by Raman spectroscopy. We obtained an optical quality a-Si:H waveguide deposited at 230°C that has a strong Raman peak shift at 480  cm1, peak width (full width at half-maximum) of 68.9  cm1, and bond angle deviation of 8.98°. Optical transmission measurement shows a low propagation loss of 0.8 dB/cm at the 1550 nm wavelength, which is the first, to our knowledge, report for a HWCVD a-Si:H waveguide.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

1. INTRODUCTION

Silicon photonics devices are fast evolving from discrete optical components to complete circuits that will eventually require low-loss waveguide interconnects and devices for high-density integration. The reliance of a silicon-on-insulator (SOI) platform for building up active optical devices limits the fabrication freedom in terms of process temperature for the formation of a multilayer photonics platform. Therefore, low temperature deposition of low-loss optical materials is essential for building high-density optical integrated circuits. There have been a variety of low temperature deposition techniques for optical waveguide materials. For example, the use of polymer waveguides is constrained to the uppermost optical layer because of its incompatibility with the CMOS thermal processes [1,2]. Low temperature plasma enhanced chemical vapor deposition (PECVD) materials such as silica- and nitride-based waveguides have been demonstrated. These materials can achieve low propagation losses, but their low refractive indices (1.5 and 2.1 at 1.55 μm, respectively) require mode matching to the silicon devices, adding a layer of complexity to the design and fabrication. In addition, silicon oxynitride and silicon nitride contain N-H stretching bonds from using ammonia in the deposition processes, which can cause absorption in the s- and c-band wavelength range. Although the N-H bonds can be annealed out at high temperatures close to 1000°C, such processing renders these materials unsuitable for back end of the line (BEOL) processes [3,4].

Hydrogenated amorphous silicon (a-Si:H) waveguides fabricated by the conventional deposition method (PECVD) have been investigated [512]. Their low refractive index difference compared with crystalline SOI waveguide devices simplifies integration, especially in multilayer photonics. The waveguide losses in a-Si:H can be investigated from the perspective of its lattice network, which affects absorption in the material. In crystalline silicon (c-Si), the tetrahedral lattice structure has a bond angle of 109.5° and a bond length of 2.35 Å (1 Å = 0.1 nm). The amorphous silicon lattice network comprises 5% and 10% deviation from the crystalline in the bond angle and bond length, respectively [13]. These deviations in amorphous structure do not affect the first few neighboring atoms, which is also known as the short range order (SRO) of an a-Si network. However, the amorphous disorder can induce structural stress to the intermediate range order (IRO; that is, beyond the neighboring atoms in the network), leading to bond breakage and the occurrence of dangling bonds. This has a negative impact on the optoelectronic properties of the a-Si waveguide material, which will suffer from high absorption and degradation over time. Therefore, hydrogen passivation is crucial during or after the deposition of amorphous silicon for the development of waveguide device applications.

There has been a lot of research carried out on different types of deposition and hydrogenation methods for a-Si:H material, such as sputtering, evaporation, glow discharge plasma chemical vapor deposition, PECVD, and catalytic chemical vapor deposition (Cat-CVD) [1419]. PECVD has been widely reported for the deposition of a-Si:H waveguides [512], and the optical propagation losses are summarized and compared to this work in Table 1. Hot-wire chemical vapor deposition (HWCVD), also known as Cat-CVD, has been used to deposit a-Si:H, micro-crystalline silicon (μc-Si:H), and polycrystalline silicon for photovoltaic and thin film transistor applications [23]. Previous work performed by Takahiro et al. [24] demonstrated a waveguide loss of 15 dB/cm at a wavelength of 800 nm. The advantages of HWCVD are its low deposition temperature capability, high deposition rate, no plasma induced damage, and large area homogeneity [2527]. The complete catalytic and thermal decomposition of the precursor gas silane (SiH4) is achieved by the hot filament dissociation of Si and four H atoms. In this work, we demonstrate low-loss a-Si:H waveguides for the telecoms wavelength band using the HWCVD process at temperatures compatible with BEOL (below 400°C). Raman spectroscopy was used to analyze the a-Si:H peaks and the amorphous network characteristics due to hydrogenation, thereby correlating its material quality to the waveguide propagation loss at the 1550 nm wavelength. Optical propagation losses were measured using the cut-back method, and control samples with 2 μm wide waveguides were used to initially evaluate the optical propagation characteristics. Sub-micrometer wire waveguides were then fabricated, and a propagation loss of 0.8 dB/cm has been obtained.

Tables Icon

Table 1. Summary of the Performance of a-Si Waveguides and Techniques Used in Silicon Photonics Applications

2. SAMPLE PREPARATION

The fabrication process started with thermal oxidation of a p-type Si substrate to produce a 4.6 μm thick SiO2 cladding, followed by HWCVD of a-Si:H layer on top of the oxide layer. The thick SiO2 was for optical isolation and to emulate the buried oxide (BOX) of a SOI wafer. The a-Si:H samples used in this work were prepared with the Nitor 301 HWCVD system from ECHERKON Technologies Ltd. The system used 15 tungsten filaments mounted parallel to each other with 2 cm separation. Each filament has a length of 30 cm with diameter variations from 0.125 to 0.2 mm. The different filament wire diameters provide thermal heating to the substrate temperature (Tsub) ranging from 190°C to 320°C. The reason for using tungsten filaments is their good catalytic performance, low activation energy (71±20  kJ/mol at filament temperature, Tfil<1700  K [28]) for silicon, low cost, and that they are readily available. The distance from the substrate to the filaments was maintained at 6 cm. The system used a constant Tfil of 1850°C, which is high enough to achieve the complete dissociation of silane [29,30]. In order to maintain the control of film thickness, the substrate is first pre-heated without introducing any gases. By using different filament diameters, it is possible to obtain different film thickness. The a-Si:H thickness is 400 nm deposited at 0.01 mbar (1 bar = 100 kPa) with a silane and hydrogen gas mix ratio of 2.41. The 400 nm thickness is chosen so that the Raman laser (wavelength) penetration depth can fully interrogate the deposited a-Si:H film without interference from the background silicon dioxide layer. After the a-Si:H deposition, the film was covered with 5 nm thick PECVD SiO2 at 350°C as a passivation layer to prevent atmospheric degradation. We prepared two batches of a-Si:H waveguides. The first batch was fabricated by standard photolithography and anisotropic inductively coupled plasma (ICP) etching to produce 2 μm wide, fully etched wire waveguides, which were used as control samples to study the role of hydrogen in the structural ordering and to correlate this to the optical propagation loss. The second batch was fabricated by direct write lithography and anisotropic ICP etching to produce fully etched wire waveguides with widths of 250, 350, 550, 650, and 850 nm. For each width in batch two, waveguides with different lengths ranging from 3 to 10 mm were produced with grating couplers. Finally, the a-Si:H waveguides were clad with a 1 μm thick PECVD SiO2 layer.

3. MEASUREMENT SYSTEMS

There are other measurement and characterization techniques such as electron spin resonance (ESR) and the constant photocurrent method (CPM) to evaluate the defects of amorphous silicon [12,31]. These are the viable methods to evaluate absorption in a-Si. In this work, however, we used Raman spectroscopy to evaluate the atomic structure to understand the crystallinity and density of the material. A Renishaw Invia Raman spectrometer with a 532 nm Nd:YAG excitation laser was used. The laser has a penetration depth of 100 nm for a-Si:H material. A scanning electron microscope (SEM) and an atomic force microscope (AFM) were used to examine the cross section and surface roughness of the waveguide. Based on the analysis of the Raman spectra, the best Gaussian fit of a-Si:H network material with optimal Tsub was determined. Preliminary transmission measurements were then conducted on the a-Si:H waveguides deposited at various Tsub, with dimensions of 2 μm width and 400 nm height, using the Fabry–Perot [32] method to correlate with the Raman results. The light was coupled into the device by the end-fire coupling approach with a 40× magnification objective lens at the input and output of the waveguide. The output light was fed to an InGaAs photodetector. Using the optimized material, wire waveguides with a range of widths were fabricated to evaluate its optical propagation losses. The propagation losses were measured by using the cut-back method with the fiber grating couplers with a total insertion loss of 3 dB, and the optical transmission was normalized to the grating couplers. Agilent 8163B, an integrated tunable laser source, and a photodetector system were used to couple light in and out of the waveguides by gratings and TE polarized optical fibers.

4. MATERIAL CHARACTERIZATION DISCUSSION

Raman spectroscopy has been used for atomic structural characterization of a-Si:H [33,34]. The Raman spectrum of standard a-Si:H has four Raman active phonon modes, namely, a transverse acoustic (TA) peak at 135  cm1, a longitudinal acoustic (LA) peak at 330  cm1, a longitudinal optical (LO) peak at 450  cm1, and a transverse optical (TO) peak at 480  cm1, which can be used to determine the structural quality of a-Si:H [35]. Due to the symmetry in the face centered cubic (fcc) lattice, c-Si has a narrow sharp Raman peak from the TO phonon mode ωTO, positioned at 520  cm1, with a full width at half-maximum (FWHM) ΓTO of about 3.5  cm1 [35]. In amorphous silicon, the small change in the structural distortion of the SRO network induces substantial modification to the phonon density of states. Thus, there is no translation symmetry, and ωTO has a broad Raman peak positioned near 480  cm1, with ΓTO60  cm1 [36,37]. Structural distortion also induces a change in bond length and bond angle Δθb. In the Raman spectrum of the amorphous silicon network, the TO phonon (vibration) mode is attributed to the SRO, while the TA, LA, and LO phonon vibration modes are from the structural distortion in the IRO network [34]. Moreover, the area intensity ratio of ITA/ITO, ωTO, and ΓTO are sensitive to the change in bond angle of the a-Si network and ITA/ITO also indicates structural disorder in the IRO.

Figure 1 shows the Raman shift results from the effect of the deposited temperatures and the structural behavior of the a-Si:H. Figure 1(a) presents the Raman spectrum of a-Si:H material deposited at 230°C, in which all vibration modes are defined. Figure 1(b) provides the Raman shift of ωTO as a function of Tsub, where the dotted line is a guideline for the center of the Raman line 480  cm1. The plot shows that ωTO does not depend on the Tsub from 190°C to 320°C as compared to PECVD [34]. The results indicate two regimes for the HWCVD, namely, the diffusion control regime and kinetic control regime indicated in Fig. 2(a), where hydrogenation influences the a-Si:H quality during deposition. It has been shown that the concentration of hydrogen increases with a decrease of Tsub in HWCVD [38]. In our experiment, the change of Tsub was achieved by changing the diameter of the tungsten filaments. This could induce the additional change in hydrogen concentration, even though the flow rate of the precursors and filament temperature were maintained. It appears there is an interplay of the two mechanisms due to hydrogen and Tsub during the deposition process. The a-Si:H material deposited at 210°C, 230°C, and 250°C shows a low structural disorder of the amorphous network with ωTO appearing around 480  cm1, which indicates high-quality a-Si:H deposited in this temperature range. It also suggests that hydrogen passivation into the dangling bonds stabilizes the SRO of a-Si. For a-Si:H material deposited at 190°C and 320°C, there is an upshift in ωTO to 490  cm1 and 493  cm1, respectively, as shown in Fig. 1(b). This is due to the mixture of micro- and nano-scale voids in the amorphous silicon network [33,39,40]. As shown in the inset of Fig. 1(b), the deconvolution of the amorphous peak into two Gaussian functions is related to the amorphous and intermediate voids.

 

Fig. 1. Extensive Raman characterization on the structural disorder of an a-Si:H network as a function of Tsub. (a) The Raman spectrum of an a-Si:H network deposited at 230°C of Tsub shows four Raman active modes and the structural information available from those, such as peak position, can indicate chemical species and symmetry; the ω shift can specify the stress and strain; and the FWHM can express the structural disorder and angular distortion of the material network. (b) TO peak position as a function of Tsub, where the dotted line is a guideline for standard TO peak frequency, ωTO of a-Si:H at 480  cm1. Insets are the deconvolution of the TO peak into amorphous and micro-voids in the topology of a-Si:H deposited at 190°C and 320°C, where the solid line represents the TO peak of the Si-Si stretching mode of the deposited film and the dotted lines represent the Gaussian deconvolution of the TO peak. Red dotted lines suggest amorphous and green dotted lines suggest micro-voids. (c) TO peak width ΓTO as a function of Tsub, where dotted lines are guidelines for standard ΓTO at the fully amorphous condition and device-quality a-Si:H. (d) Dependence of the ratio of ITA to ITO on the hydrogen concentration in the diffusion control region. Schematic blue dotted arrows represent how bending modes vary with the hydrogen content in the H-role region and how the stretching mode changes with Tsub in the T-role region.

Download Full Size | PPT Slide | PDF

 

Fig. 2. (a) An Arrhenius plot shows the deposition rate versus the temperature (square symbol) and shows the propagation loss (dB/cm) corresponding to the deposited temperature (diamond symbol). (b) Cross-sectional SEM images of the a-Si:H films deposited at the different substrate temperatures. The red boxes represent the a-Si:H layer surrounded by silicon dioxide. Inset: the field intensity profile of the propagation mode (at λ=1.55  μm) obtained from the 2 μm width waveguide.

Download Full Size | PPT Slide | PDF

In the Arrhenius plot of Fig. 2(a), at Tsub 320°C of the diffusion control regime, the hydrogen concentration in a-Si:H is expected to be less for the passivation of dangling bonds than in the one deposited at Tsub 190°C, which has a reduced densified layer with micro/nano-scale voids and increased average bond length of Si-Si atoms. These a-Si:H films with voids will have an inhomogeneous strain, which translates to a broadening of the ωTO peak, as reported by Hishikawa et al. [34], showing a shift in ωTO is due to the change in the stretching force of Si-Si bonds in the SRO. For the presence of the Si-H and Si-H2 stretching modes, we managed to obtain broad Raman shift spectra between 1600  cm1 and 2300  cm1 (not shown) for the 190°C, 230°C, and 320°C samples. When these spectra were fitted with the Voigt function, we obtained low to medium stretching modes of 2091  cm1, 2048  cm1, and 2018  cm1 for the respective deposition temperatures of 190°C, 230°C, and 320°C. The Raman shifts of the 230°C and 320°C samples are the closest to the Si-H bond at 2000  cm1, which indicates hydrogenation of the a-Si lattice network. Our measurement agrees with Johnson et al. [41], Matsumura [42], and Smets et al. [43], whose a-Si:H also has a broad Raman peak, showing evidence of Si-H and Si-H2 bonds and also suggesting nano-crystalline and voids in the amorphous silicon network [44]. However, for further verification of Si-H and Si-Hn bonds in a-Si network, Fourier-transform infrared spectroscopy (FTIR) could provide more information of the hydrogen content in the material.

The peak position of TO also indicates the effect of stress in the film, where tensile stress downshifts ωTO and compressive stress upshifts ωTO. Ratnayake et al. [45] suggest that there is a linear relationship for the internal tensile and compressive stress with regard to the deposition temperature. The film deposited at 210°C shows evidence of tensile stress with a downshift to 476  cm1, while the film deposited at 320°C indicates compressive stress with an upshift to 493  cm1. The Raman spectral information for a-Si:H networks deposited at different Tsub, at different deposition rates, and with different surface roughnesses is tabulated in Table 2.

Tables Icon

Table 2. Raman Spectral Information of an a-Si:H Network for Different Substrate Temperatures

The FWHM width of the TO peak (ΓTO) is proportional to the structural angular distortion, which means the larger the ΓTO, the more structural distortion in the bond angle distribution [36]. Figure 1(c) shows the dependence of structural deformation on the substrate temperature Tsub. The material deposited at 210°C has an FWHM ΓTO of 67±1  cm1 compared to the pure amorphous Si, which has a ΓTO of 60  cm1. Han et al. [33] reported that device-quality a-Si:H has a ωTO centered at 480  cm1 with FWHM ΓTO of 70  cm1, which closely matches our experimental ωTO result at 480.5  cm1 with ΓTO at 68.9  cm1 for the a:Si-H material deposited at 230°C. Based on Beeman’s linear relationship [36] (ΓTO=15+6Δθb) between ΓTO and bond angle deviation Δθb, the a-Si:H material deposited at 230°C has a bond angle deviation of 8.98°, with respect to the crystalline Si bond angle. Our bond angle deviation result is within the range reported by Beeman et al. and Han et al. on a fully formed amorphous silicon network [33,36]. The FWHM ΓTO becomes wider when Tsub is at 190°C and 320°C (shown in Table 2), which implies changes in inter-atomic lattice spacing due to either compressive or tensile strain and thus larger bond angle fluctuations. The exact bond angle fluctuation requires future X-ray diffraction measurements and correlates to ωTO and ΓTO with a Tsub that requires more temperature points. For now, our goal is to achieve low temperature deposition of a-Si:H for silicon photonics applications.

The TA phonon mode at the Raman peak position of 135  cm1 is attributed to the bond bending mode in the IRO of the amorphous network, while the TO phonon at 480  cm1 is attributed to the bond stretching mode in the SRO of the amorphous network [38]. By taking the Raman area intensity ratio of ITA peak to ITO peak, we can study the role of hydrogen on the TA bending modes (IRO) and TO stretching modes (SRO). Figure 1(d) presents information related to the role of hydrogen on the IRO or SRO. In the hydrogen-dominated diffusion control regime, bond bending decreases [(ITA/ITO)] as the hydrogen concentration increases, which indicates that the effect of hydrogen on the structural disorder is more prominent in the IRO than in the SRO. This observation matches the experimental results of Gupta et al. [38]. In the temperature (Tsub)-governed kinetic control regime, bond stretching increases with decreasing Tsub, indicating that thermally induced structural distortion is more obvious in the SRO. These results show a balance between hydrogen diffusion and thermal deposition required to achieve device-quality a-Si:H. The experiments also show the optimized temperature of 230°C, which meets the above requirement.

The cross-section SEM images of the a-Si:H films are shown in Fig. 2(b), where the red box highlights the core thickness of 400 nm surrounded by SiO2. The films deposited at 190°C and 320°C show granular structure due to defects such as microvoids. The a-Si:H film deposited at 230°C is relatively defect free with high densification. The small particles on the facets are due to residue from the cleaving.

5. RESULTS AND DISCUSSION

Initial propagation loss measurements were performed with the Fabry–Perot method on the 2 μm wide fully etched waveguides deposited at different Tsub temperatures. Figure 2(a) shows the deposition rate and the propagation loss of the a-Si:H waveguide for the different temperatures. The mass transport control (also known as diffusion control) deposition regime is observed at temperatures above 210°C, which is characterized by small changes of the deposition rate with temperature. The surface-limited or kinetic control regime occurs below 200°C, where the deposition rate is dependent on temperature changes. The small drop in the deposition rate at 320°C could also suggest that gas reactions are more prominent above this temperature, but temperatures above this point were not investigated as they are outside the temperature range of interest. The average deposition rate of a-Si:H material is 0.55 nm/s for the temperature range 210°C–320°C, while the deposition rate drops to 0.45 nm/s at Tsub of 190°C. It is noteworthy that the trend in the Raman shift matches the trend in the propagation loss measurements, where the loss of a-Si:H deposited at 190°C and 320°C is higher compared to those of a-Si:H at 210°C, 230°C, and 250°C. The waveguide deposited at 230°C gives the lowest loss of 1 dB/cm. The inset in Fig. 2(b) shows the optical intensity profile from the end facet of the waveguide. We note that the AFM root mean square (rms) surface roughness of the a-Si:H film deposited at 190°C and 320°C is 1.32 nm and 3.58 nm, respectively, while the a-Si:H deposited at 210°C, 230°C, and 250°C has an rms roughness of about 1 nm (see Table 2).

From the Raman characterization, the a-Si:H film deposited at Tsub of 230°C is a promising candidate for low-loss silicon photonics platforms. Therefore, a 400 nm thick a-Si:H film was deposited at 230°C, wire waveguides with different widths were fabricated as mentioned in Section 2, with their propagation losses assessed by the cut-back method, and coupling with optical fibers was performed via grating couplers. The ellipsometer measurement showed that refractive index n=3.695, κ=3.167×106, and estimated band gap energy Eg=1.624  eV were measured for the bulk material at 1550 nm using the Cody–Lorentz model [46].

The measured propagation losses at a wavelength of 1550 nm for different widths are shown in Fig. 3(a). The cross-section image of a waveguide with a width of 350 nm is shown in the inset of Fig. 3(b). Waveguides with widths ranging from 350 to 850 nm were measured under TE polarization, while the narrow 250 nm wide waveguide was measured under TM polarization only. The propagation loss [decibels per centimeter (dB/cm)] as a function of waveguide width is plotted in Fig. 3(b). The propagation loss was decreased with increasing width. The lowest propagation loss is 0.8 dB/cm for the 650 nm wide waveguide, while the 350 nm wide waveguide has a loss of 27 dB/cm. The higher loss is due to the weaker optical confinement and mode interaction with the surrounding sidewall roughness and air voids as seen in the inset of Fig. 3(b). For an 850 nm wide waveguide, the loss was increased to 3 dB/cm, which could be attributed to the fabrication error. Since the optical confinement is well within the 650 nm wide waveguide, and as the rms surface roughness is low, we focused our analysis on how much material absorption contributes to the loss after the hydrogenation and deposition at 230°C. The extinction coefficient κ can be calculated using the measured loss as the absorption coefficient α, where α=(4πκ)/λ. Using the excitation wavelength at 1550 nm, the extinction coefficient κ is 1.85×106.

 

Fig. 3. (a) Measured propagation loss, which is normalized to the coupling loss for different widths. (b) Measured propagation loss (black dots) (dB/cm) of the fully etched ridge waveguide as a function of waveguide width at excitation wavelength 1550 nm. The dotted line is for the eye guide. The squares are the analytically calculated propagation losses. Inset is the cross-sectional image of the measured waveguide, W=350  nm, H=400  nm.

Download Full Size | PPT Slide | PDF

To evaluate the origin of the losses, we performed numerical analysis using a commercial software called MODE Solutions by Lumerical that uses a finite-difference eigenmode (FDE) solver approach to calculate the loss. We modeled all fabricated widths of the wire waveguides in the following order: (a) with absorption but without roughness and (b) with an absorption coefficient, sidewall/surface roughness, and air voids, which are artifacts from fabrication. Simulations for different waveguide widths were executed using the n and κ values from the ellipsometer. First, the extinction coefficient was added into the material to simulate the propagation loss of the waveguide due to the material absorption at the 1550 nm wavelength. The extracted extinction coefficient is 1.845×106, which closely matched our analytical estimate of 1.85×106. Under the assumption of high optical confinement, the simulated loss of 0.73 dB/cm is comparable to the experimental loss of 0.8 dB/cm for the 650 nm wide waveguide. Further simulation with only the extinction coefficient on other waveguide widths shows no significant changes in the propagation loss. AFM measurement of surface roughness is shown in Fig. 4(a). From the cross-sectional view of the waveguide [inset of Fig. 3(b)], air voids are present between the SiO2 cladding and the a-Si:H waveguide. All these roughness factors were taken into account in simulation condition (b). The sidewall of waveguide has the anisotropic roughness (7 nm correlation length) to resemble the etching result, while the AFM measured top and bottom surface roughness is 3.58 nm (worst case). The same sidewall roughness was applied to the air void, where the width of the air void is 50 nm at an angle of 30° to emulate the fabricated features shown in Fig. 3(b). All waveguides support the fundamental TE mode, except from the waveguide that has 250 nm width, as shown in Fig. 4(b). The simulated propagation losses (red squares) were plotted together with the experimental loss (black dots) in Fig. 3(b). The simulation and the experimental results show excellent agreement, which strongly suggests that roughness scattering dominates the propagation loss more than the material absorption. This means the HWCVD a-Si:H deposited at 230°C has very good hydrogen passivation in the SRO amorphous network.

 

Fig. 4. (a) AFM images of the surface roughness of a-Si:H deposited at 230°C and 320°C. (b) 2D electric field profiles across the different waveguide widths, where all experimental defects [extinction coefficient, sidewall, surface roughness, air void (as shown in inset of Fig. 3(b)] are counted.

Download Full Size | PPT Slide | PDF

6. CONCLUSION

From the Raman results, in addition to an a-Si:H Raman shift of 480  cm1, it is critical to achieve an FWHM of less than 70  cm1 and a bond angle deviation of 6.6°<Δθb10°. This is to ensure the optical quality of a-Si:H material for waveguide device applications. We have achieved those conditions at a deposition temperature of 230°C and shown that the absorption loss is lower than the scattering loss. We demonstrated, for the first time to our knowledge, a very low optical loss of 0.8 dB/cm at the 1550 nm wavelength using the HWCVD method. This low-loss waveguide offers a potential interconnect solution for high-density silicon photonics integration.

Funding

Engineering and Physical Sciences Research Council (EPSRC) (EP/L00044X/1, EP/N013247/1, EP/L02112G/1).

Acknowledgment

The authors thank Southampton Nano Fabrication Centre, University of Southampton. G. T. Reed is a Royal Society Wolfson Merit Award holder. He is grateful to both the Royal Society and the Wolfson Foundation. The authors acknowledge Dr. Antoine F. J. Runge for his help in the optical measurement using the Fabry–Perot method. All authors also thank Dr. David Thomson for letting us use his grating coupler transmission measurement setup.

REFERENCES

1. S. K. A. Neyer, E. Rabe, and D. Cai, “Polymer waveguide technologies for optical interconnects,” in European Conference on Integrated Optics (ECIO), Copenhagen, Denmark (2007), paper ThD0.

2. A. Yeniay, R. Gao, K. Takayama, R. Gao, and A. F. Garito, “Ultra-low-loss polymer waveguides,” J. Lightwave Technol. 22, 154–158 (2004). [CrossRef]  

3. C. K. Wong, H. Wong, M. Chan, Y. T. Chow, and H. P. Chan, “Silicon oxynitride integrated waveguide for on-chip optical interconnects applications,” Microelectron. Reliab. 48, 212–218 (2008). [CrossRef]  

4. E. G. Johnson, M. J. Shaw, G. P. Nordin, J. Guo, G. A. Vawter, T. J. Suleski, S. Habermehl, and C. T. Sullivan, “Fabrication techniques for low-loss silicon nitride waveguides,” Proc. SPIE 5720, 1–11 (2005). [CrossRef]  

5. G. C. Righini, G. Cocorullo, S. I. Najafi, F. G. Della Corte, R. De Rosa, B. Jalali, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon waveguides and interferometers for low-cost silicon optoelectronics,” Proc. SPIE 3278, 286–292 (1998). [CrossRef]  

6. A. Harke, M. Krause, and J. Mueller, “Low-loss single mode amorphous silicon waveguides,” Electron. Lett. 41, 1377–1379 (2005). [CrossRef]  

7. R. Sun, K. McComber, J. Cheng, D. K. Sparacin, M. Beals, J. Michel, and L. C. Kimerling, “Transparent amorphous silicon channel waveguides with silicon nitride intercladding layer,” Appl. Phys. Lett. 94, 141108 (2009). [CrossRef]  

8. S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282, 1767–1770 (2009). [CrossRef]  

9. S. Zhu, G. Q. Lo, and D. L. Kwong, “Low-loss amorphous silicon wire waveguide for integrated photonics: effect of fabrication process and the thermal stability,” Opt. Express 18, 25283–25291 (2010). [CrossRef]  

10. J. Kang, Y. Atsumi, M. Oda, T. Amemiya, N. Nishiyama, and S. Arai, “Low-loss amorphous silicon multilayer waveguides vertically stacked on silicon-on-insulator substrate,” Jpn. J. Appl. Phys. 50, 120208 (2011). [CrossRef]  

11. T. Lipka, O. Horn, J. Amthor, and J. Müller, “Low-loss multilayer compatible a-Si:H optical thin films for photonic applications,” JEOS RP 7, 12033 (2012). [CrossRef]  

12. R. Takei, S. Manako, E. Omoda, Y. Sakakibara, M. Mori, and T. Kamei, “Sub-1 dB/cm submicrometer-scale amorphous silicon waveguide for backend on-chip optical interconnect,” Opt. Express 22, 4779–4788 (2014). [CrossRef]  

13. G. Franco, “Optoelectronic properties of amorphous silicon, the role of hydrogen: from experiment to modeling,” in Optoeletronics: Materials and Techniques, P. Padmanabhan, ed. (InTech, 2011), p. 496.

14. T. Karabacak, Y. P. Zhao, G. C. Wang, and T. M. Lu, “Growth-front roughening in amorphous silicon films by sputtering,” Phys. Rev. B 64, 085323 (2001). [CrossRef]  

15. M. H. Brodsky, M. Cardona, and J. J. Cuomo, “Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering,” Phys. Rev. B 16, 3556–3571 (1977). [CrossRef]  

16. Y. Abdulraheem, I. Gordon, T. Bearda, H. Meddeb, and J. Poortmans, “Optical bandgap of ultra-thin amorphous silicon films deposited on crystalline silicon by PECVD,” AIP Adv. 4, 057122 (2014). [CrossRef]  

17. J. Robertson, “Deposition mechanism of hydrogenated amorphous silicon,” J. Appl. Phys. 87, 2608–2617 (2000). [CrossRef]  

18. D. Kaplan, N. Sol, G. Velasco, and P. A. Thomas, “Hydrogenation of evaporated amorphous silicon films by plasma treatment,” Appl. Phys. Lett. 33, 440–442 (1978). [CrossRef]  

19. H. Matsumura, “Catalytic chemical vapor deposition (CTC-CVD) method producing high quality hydrogenated amorphous silicon,” Jpn. J. Appl. Phys. 25, L949–L951 (1986). [CrossRef]  

20. Y. A. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12, 1622–1631 (2004). [CrossRef]  

21. D. K. Sparacin, S. J. Spector, and L. C. Kimerling, “Silicon waveguide sidewall smoothing by wet chemical oxidation,” J. Lightwave Technol. 23, 2455–2461 (2005). [CrossRef]  

22. M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44, 115–116 (2008). [CrossRef]  

23. R. E. I. Schropp, “Hot wire chemical vapor deposition: recent progress, present state of the art and competitive opportunities,” ECS Trans. 25, 3–14 (2009). [CrossRef]  

24. A. Takahiro, I. Makoto, M. Takeo, I. Koichi, O. Keisuke, and M. Hideki, “Propagation loss of amorphous silicon optical waveguides at the 0.8 μm-wavelength range,” in 7th IEEE International Conference on Group IV Photonics, Beijing, China (2010), pp. 269–271.

25. R. S. Crandalla, X. Liub, and E. Iwaniczkoa, “Recent developments in hot wire amorphous silicon,” J. Non-Cryst. Solids 227–230, 23–28 (1998). [CrossRef]  

26. K. F. Feenstra, R. E. I. Schropp, and W. F. Van der Weg, “Deposition of amorphous silicon films by hot-wire chemical vapor deposition,” J. Appl. Phys. 85, 6843–6852 (1999). [CrossRef]  

27. A. H. Mahan, J. Carapella, B. P. Nelson, R. S. Crandall, and I. Balberg, “Deposition of device quality, low H content amorphous silicon,” J. Appl. Phys. 69, 6728–6730 (1991). [CrossRef]  

28. S. Tange, K. Inoue, K. Tonokura, and M. Koshi, “Catalytic decomposition of SiH4 on a hot filament,” Thin Solid Films 395, 42–46 (2001). [CrossRef]  

29. K. Tonokura, K. Inoue, and M. Koshi, “Chemical kinetics for film growth in silicon HWCVD,” J. Non-Cryst. Solids 299–302, 25–29 (2002). [CrossRef]  

30. Y.-F. Wang and R. Pollard, “An approach for modeling surface reaction kinetics in chemical vapor deposition processes,” J. Electrochem. Soc. 142, 1712–1725 (1995). [CrossRef]  

31. T. Shimizu, H. Kidoh, M. Matsumoto, A. Morimoto, and M. Kumeda, “Photo-created defects in a-Si:H as elucidated by ESR, LESR and CPM,” J. Non-Cryst. Solids 114, 630–632 (1989). [CrossRef]  

32. S. Taebi, M. Khorasaninejad, and S. Singh Saini, “Modified Fabry-Perot interferometric method for waveguide loss measurement,” Appl. Opt. 47, 6625–6630 (2008). [CrossRef]  

33. D. Han, J. D. Lorentzen, J. Weinberg-Wolf, L. E. McNeil, and Q. Wang, “Raman study of thin films of amorphous-to-microcrystalline silicon prepared by hot-wire chemical vapor deposition,” J. Appl. Phys. 94, 2930–2936 (2003). [CrossRef]  

34. Y. Hishikawa, K. Watanabe, S. Tsuda, M. Ohnishi, and Y. Kuwano, “Raman study on the silicon network of hydrogenated amorphous silicon films deposited by a glow discharge,” Jpn. J. Appl. Phys. 24, 385–389 (1985). [CrossRef]  

35. R. Carius, “Structural and optical properties of microcrystalline silicon for solar cell applications,” in Photovoltaic and Photoactive Materials: Properties, Technology and Applications, J. M. Marshall and D. Dimova-Malinovska, eds. (Springer Netherlands, 2002), p. 353.

36. D. Beeman, R. Tsu, and M. F. Thorpe, “Structural information from the Raman spectrum of amorphous silicon,” Phys. Rev. B 32, 874–878 (1985). [CrossRef]  

37. L. Houben, M. Luysberg, P. Hapke, R. Carius, F. Finger, and H. Wagner, “Structural properties of microcrystalline silicon in the transition from highly crystalline to amorphous growth,” Philos. Mag. A 77, 1447–1460 (1998). [CrossRef]  

38. S. Gupta, R. S. Katiyar, G. Morell, S. Z. Weisz, and I. Balberg, “The effect of hydrogen on the network disorder in hydrogenated amorphous silicon,” Appl. Phys. Lett. 75, 2803–2805 (1999). [CrossRef]  

39. Z. Wang, D. Flötotto, and E. J. Mittemeijer, “Stress originating from nanovoids in hydrogenated amorphous semiconductors,” J. Appl. Phys. 121, 095307 (2017). [CrossRef]  

40. A. H. M. Smets, W. M. M. Kessels, and M. C. M. van de Sanden, “Vacancies and voids in hydrogenated amorphous silicon,” Appl. Phys. Lett. 82, 1547–1549 (2003). [CrossRef]  

41. E. V. Johnson, L. Kroely, and P. Roca i Cabarrocas, “Raman scattering analysis of SiH bond stretching modes in hydrogenated microcrystalline silicon for use in thin-film photovoltaics,” Solar Energy Mater. Sol. Cells 93, 1904–1906 (2009). [CrossRef]  

42. M. Hideki, “Formation of silicon-based thin films prepared by catalytic chemical vapor deposition (Cat-CVD) method,” Jpn. J. Appl. Phys. 37, 3175–3187 (1998). [CrossRef]  

43. A. H. M. Smets, T. Matsui, and M. Kondo, “High-rate deposition of microcrystalline silicon p-i-n solar cells in the high pressure depletion regime,” J. Appl. Phys. 104, 034508 (2008). [CrossRef]  

44. D. Stryahilev, F. Diehl, and B. Schröder, “The splitting of absorption bands in IR spectra of anisotropic SiH monolayers covering the internal surfaces in μc-Si:H,” J. Non-Cryst. Solids 266–269, 166–170 (2000). [CrossRef]  

45. D. Ratnayake, M. D. Martin, U. R. Gowrishetty, D. A. Porter, T. A. Berfield, S. P. McNamara, and K. M. Walsh, “Engineering stress in thin films for the field of bistable MEMS,” J. Micromech. Microeng. 25, 125025 (2015). [CrossRef]  

46. A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: applications in thin film photovoltaics,” J. Appl. Phys. 92, 2424–2436 (2002). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. S. K. A. Neyer, E. Rabe, and D. Cai, “Polymer waveguide technologies for optical interconnects,” in European Conference on Integrated Optics (ECIO), Copenhagen, Denmark (2007), paper ThD0.
  2. A. Yeniay, R. Gao, K. Takayama, R. Gao, and A. F. Garito, “Ultra-low-loss polymer waveguides,” J. Lightwave Technol. 22, 154–158 (2004).
    [Crossref]
  3. C. K. Wong, H. Wong, M. Chan, Y. T. Chow, and H. P. Chan, “Silicon oxynitride integrated waveguide for on-chip optical interconnects applications,” Microelectron. Reliab. 48, 212–218 (2008).
    [Crossref]
  4. E. G. Johnson, M. J. Shaw, G. P. Nordin, J. Guo, G. A. Vawter, T. J. Suleski, S. Habermehl, and C. T. Sullivan, “Fabrication techniques for low-loss silicon nitride waveguides,” Proc. SPIE 5720, 1–11 (2005).
    [Crossref]
  5. G. C. Righini, G. Cocorullo, S. I. Najafi, F. G. Della Corte, R. De Rosa, B. Jalali, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon waveguides and interferometers for low-cost silicon optoelectronics,” Proc. SPIE 3278, 286–292 (1998).
    [Crossref]
  6. A. Harke, M. Krause, and J. Mueller, “Low-loss single mode amorphous silicon waveguides,” Electron. Lett. 41, 1377–1379 (2005).
    [Crossref]
  7. R. Sun, K. McComber, J. Cheng, D. K. Sparacin, M. Beals, J. Michel, and L. C. Kimerling, “Transparent amorphous silicon channel waveguides with silicon nitride intercladding layer,” Appl. Phys. Lett. 94, 141108 (2009).
    [Crossref]
  8. S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282, 1767–1770 (2009).
    [Crossref]
  9. S. Zhu, G. Q. Lo, and D. L. Kwong, “Low-loss amorphous silicon wire waveguide for integrated photonics: effect of fabrication process and the thermal stability,” Opt. Express 18, 25283–25291 (2010).
    [Crossref]
  10. J. Kang, Y. Atsumi, M. Oda, T. Amemiya, N. Nishiyama, and S. Arai, “Low-loss amorphous silicon multilayer waveguides vertically stacked on silicon-on-insulator substrate,” Jpn. J. Appl. Phys. 50, 120208 (2011).
    [Crossref]
  11. T. Lipka, O. Horn, J. Amthor, and J. Müller, “Low-loss multilayer compatible a-Si:H optical thin films for photonic applications,” JEOS RP 7, 12033 (2012).
    [Crossref]
  12. R. Takei, S. Manako, E. Omoda, Y. Sakakibara, M. Mori, and T. Kamei, “Sub-1 dB/cm submicrometer-scale amorphous silicon waveguide for backend on-chip optical interconnect,” Opt. Express 22, 4779–4788 (2014).
    [Crossref]
  13. G. Franco, “Optoelectronic properties of amorphous silicon, the role of hydrogen: from experiment to modeling,” in Optoeletronics: Materials and Techniques, P. Padmanabhan, ed. (InTech, 2011), p. 496.
  14. T. Karabacak, Y. P. Zhao, G. C. Wang, and T. M. Lu, “Growth-front roughening in amorphous silicon films by sputtering,” Phys. Rev. B 64, 085323 (2001).
    [Crossref]
  15. M. H. Brodsky, M. Cardona, and J. J. Cuomo, “Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering,” Phys. Rev. B 16, 3556–3571 (1977).
    [Crossref]
  16. Y. Abdulraheem, I. Gordon, T. Bearda, H. Meddeb, and J. Poortmans, “Optical bandgap of ultra-thin amorphous silicon films deposited on crystalline silicon by PECVD,” AIP Adv. 4, 057122 (2014).
    [Crossref]
  17. J. Robertson, “Deposition mechanism of hydrogenated amorphous silicon,” J. Appl. Phys. 87, 2608–2617 (2000).
    [Crossref]
  18. D. Kaplan, N. Sol, G. Velasco, and P. A. Thomas, “Hydrogenation of evaporated amorphous silicon films by plasma treatment,” Appl. Phys. Lett. 33, 440–442 (1978).
    [Crossref]
  19. H. Matsumura, “Catalytic chemical vapor deposition (CTC-CVD) method producing high quality hydrogenated amorphous silicon,” Jpn. J. Appl. Phys. 25, L949–L951 (1986).
    [Crossref]
  20. Y. A. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12, 1622–1631 (2004).
    [Crossref]
  21. D. K. Sparacin, S. J. Spector, and L. C. Kimerling, “Silicon waveguide sidewall smoothing by wet chemical oxidation,” J. Lightwave Technol. 23, 2455–2461 (2005).
    [Crossref]
  22. M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44, 115–116 (2008).
    [Crossref]
  23. R. E. I. Schropp, “Hot wire chemical vapor deposition: recent progress, present state of the art and competitive opportunities,” ECS Trans. 25, 3–14 (2009).
    [Crossref]
  24. A. Takahiro, I. Makoto, M. Takeo, I. Koichi, O. Keisuke, and M. Hideki, “Propagation loss of amorphous silicon optical waveguides at the 0.8 μm-wavelength range,” in 7th IEEE International Conference on Group IV Photonics, Beijing, China (2010), pp. 269–271.
  25. R. S. Crandalla, X. Liub, and E. Iwaniczkoa, “Recent developments in hot wire amorphous silicon,” J. Non-Cryst. Solids 227–230, 23–28 (1998).
    [Crossref]
  26. K. F. Feenstra, R. E. I. Schropp, and W. F. Van der Weg, “Deposition of amorphous silicon films by hot-wire chemical vapor deposition,” J. Appl. Phys. 85, 6843–6852 (1999).
    [Crossref]
  27. A. H. Mahan, J. Carapella, B. P. Nelson, R. S. Crandall, and I. Balberg, “Deposition of device quality, low H content amorphous silicon,” J. Appl. Phys. 69, 6728–6730 (1991).
    [Crossref]
  28. S. Tange, K. Inoue, K. Tonokura, and M. Koshi, “Catalytic decomposition of SiH4 on a hot filament,” Thin Solid Films 395, 42–46 (2001).
    [Crossref]
  29. K. Tonokura, K. Inoue, and M. Koshi, “Chemical kinetics for film growth in silicon HWCVD,” J. Non-Cryst. Solids 299–302, 25–29 (2002).
    [Crossref]
  30. Y.-F. Wang and R. Pollard, “An approach for modeling surface reaction kinetics in chemical vapor deposition processes,” J. Electrochem. Soc. 142, 1712–1725 (1995).
    [Crossref]
  31. T. Shimizu, H. Kidoh, M. Matsumoto, A. Morimoto, and M. Kumeda, “Photo-created defects in a-Si:H as elucidated by ESR, LESR and CPM,” J. Non-Cryst. Solids 114, 630–632 (1989).
    [Crossref]
  32. S. Taebi, M. Khorasaninejad, and S. Singh Saini, “Modified Fabry-Perot interferometric method for waveguide loss measurement,” Appl. Opt. 47, 6625–6630 (2008).
    [Crossref]
  33. D. Han, J. D. Lorentzen, J. Weinberg-Wolf, L. E. McNeil, and Q. Wang, “Raman study of thin films of amorphous-to-microcrystalline silicon prepared by hot-wire chemical vapor deposition,” J. Appl. Phys. 94, 2930–2936 (2003).
    [Crossref]
  34. Y. Hishikawa, K. Watanabe, S. Tsuda, M. Ohnishi, and Y. Kuwano, “Raman study on the silicon network of hydrogenated amorphous silicon films deposited by a glow discharge,” Jpn. J. Appl. Phys. 24, 385–389 (1985).
    [Crossref]
  35. R. Carius, “Structural and optical properties of microcrystalline silicon for solar cell applications,” in Photovoltaic and Photoactive Materials: Properties, Technology and Applications, J. M. Marshall and D. Dimova-Malinovska, eds. (Springer Netherlands, 2002), p. 353.
  36. D. Beeman, R. Tsu, and M. F. Thorpe, “Structural information from the Raman spectrum of amorphous silicon,” Phys. Rev. B 32, 874–878 (1985).
    [Crossref]
  37. L. Houben, M. Luysberg, P. Hapke, R. Carius, F. Finger, and H. Wagner, “Structural properties of microcrystalline silicon in the transition from highly crystalline to amorphous growth,” Philos. Mag. A 77, 1447–1460 (1998).
    [Crossref]
  38. S. Gupta, R. S. Katiyar, G. Morell, S. Z. Weisz, and I. Balberg, “The effect of hydrogen on the network disorder in hydrogenated amorphous silicon,” Appl. Phys. Lett. 75, 2803–2805 (1999).
    [Crossref]
  39. Z. Wang, D. Flötotto, and E. J. Mittemeijer, “Stress originating from nanovoids in hydrogenated amorphous semiconductors,” J. Appl. Phys. 121, 095307 (2017).
    [Crossref]
  40. A. H. M. Smets, W. M. M. Kessels, and M. C. M. van de Sanden, “Vacancies and voids in hydrogenated amorphous silicon,” Appl. Phys. Lett. 82, 1547–1549 (2003).
    [Crossref]
  41. E. V. Johnson, L. Kroely, and P. Roca i Cabarrocas, “Raman scattering analysis of SiH bond stretching modes in hydrogenated microcrystalline silicon for use in thin-film photovoltaics,” Solar Energy Mater. Sol. Cells 93, 1904–1906 (2009).
    [Crossref]
  42. M. Hideki, “Formation of silicon-based thin films prepared by catalytic chemical vapor deposition (Cat-CVD) method,” Jpn. J. Appl. Phys. 37, 3175–3187 (1998).
    [Crossref]
  43. A. H. M. Smets, T. Matsui, and M. Kondo, “High-rate deposition of microcrystalline silicon p-i-n solar cells in the high pressure depletion regime,” J. Appl. Phys. 104, 034508 (2008).
    [Crossref]
  44. D. Stryahilev, F. Diehl, and B. Schröder, “The splitting of absorption bands in IR spectra of anisotropic SiH monolayers covering the internal surfaces in μc-Si:H,” J. Non-Cryst. Solids 266–269, 166–170 (2000).
    [Crossref]
  45. D. Ratnayake, M. D. Martin, U. R. Gowrishetty, D. A. Porter, T. A. Berfield, S. P. McNamara, and K. M. Walsh, “Engineering stress in thin films for the field of bistable MEMS,” J. Micromech. Microeng. 25, 125025 (2015).
    [Crossref]
  46. A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: applications in thin film photovoltaics,” J. Appl. Phys. 92, 2424–2436 (2002).
    [Crossref]

2017 (1)

Z. Wang, D. Flötotto, and E. J. Mittemeijer, “Stress originating from nanovoids in hydrogenated amorphous semiconductors,” J. Appl. Phys. 121, 095307 (2017).
[Crossref]

2015 (1)

D. Ratnayake, M. D. Martin, U. R. Gowrishetty, D. A. Porter, T. A. Berfield, S. P. McNamara, and K. M. Walsh, “Engineering stress in thin films for the field of bistable MEMS,” J. Micromech. Microeng. 25, 125025 (2015).
[Crossref]

2014 (2)

R. Takei, S. Manako, E. Omoda, Y. Sakakibara, M. Mori, and T. Kamei, “Sub-1 dB/cm submicrometer-scale amorphous silicon waveguide for backend on-chip optical interconnect,” Opt. Express 22, 4779–4788 (2014).
[Crossref]

Y. Abdulraheem, I. Gordon, T. Bearda, H. Meddeb, and J. Poortmans, “Optical bandgap of ultra-thin amorphous silicon films deposited on crystalline silicon by PECVD,” AIP Adv. 4, 057122 (2014).
[Crossref]

2012 (1)

T. Lipka, O. Horn, J. Amthor, and J. Müller, “Low-loss multilayer compatible a-Si:H optical thin films for photonic applications,” JEOS RP 7, 12033 (2012).
[Crossref]

2011 (1)

J. Kang, Y. Atsumi, M. Oda, T. Amemiya, N. Nishiyama, and S. Arai, “Low-loss amorphous silicon multilayer waveguides vertically stacked on silicon-on-insulator substrate,” Jpn. J. Appl. Phys. 50, 120208 (2011).
[Crossref]

2010 (1)

2009 (4)

R. Sun, K. McComber, J. Cheng, D. K. Sparacin, M. Beals, J. Michel, and L. C. Kimerling, “Transparent amorphous silicon channel waveguides with silicon nitride intercladding layer,” Appl. Phys. Lett. 94, 141108 (2009).
[Crossref]

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282, 1767–1770 (2009).
[Crossref]

R. E. I. Schropp, “Hot wire chemical vapor deposition: recent progress, present state of the art and competitive opportunities,” ECS Trans. 25, 3–14 (2009).
[Crossref]

E. V. Johnson, L. Kroely, and P. Roca i Cabarrocas, “Raman scattering analysis of SiH bond stretching modes in hydrogenated microcrystalline silicon for use in thin-film photovoltaics,” Solar Energy Mater. Sol. Cells 93, 1904–1906 (2009).
[Crossref]

2008 (4)

A. H. M. Smets, T. Matsui, and M. Kondo, “High-rate deposition of microcrystalline silicon p-i-n solar cells in the high pressure depletion regime,” J. Appl. Phys. 104, 034508 (2008).
[Crossref]

M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44, 115–116 (2008).
[Crossref]

S. Taebi, M. Khorasaninejad, and S. Singh Saini, “Modified Fabry-Perot interferometric method for waveguide loss measurement,” Appl. Opt. 47, 6625–6630 (2008).
[Crossref]

C. K. Wong, H. Wong, M. Chan, Y. T. Chow, and H. P. Chan, “Silicon oxynitride integrated waveguide for on-chip optical interconnects applications,” Microelectron. Reliab. 48, 212–218 (2008).
[Crossref]

2005 (3)

E. G. Johnson, M. J. Shaw, G. P. Nordin, J. Guo, G. A. Vawter, T. J. Suleski, S. Habermehl, and C. T. Sullivan, “Fabrication techniques for low-loss silicon nitride waveguides,” Proc. SPIE 5720, 1–11 (2005).
[Crossref]

A. Harke, M. Krause, and J. Mueller, “Low-loss single mode amorphous silicon waveguides,” Electron. Lett. 41, 1377–1379 (2005).
[Crossref]

D. K. Sparacin, S. J. Spector, and L. C. Kimerling, “Silicon waveguide sidewall smoothing by wet chemical oxidation,” J. Lightwave Technol. 23, 2455–2461 (2005).
[Crossref]

2004 (2)

2003 (2)

D. Han, J. D. Lorentzen, J. Weinberg-Wolf, L. E. McNeil, and Q. Wang, “Raman study of thin films of amorphous-to-microcrystalline silicon prepared by hot-wire chemical vapor deposition,” J. Appl. Phys. 94, 2930–2936 (2003).
[Crossref]

A. H. M. Smets, W. M. M. Kessels, and M. C. M. van de Sanden, “Vacancies and voids in hydrogenated amorphous silicon,” Appl. Phys. Lett. 82, 1547–1549 (2003).
[Crossref]

2002 (2)

K. Tonokura, K. Inoue, and M. Koshi, “Chemical kinetics for film growth in silicon HWCVD,” J. Non-Cryst. Solids 299–302, 25–29 (2002).
[Crossref]

A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: applications in thin film photovoltaics,” J. Appl. Phys. 92, 2424–2436 (2002).
[Crossref]

2001 (2)

S. Tange, K. Inoue, K. Tonokura, and M. Koshi, “Catalytic decomposition of SiH4 on a hot filament,” Thin Solid Films 395, 42–46 (2001).
[Crossref]

T. Karabacak, Y. P. Zhao, G. C. Wang, and T. M. Lu, “Growth-front roughening in amorphous silicon films by sputtering,” Phys. Rev. B 64, 085323 (2001).
[Crossref]

2000 (2)

J. Robertson, “Deposition mechanism of hydrogenated amorphous silicon,” J. Appl. Phys. 87, 2608–2617 (2000).
[Crossref]

D. Stryahilev, F. Diehl, and B. Schröder, “The splitting of absorption bands in IR spectra of anisotropic SiH monolayers covering the internal surfaces in μc-Si:H,” J. Non-Cryst. Solids 266–269, 166–170 (2000).
[Crossref]

1999 (2)

K. F. Feenstra, R. E. I. Schropp, and W. F. Van der Weg, “Deposition of amorphous silicon films by hot-wire chemical vapor deposition,” J. Appl. Phys. 85, 6843–6852 (1999).
[Crossref]

S. Gupta, R. S. Katiyar, G. Morell, S. Z. Weisz, and I. Balberg, “The effect of hydrogen on the network disorder in hydrogenated amorphous silicon,” Appl. Phys. Lett. 75, 2803–2805 (1999).
[Crossref]

1998 (4)

L. Houben, M. Luysberg, P. Hapke, R. Carius, F. Finger, and H. Wagner, “Structural properties of microcrystalline silicon in the transition from highly crystalline to amorphous growth,” Philos. Mag. A 77, 1447–1460 (1998).
[Crossref]

R. S. Crandalla, X. Liub, and E. Iwaniczkoa, “Recent developments in hot wire amorphous silicon,” J. Non-Cryst. Solids 227–230, 23–28 (1998).
[Crossref]

G. C. Righini, G. Cocorullo, S. I. Najafi, F. G. Della Corte, R. De Rosa, B. Jalali, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon waveguides and interferometers for low-cost silicon optoelectronics,” Proc. SPIE 3278, 286–292 (1998).
[Crossref]

M. Hideki, “Formation of silicon-based thin films prepared by catalytic chemical vapor deposition (Cat-CVD) method,” Jpn. J. Appl. Phys. 37, 3175–3187 (1998).
[Crossref]

1995 (1)

Y.-F. Wang and R. Pollard, “An approach for modeling surface reaction kinetics in chemical vapor deposition processes,” J. Electrochem. Soc. 142, 1712–1725 (1995).
[Crossref]

1991 (1)

A. H. Mahan, J. Carapella, B. P. Nelson, R. S. Crandall, and I. Balberg, “Deposition of device quality, low H content amorphous silicon,” J. Appl. Phys. 69, 6728–6730 (1991).
[Crossref]

1989 (1)

T. Shimizu, H. Kidoh, M. Matsumoto, A. Morimoto, and M. Kumeda, “Photo-created defects in a-Si:H as elucidated by ESR, LESR and CPM,” J. Non-Cryst. Solids 114, 630–632 (1989).
[Crossref]

1986 (1)

H. Matsumura, “Catalytic chemical vapor deposition (CTC-CVD) method producing high quality hydrogenated amorphous silicon,” Jpn. J. Appl. Phys. 25, L949–L951 (1986).
[Crossref]

1985 (2)

Y. Hishikawa, K. Watanabe, S. Tsuda, M. Ohnishi, and Y. Kuwano, “Raman study on the silicon network of hydrogenated amorphous silicon films deposited by a glow discharge,” Jpn. J. Appl. Phys. 24, 385–389 (1985).
[Crossref]

D. Beeman, R. Tsu, and M. F. Thorpe, “Structural information from the Raman spectrum of amorphous silicon,” Phys. Rev. B 32, 874–878 (1985).
[Crossref]

1978 (1)

D. Kaplan, N. Sol, G. Velasco, and P. A. Thomas, “Hydrogenation of evaporated amorphous silicon films by plasma treatment,” Appl. Phys. Lett. 33, 440–442 (1978).
[Crossref]

1977 (1)

M. H. Brodsky, M. Cardona, and J. J. Cuomo, “Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering,” Phys. Rev. B 16, 3556–3571 (1977).
[Crossref]

Abdulraheem, Y.

Y. Abdulraheem, I. Gordon, T. Bearda, H. Meddeb, and J. Poortmans, “Optical bandgap of ultra-thin amorphous silicon films deposited on crystalline silicon by PECVD,” AIP Adv. 4, 057122 (2014).
[Crossref]

Amemiya, T.

J. Kang, Y. Atsumi, M. Oda, T. Amemiya, N. Nishiyama, and S. Arai, “Low-loss amorphous silicon multilayer waveguides vertically stacked on silicon-on-insulator substrate,” Jpn. J. Appl. Phys. 50, 120208 (2011).
[Crossref]

Amthor, J.

T. Lipka, O. Horn, J. Amthor, and J. Müller, “Low-loss multilayer compatible a-Si:H optical thin films for photonic applications,” JEOS RP 7, 12033 (2012).
[Crossref]

Arai, S.

J. Kang, Y. Atsumi, M. Oda, T. Amemiya, N. Nishiyama, and S. Arai, “Low-loss amorphous silicon multilayer waveguides vertically stacked on silicon-on-insulator substrate,” Jpn. J. Appl. Phys. 50, 120208 (2011).
[Crossref]

Atsumi, Y.

J. Kang, Y. Atsumi, M. Oda, T. Amemiya, N. Nishiyama, and S. Arai, “Low-loss amorphous silicon multilayer waveguides vertically stacked on silicon-on-insulator substrate,” Jpn. J. Appl. Phys. 50, 120208 (2011).
[Crossref]

Baets, R.

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282, 1767–1770 (2009).
[Crossref]

Balberg, I.

S. Gupta, R. S. Katiyar, G. Morell, S. Z. Weisz, and I. Balberg, “The effect of hydrogen on the network disorder in hydrogenated amorphous silicon,” Appl. Phys. Lett. 75, 2803–2805 (1999).
[Crossref]

A. H. Mahan, J. Carapella, B. P. Nelson, R. S. Crandall, and I. Balberg, “Deposition of device quality, low H content amorphous silicon,” J. Appl. Phys. 69, 6728–6730 (1991).
[Crossref]

Beals, M.

R. Sun, K. McComber, J. Cheng, D. K. Sparacin, M. Beals, J. Michel, and L. C. Kimerling, “Transparent amorphous silicon channel waveguides with silicon nitride intercladding layer,” Appl. Phys. Lett. 94, 141108 (2009).
[Crossref]

Bearda, T.

Y. Abdulraheem, I. Gordon, T. Bearda, H. Meddeb, and J. Poortmans, “Optical bandgap of ultra-thin amorphous silicon films deposited on crystalline silicon by PECVD,” AIP Adv. 4, 057122 (2014).
[Crossref]

Beeman, D.

D. Beeman, R. Tsu, and M. F. Thorpe, “Structural information from the Raman spectrum of amorphous silicon,” Phys. Rev. B 32, 874–878 (1985).
[Crossref]

Berfield, T. A.

D. Ratnayake, M. D. Martin, U. R. Gowrishetty, D. A. Porter, T. A. Berfield, S. P. McNamara, and K. M. Walsh, “Engineering stress in thin films for the field of bistable MEMS,” J. Micromech. Microeng. 25, 125025 (2015).
[Crossref]

Bogaerts, W.

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282, 1767–1770 (2009).
[Crossref]

Brodsky, M. H.

M. H. Brodsky, M. Cardona, and J. J. Cuomo, “Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering,” Phys. Rev. B 16, 3556–3571 (1977).
[Crossref]

Cai, D.

S. K. A. Neyer, E. Rabe, and D. Cai, “Polymer waveguide technologies for optical interconnects,” in European Conference on Integrated Optics (ECIO), Copenhagen, Denmark (2007), paper ThD0.

Carapella, J.

A. H. Mahan, J. Carapella, B. P. Nelson, R. S. Crandall, and I. Balberg, “Deposition of device quality, low H content amorphous silicon,” J. Appl. Phys. 69, 6728–6730 (1991).
[Crossref]

Cardona, M.

M. H. Brodsky, M. Cardona, and J. J. Cuomo, “Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering,” Phys. Rev. B 16, 3556–3571 (1977).
[Crossref]

Carius, R.

L. Houben, M. Luysberg, P. Hapke, R. Carius, F. Finger, and H. Wagner, “Structural properties of microcrystalline silicon in the transition from highly crystalline to amorphous growth,” Philos. Mag. A 77, 1447–1460 (1998).
[Crossref]

R. Carius, “Structural and optical properties of microcrystalline silicon for solar cell applications,” in Photovoltaic and Photoactive Materials: Properties, Technology and Applications, J. M. Marshall and D. Dimova-Malinovska, eds. (Springer Netherlands, 2002), p. 353.

Chan, H. P.

C. K. Wong, H. Wong, M. Chan, Y. T. Chow, and H. P. Chan, “Silicon oxynitride integrated waveguide for on-chip optical interconnects applications,” Microelectron. Reliab. 48, 212–218 (2008).
[Crossref]

Chan, M.

C. K. Wong, H. Wong, M. Chan, Y. T. Chow, and H. P. Chan, “Silicon oxynitride integrated waveguide for on-chip optical interconnects applications,” Microelectron. Reliab. 48, 212–218 (2008).
[Crossref]

Cheng, J.

R. Sun, K. McComber, J. Cheng, D. K. Sparacin, M. Beals, J. Michel, and L. C. Kimerling, “Transparent amorphous silicon channel waveguides with silicon nitride intercladding layer,” Appl. Phys. Lett. 94, 141108 (2009).
[Crossref]

Chow, Y. T.

C. K. Wong, H. Wong, M. Chan, Y. T. Chow, and H. P. Chan, “Silicon oxynitride integrated waveguide for on-chip optical interconnects applications,” Microelectron. Reliab. 48, 212–218 (2008).
[Crossref]

Cocorullo, G.

G. C. Righini, G. Cocorullo, S. I. Najafi, F. G. Della Corte, R. De Rosa, B. Jalali, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon waveguides and interferometers for low-cost silicon optoelectronics,” Proc. SPIE 3278, 286–292 (1998).
[Crossref]

Collins, R. W.

A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: applications in thin film photovoltaics,” J. Appl. Phys. 92, 2424–2436 (2002).
[Crossref]

Crandall, R. S.

A. H. Mahan, J. Carapella, B. P. Nelson, R. S. Crandall, and I. Balberg, “Deposition of device quality, low H content amorphous silicon,” J. Appl. Phys. 69, 6728–6730 (1991).
[Crossref]

Crandalla, R. S.

R. S. Crandalla, X. Liub, and E. Iwaniczkoa, “Recent developments in hot wire amorphous silicon,” J. Non-Cryst. Solids 227–230, 23–28 (1998).
[Crossref]

Cuomo, J. J.

M. H. Brodsky, M. Cardona, and J. J. Cuomo, “Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering,” Phys. Rev. B 16, 3556–3571 (1977).
[Crossref]

De La Rue, R. M.

M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44, 115–116 (2008).
[Crossref]

De Rosa, R.

G. C. Righini, G. Cocorullo, S. I. Najafi, F. G. Della Corte, R. De Rosa, B. Jalali, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon waveguides and interferometers for low-cost silicon optoelectronics,” Proc. SPIE 3278, 286–292 (1998).
[Crossref]

Della Corte, F. G.

G. C. Righini, G. Cocorullo, S. I. Najafi, F. G. Della Corte, R. De Rosa, B. Jalali, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon waveguides and interferometers for low-cost silicon optoelectronics,” Proc. SPIE 3278, 286–292 (1998).
[Crossref]

Deng, X.

A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: applications in thin film photovoltaics,” J. Appl. Phys. 92, 2424–2436 (2002).
[Crossref]

Diehl, F.

D. Stryahilev, F. Diehl, and B. Schröder, “The splitting of absorption bands in IR spectra of anisotropic SiH monolayers covering the internal surfaces in μc-Si:H,” J. Non-Cryst. Solids 266–269, 166–170 (2000).
[Crossref]

Dumon, P.

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282, 1767–1770 (2009).
[Crossref]

Feenstra, K. F.

K. F. Feenstra, R. E. I. Schropp, and W. F. Van der Weg, “Deposition of amorphous silicon films by hot-wire chemical vapor deposition,” J. Appl. Phys. 85, 6843–6852 (1999).
[Crossref]

Ferlauto, A. S.

A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: applications in thin film photovoltaics,” J. Appl. Phys. 92, 2424–2436 (2002).
[Crossref]

Ferreira, G. M.

A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: applications in thin film photovoltaics,” J. Appl. Phys. 92, 2424–2436 (2002).
[Crossref]

Finger, F.

L. Houben, M. Luysberg, P. Hapke, R. Carius, F. Finger, and H. Wagner, “Structural properties of microcrystalline silicon in the transition from highly crystalline to amorphous growth,” Philos. Mag. A 77, 1447–1460 (1998).
[Crossref]

Flötotto, D.

Z. Wang, D. Flötotto, and E. J. Mittemeijer, “Stress originating from nanovoids in hydrogenated amorphous semiconductors,” J. Appl. Phys. 121, 095307 (2017).
[Crossref]

Franco, G.

G. Franco, “Optoelectronic properties of amorphous silicon, the role of hydrogen: from experiment to modeling,” in Optoeletronics: Materials and Techniques, P. Padmanabhan, ed. (InTech, 2011), p. 496.

Ganguly, G.

A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: applications in thin film photovoltaics,” J. Appl. Phys. 92, 2424–2436 (2002).
[Crossref]

Gao, R.

Garito, A. F.

Gnan, M.

M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44, 115–116 (2008).
[Crossref]

Gordon, I.

Y. Abdulraheem, I. Gordon, T. Bearda, H. Meddeb, and J. Poortmans, “Optical bandgap of ultra-thin amorphous silicon films deposited on crystalline silicon by PECVD,” AIP Adv. 4, 057122 (2014).
[Crossref]

Gowrishetty, U. R.

D. Ratnayake, M. D. Martin, U. R. Gowrishetty, D. A. Porter, T. A. Berfield, S. P. McNamara, and K. M. Walsh, “Engineering stress in thin films for the field of bistable MEMS,” J. Micromech. Microeng. 25, 125025 (2015).
[Crossref]

Guo, J.

E. G. Johnson, M. J. Shaw, G. P. Nordin, J. Guo, G. A. Vawter, T. J. Suleski, S. Habermehl, and C. T. Sullivan, “Fabrication techniques for low-loss silicon nitride waveguides,” Proc. SPIE 5720, 1–11 (2005).
[Crossref]

Gupta, S.

S. Gupta, R. S. Katiyar, G. Morell, S. Z. Weisz, and I. Balberg, “The effect of hydrogen on the network disorder in hydrogenated amorphous silicon,” Appl. Phys. Lett. 75, 2803–2805 (1999).
[Crossref]

Habermehl, S.

E. G. Johnson, M. J. Shaw, G. P. Nordin, J. Guo, G. A. Vawter, T. J. Suleski, S. Habermehl, and C. T. Sullivan, “Fabrication techniques for low-loss silicon nitride waveguides,” Proc. SPIE 5720, 1–11 (2005).
[Crossref]

Han, D.

D. Han, J. D. Lorentzen, J. Weinberg-Wolf, L. E. McNeil, and Q. Wang, “Raman study of thin films of amorphous-to-microcrystalline silicon prepared by hot-wire chemical vapor deposition,” J. Appl. Phys. 94, 2930–2936 (2003).
[Crossref]

Hapke, P.

L. Houben, M. Luysberg, P. Hapke, R. Carius, F. Finger, and H. Wagner, “Structural properties of microcrystalline silicon in the transition from highly crystalline to amorphous growth,” Philos. Mag. A 77, 1447–1460 (1998).
[Crossref]

Harke, A.

A. Harke, M. Krause, and J. Mueller, “Low-loss single mode amorphous silicon waveguides,” Electron. Lett. 41, 1377–1379 (2005).
[Crossref]

Hideki, M.

M. Hideki, “Formation of silicon-based thin films prepared by catalytic chemical vapor deposition (Cat-CVD) method,” Jpn. J. Appl. Phys. 37, 3175–3187 (1998).
[Crossref]

A. Takahiro, I. Makoto, M. Takeo, I. Koichi, O. Keisuke, and M. Hideki, “Propagation loss of amorphous silicon optical waveguides at the 0.8 μm-wavelength range,” in 7th IEEE International Conference on Group IV Photonics, Beijing, China (2010), pp. 269–271.

Hishikawa, Y.

Y. Hishikawa, K. Watanabe, S. Tsuda, M. Ohnishi, and Y. Kuwano, “Raman study on the silicon network of hydrogenated amorphous silicon films deposited by a glow discharge,” Jpn. J. Appl. Phys. 24, 385–389 (1985).
[Crossref]

Horn, O.

T. Lipka, O. Horn, J. Amthor, and J. Müller, “Low-loss multilayer compatible a-Si:H optical thin films for photonic applications,” JEOS RP 7, 12033 (2012).
[Crossref]

Houben, L.

L. Houben, M. Luysberg, P. Hapke, R. Carius, F. Finger, and H. Wagner, “Structural properties of microcrystalline silicon in the transition from highly crystalline to amorphous growth,” Philos. Mag. A 77, 1447–1460 (1998).
[Crossref]

Inoue, K.

K. Tonokura, K. Inoue, and M. Koshi, “Chemical kinetics for film growth in silicon HWCVD,” J. Non-Cryst. Solids 299–302, 25–29 (2002).
[Crossref]

S. Tange, K. Inoue, K. Tonokura, and M. Koshi, “Catalytic decomposition of SiH4 on a hot filament,” Thin Solid Films 395, 42–46 (2001).
[Crossref]

Iwaniczkoa, E.

R. S. Crandalla, X. Liub, and E. Iwaniczkoa, “Recent developments in hot wire amorphous silicon,” J. Non-Cryst. Solids 227–230, 23–28 (1998).
[Crossref]

Jalali, B.

G. C. Righini, G. Cocorullo, S. I. Najafi, F. G. Della Corte, R. De Rosa, B. Jalali, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon waveguides and interferometers for low-cost silicon optoelectronics,” Proc. SPIE 3278, 286–292 (1998).
[Crossref]

Johnson, E. G.

E. G. Johnson, M. J. Shaw, G. P. Nordin, J. Guo, G. A. Vawter, T. J. Suleski, S. Habermehl, and C. T. Sullivan, “Fabrication techniques for low-loss silicon nitride waveguides,” Proc. SPIE 5720, 1–11 (2005).
[Crossref]

Johnson, E. V.

E. V. Johnson, L. Kroely, and P. Roca i Cabarrocas, “Raman scattering analysis of SiH bond stretching modes in hydrogenated microcrystalline silicon for use in thin-film photovoltaics,” Solar Energy Mater. Sol. Cells 93, 1904–1906 (2009).
[Crossref]

Kamei, T.

Kang, J.

J. Kang, Y. Atsumi, M. Oda, T. Amemiya, N. Nishiyama, and S. Arai, “Low-loss amorphous silicon multilayer waveguides vertically stacked on silicon-on-insulator substrate,” Jpn. J. Appl. Phys. 50, 120208 (2011).
[Crossref]

Kaplan, D.

D. Kaplan, N. Sol, G. Velasco, and P. A. Thomas, “Hydrogenation of evaporated amorphous silicon films by plasma treatment,” Appl. Phys. Lett. 33, 440–442 (1978).
[Crossref]

Karabacak, T.

T. Karabacak, Y. P. Zhao, G. C. Wang, and T. M. Lu, “Growth-front roughening in amorphous silicon films by sputtering,” Phys. Rev. B 64, 085323 (2001).
[Crossref]

Katiyar, R. S.

S. Gupta, R. S. Katiyar, G. Morell, S. Z. Weisz, and I. Balberg, “The effect of hydrogen on the network disorder in hydrogenated amorphous silicon,” Appl. Phys. Lett. 75, 2803–2805 (1999).
[Crossref]

Keisuke, O.

A. Takahiro, I. Makoto, M. Takeo, I. Koichi, O. Keisuke, and M. Hideki, “Propagation loss of amorphous silicon optical waveguides at the 0.8 μm-wavelength range,” in 7th IEEE International Conference on Group IV Photonics, Beijing, China (2010), pp. 269–271.

Kessels, W. M. M.

A. H. M. Smets, W. M. M. Kessels, and M. C. M. van de Sanden, “Vacancies and voids in hydrogenated amorphous silicon,” Appl. Phys. Lett. 82, 1547–1549 (2003).
[Crossref]

Khorasaninejad, M.

Kidoh, H.

T. Shimizu, H. Kidoh, M. Matsumoto, A. Morimoto, and M. Kumeda, “Photo-created defects in a-Si:H as elucidated by ESR, LESR and CPM,” J. Non-Cryst. Solids 114, 630–632 (1989).
[Crossref]

Kimerling, L. C.

R. Sun, K. McComber, J. Cheng, D. K. Sparacin, M. Beals, J. Michel, and L. C. Kimerling, “Transparent amorphous silicon channel waveguides with silicon nitride intercladding layer,” Appl. Phys. Lett. 94, 141108 (2009).
[Crossref]

D. K. Sparacin, S. J. Spector, and L. C. Kimerling, “Silicon waveguide sidewall smoothing by wet chemical oxidation,” J. Lightwave Technol. 23, 2455–2461 (2005).
[Crossref]

Koichi, I.

A. Takahiro, I. Makoto, M. Takeo, I. Koichi, O. Keisuke, and M. Hideki, “Propagation loss of amorphous silicon optical waveguides at the 0.8 μm-wavelength range,” in 7th IEEE International Conference on Group IV Photonics, Beijing, China (2010), pp. 269–271.

Kondo, M.

A. H. M. Smets, T. Matsui, and M. Kondo, “High-rate deposition of microcrystalline silicon p-i-n solar cells in the high pressure depletion regime,” J. Appl. Phys. 104, 034508 (2008).
[Crossref]

Koshi, M.

K. Tonokura, K. Inoue, and M. Koshi, “Chemical kinetics for film growth in silicon HWCVD,” J. Non-Cryst. Solids 299–302, 25–29 (2002).
[Crossref]

S. Tange, K. Inoue, K. Tonokura, and M. Koshi, “Catalytic decomposition of SiH4 on a hot filament,” Thin Solid Films 395, 42–46 (2001).
[Crossref]

Krause, M.

A. Harke, M. Krause, and J. Mueller, “Low-loss single mode amorphous silicon waveguides,” Electron. Lett. 41, 1377–1379 (2005).
[Crossref]

Kroely, L.

E. V. Johnson, L. Kroely, and P. Roca i Cabarrocas, “Raman scattering analysis of SiH bond stretching modes in hydrogenated microcrystalline silicon for use in thin-film photovoltaics,” Solar Energy Mater. Sol. Cells 93, 1904–1906 (2009).
[Crossref]

Kumeda, M.

T. Shimizu, H. Kidoh, M. Matsumoto, A. Morimoto, and M. Kumeda, “Photo-created defects in a-Si:H as elucidated by ESR, LESR and CPM,” J. Non-Cryst. Solids 114, 630–632 (1989).
[Crossref]

Kuwano, Y.

Y. Hishikawa, K. Watanabe, S. Tsuda, M. Ohnishi, and Y. Kuwano, “Raman study on the silicon network of hydrogenated amorphous silicon films deposited by a glow discharge,” Jpn. J. Appl. Phys. 24, 385–389 (1985).
[Crossref]

Kwong, D. L.

Lipka, T.

T. Lipka, O. Horn, J. Amthor, and J. Müller, “Low-loss multilayer compatible a-Si:H optical thin films for photonic applications,” JEOS RP 7, 12033 (2012).
[Crossref]

Liub, X.

R. S. Crandalla, X. Liub, and E. Iwaniczkoa, “Recent developments in hot wire amorphous silicon,” J. Non-Cryst. Solids 227–230, 23–28 (1998).
[Crossref]

Lo, G. Q.

Lorentzen, J. D.

D. Han, J. D. Lorentzen, J. Weinberg-Wolf, L. E. McNeil, and Q. Wang, “Raman study of thin films of amorphous-to-microcrystalline silicon prepared by hot-wire chemical vapor deposition,” J. Appl. Phys. 94, 2930–2936 (2003).
[Crossref]

Lu, T. M.

T. Karabacak, Y. P. Zhao, G. C. Wang, and T. M. Lu, “Growth-front roughening in amorphous silicon films by sputtering,” Phys. Rev. B 64, 085323 (2001).
[Crossref]

Luysberg, M.

L. Houben, M. Luysberg, P. Hapke, R. Carius, F. Finger, and H. Wagner, “Structural properties of microcrystalline silicon in the transition from highly crystalline to amorphous growth,” Philos. Mag. A 77, 1447–1460 (1998).
[Crossref]

Macintyre, D. S.

M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44, 115–116 (2008).
[Crossref]

Mahan, A. H.

A. H. Mahan, J. Carapella, B. P. Nelson, R. S. Crandall, and I. Balberg, “Deposition of device quality, low H content amorphous silicon,” J. Appl. Phys. 69, 6728–6730 (1991).
[Crossref]

Makoto, I.

A. Takahiro, I. Makoto, M. Takeo, I. Koichi, O. Keisuke, and M. Hideki, “Propagation loss of amorphous silicon optical waveguides at the 0.8 μm-wavelength range,” in 7th IEEE International Conference on Group IV Photonics, Beijing, China (2010), pp. 269–271.

Manako, S.

Martin, M. D.

D. Ratnayake, M. D. Martin, U. R. Gowrishetty, D. A. Porter, T. A. Berfield, S. P. McNamara, and K. M. Walsh, “Engineering stress in thin films for the field of bistable MEMS,” J. Micromech. Microeng. 25, 125025 (2015).
[Crossref]

Matsui, T.

A. H. M. Smets, T. Matsui, and M. Kondo, “High-rate deposition of microcrystalline silicon p-i-n solar cells in the high pressure depletion regime,” J. Appl. Phys. 104, 034508 (2008).
[Crossref]

Matsumoto, M.

T. Shimizu, H. Kidoh, M. Matsumoto, A. Morimoto, and M. Kumeda, “Photo-created defects in a-Si:H as elucidated by ESR, LESR and CPM,” J. Non-Cryst. Solids 114, 630–632 (1989).
[Crossref]

Matsumura, H.

H. Matsumura, “Catalytic chemical vapor deposition (CTC-CVD) method producing high quality hydrogenated amorphous silicon,” Jpn. J. Appl. Phys. 25, L949–L951 (1986).
[Crossref]

McComber, K.

R. Sun, K. McComber, J. Cheng, D. K. Sparacin, M. Beals, J. Michel, and L. C. Kimerling, “Transparent amorphous silicon channel waveguides with silicon nitride intercladding layer,” Appl. Phys. Lett. 94, 141108 (2009).
[Crossref]

McNab, S. J.

McNamara, S. P.

D. Ratnayake, M. D. Martin, U. R. Gowrishetty, D. A. Porter, T. A. Berfield, S. P. McNamara, and K. M. Walsh, “Engineering stress in thin films for the field of bistable MEMS,” J. Micromech. Microeng. 25, 125025 (2015).
[Crossref]

McNeil, L. E.

D. Han, J. D. Lorentzen, J. Weinberg-Wolf, L. E. McNeil, and Q. Wang, “Raman study of thin films of amorphous-to-microcrystalline silicon prepared by hot-wire chemical vapor deposition,” J. Appl. Phys. 94, 2930–2936 (2003).
[Crossref]

Meddeb, H.

Y. Abdulraheem, I. Gordon, T. Bearda, H. Meddeb, and J. Poortmans, “Optical bandgap of ultra-thin amorphous silicon films deposited on crystalline silicon by PECVD,” AIP Adv. 4, 057122 (2014).
[Crossref]

Michel, J.

R. Sun, K. McComber, J. Cheng, D. K. Sparacin, M. Beals, J. Michel, and L. C. Kimerling, “Transparent amorphous silicon channel waveguides with silicon nitride intercladding layer,” Appl. Phys. Lett. 94, 141108 (2009).
[Crossref]

Mittemeijer, E. J.

Z. Wang, D. Flötotto, and E. J. Mittemeijer, “Stress originating from nanovoids in hydrogenated amorphous semiconductors,” J. Appl. Phys. 121, 095307 (2017).
[Crossref]

Morell, G.

S. Gupta, R. S. Katiyar, G. Morell, S. Z. Weisz, and I. Balberg, “The effect of hydrogen on the network disorder in hydrogenated amorphous silicon,” Appl. Phys. Lett. 75, 2803–2805 (1999).
[Crossref]

Mori, M.

Morimoto, A.

T. Shimizu, H. Kidoh, M. Matsumoto, A. Morimoto, and M. Kumeda, “Photo-created defects in a-Si:H as elucidated by ESR, LESR and CPM,” J. Non-Cryst. Solids 114, 630–632 (1989).
[Crossref]

Mueller, J.

A. Harke, M. Krause, and J. Mueller, “Low-loss single mode amorphous silicon waveguides,” Electron. Lett. 41, 1377–1379 (2005).
[Crossref]

Müller, J.

T. Lipka, O. Horn, J. Amthor, and J. Müller, “Low-loss multilayer compatible a-Si:H optical thin films for photonic applications,” JEOS RP 7, 12033 (2012).
[Crossref]

Najafi, S. I.

G. C. Righini, G. Cocorullo, S. I. Najafi, F. G. Della Corte, R. De Rosa, B. Jalali, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon waveguides and interferometers for low-cost silicon optoelectronics,” Proc. SPIE 3278, 286–292 (1998).
[Crossref]

Nelson, B. P.

A. H. Mahan, J. Carapella, B. P. Nelson, R. S. Crandall, and I. Balberg, “Deposition of device quality, low H content amorphous silicon,” J. Appl. Phys. 69, 6728–6730 (1991).
[Crossref]

Neyer, S. K. A.

S. K. A. Neyer, E. Rabe, and D. Cai, “Polymer waveguide technologies for optical interconnects,” in European Conference on Integrated Optics (ECIO), Copenhagen, Denmark (2007), paper ThD0.

Nishiyama, N.

J. Kang, Y. Atsumi, M. Oda, T. Amemiya, N. Nishiyama, and S. Arai, “Low-loss amorphous silicon multilayer waveguides vertically stacked on silicon-on-insulator substrate,” Jpn. J. Appl. Phys. 50, 120208 (2011).
[Crossref]

Nordin, G. P.

E. G. Johnson, M. J. Shaw, G. P. Nordin, J. Guo, G. A. Vawter, T. J. Suleski, S. Habermehl, and C. T. Sullivan, “Fabrication techniques for low-loss silicon nitride waveguides,” Proc. SPIE 5720, 1–11 (2005).
[Crossref]

Oda, M.

J. Kang, Y. Atsumi, M. Oda, T. Amemiya, N. Nishiyama, and S. Arai, “Low-loss amorphous silicon multilayer waveguides vertically stacked on silicon-on-insulator substrate,” Jpn. J. Appl. Phys. 50, 120208 (2011).
[Crossref]

Ohnishi, M.

Y. Hishikawa, K. Watanabe, S. Tsuda, M. Ohnishi, and Y. Kuwano, “Raman study on the silicon network of hydrogenated amorphous silicon films deposited by a glow discharge,” Jpn. J. Appl. Phys. 24, 385–389 (1985).
[Crossref]

Omoda, E.

Pearce, J. M.

A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: applications in thin film photovoltaics,” J. Appl. Phys. 92, 2424–2436 (2002).
[Crossref]

Pollard, R.

Y.-F. Wang and R. Pollard, “An approach for modeling surface reaction kinetics in chemical vapor deposition processes,” J. Electrochem. Soc. 142, 1712–1725 (1995).
[Crossref]

Poortmans, J.

Y. Abdulraheem, I. Gordon, T. Bearda, H. Meddeb, and J. Poortmans, “Optical bandgap of ultra-thin amorphous silicon films deposited on crystalline silicon by PECVD,” AIP Adv. 4, 057122 (2014).
[Crossref]

Porter, D. A.

D. Ratnayake, M. D. Martin, U. R. Gowrishetty, D. A. Porter, T. A. Berfield, S. P. McNamara, and K. M. Walsh, “Engineering stress in thin films for the field of bistable MEMS,” J. Micromech. Microeng. 25, 125025 (2015).
[Crossref]

Rabe, E.

S. K. A. Neyer, E. Rabe, and D. Cai, “Polymer waveguide technologies for optical interconnects,” in European Conference on Integrated Optics (ECIO), Copenhagen, Denmark (2007), paper ThD0.

Ratnayake, D.

D. Ratnayake, M. D. Martin, U. R. Gowrishetty, D. A. Porter, T. A. Berfield, S. P. McNamara, and K. M. Walsh, “Engineering stress in thin films for the field of bistable MEMS,” J. Micromech. Microeng. 25, 125025 (2015).
[Crossref]

Rendina, I.

G. C. Righini, G. Cocorullo, S. I. Najafi, F. G. Della Corte, R. De Rosa, B. Jalali, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon waveguides and interferometers for low-cost silicon optoelectronics,” Proc. SPIE 3278, 286–292 (1998).
[Crossref]

Righini, G. C.

G. C. Righini, G. Cocorullo, S. I. Najafi, F. G. Della Corte, R. De Rosa, B. Jalali, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon waveguides and interferometers for low-cost silicon optoelectronics,” Proc. SPIE 3278, 286–292 (1998).
[Crossref]

Robertson, J.

J. Robertson, “Deposition mechanism of hydrogenated amorphous silicon,” J. Appl. Phys. 87, 2608–2617 (2000).
[Crossref]

Roca i Cabarrocas, P.

E. V. Johnson, L. Kroely, and P. Roca i Cabarrocas, “Raman scattering analysis of SiH bond stretching modes in hydrogenated microcrystalline silicon for use in thin-film photovoltaics,” Solar Energy Mater. Sol. Cells 93, 1904–1906 (2009).
[Crossref]

Rubino, A.

G. C. Righini, G. Cocorullo, S. I. Najafi, F. G. Della Corte, R. De Rosa, B. Jalali, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon waveguides and interferometers for low-cost silicon optoelectronics,” Proc. SPIE 3278, 286–292 (1998).
[Crossref]

Sakakibara, Y.

Schaekers, M.

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282, 1767–1770 (2009).
[Crossref]

Schröder, B.

D. Stryahilev, F. Diehl, and B. Schröder, “The splitting of absorption bands in IR spectra of anisotropic SiH monolayers covering the internal surfaces in μc-Si:H,” J. Non-Cryst. Solids 266–269, 166–170 (2000).
[Crossref]

Schropp, R. E. I.

R. E. I. Schropp, “Hot wire chemical vapor deposition: recent progress, present state of the art and competitive opportunities,” ECS Trans. 25, 3–14 (2009).
[Crossref]

K. F. Feenstra, R. E. I. Schropp, and W. F. Van der Weg, “Deposition of amorphous silicon films by hot-wire chemical vapor deposition,” J. Appl. Phys. 85, 6843–6852 (1999).
[Crossref]

Selvaraja, S. K.

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282, 1767–1770 (2009).
[Crossref]

Shaw, M. J.

E. G. Johnson, M. J. Shaw, G. P. Nordin, J. Guo, G. A. Vawter, T. J. Suleski, S. Habermehl, and C. T. Sullivan, “Fabrication techniques for low-loss silicon nitride waveguides,” Proc. SPIE 5720, 1–11 (2005).
[Crossref]

Shimizu, T.

T. Shimizu, H. Kidoh, M. Matsumoto, A. Morimoto, and M. Kumeda, “Photo-created defects in a-Si:H as elucidated by ESR, LESR and CPM,” J. Non-Cryst. Solids 114, 630–632 (1989).
[Crossref]

Singh Saini, S.

Sleeckx, E.

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282, 1767–1770 (2009).
[Crossref]

Smets, A. H. M.

A. H. M. Smets, T. Matsui, and M. Kondo, “High-rate deposition of microcrystalline silicon p-i-n solar cells in the high pressure depletion regime,” J. Appl. Phys. 104, 034508 (2008).
[Crossref]

A. H. M. Smets, W. M. M. Kessels, and M. C. M. van de Sanden, “Vacancies and voids in hydrogenated amorphous silicon,” Appl. Phys. Lett. 82, 1547–1549 (2003).
[Crossref]

Sol, N.

D. Kaplan, N. Sol, G. Velasco, and P. A. Thomas, “Hydrogenation of evaporated amorphous silicon films by plasma treatment,” Appl. Phys. Lett. 33, 440–442 (1978).
[Crossref]

Sorel, M.

M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44, 115–116 (2008).
[Crossref]

Sparacin, D. K.

R. Sun, K. McComber, J. Cheng, D. K. Sparacin, M. Beals, J. Michel, and L. C. Kimerling, “Transparent amorphous silicon channel waveguides with silicon nitride intercladding layer,” Appl. Phys. Lett. 94, 141108 (2009).
[Crossref]

D. K. Sparacin, S. J. Spector, and L. C. Kimerling, “Silicon waveguide sidewall smoothing by wet chemical oxidation,” J. Lightwave Technol. 23, 2455–2461 (2005).
[Crossref]

Spector, S. J.

Stryahilev, D.

D. Stryahilev, F. Diehl, and B. Schröder, “The splitting of absorption bands in IR spectra of anisotropic SiH monolayers covering the internal surfaces in μc-Si:H,” J. Non-Cryst. Solids 266–269, 166–170 (2000).
[Crossref]

Suleski, T. J.

E. G. Johnson, M. J. Shaw, G. P. Nordin, J. Guo, G. A. Vawter, T. J. Suleski, S. Habermehl, and C. T. Sullivan, “Fabrication techniques for low-loss silicon nitride waveguides,” Proc. SPIE 5720, 1–11 (2005).
[Crossref]

Sullivan, C. T.

E. G. Johnson, M. J. Shaw, G. P. Nordin, J. Guo, G. A. Vawter, T. J. Suleski, S. Habermehl, and C. T. Sullivan, “Fabrication techniques for low-loss silicon nitride waveguides,” Proc. SPIE 5720, 1–11 (2005).
[Crossref]

Sun, R.

R. Sun, K. McComber, J. Cheng, D. K. Sparacin, M. Beals, J. Michel, and L. C. Kimerling, “Transparent amorphous silicon channel waveguides with silicon nitride intercladding layer,” Appl. Phys. Lett. 94, 141108 (2009).
[Crossref]

Taebi, S.

Takahiro, A.

A. Takahiro, I. Makoto, M. Takeo, I. Koichi, O. Keisuke, and M. Hideki, “Propagation loss of amorphous silicon optical waveguides at the 0.8 μm-wavelength range,” in 7th IEEE International Conference on Group IV Photonics, Beijing, China (2010), pp. 269–271.

Takayama, K.

Takei, R.

Takeo, M.

A. Takahiro, I. Makoto, M. Takeo, I. Koichi, O. Keisuke, and M. Hideki, “Propagation loss of amorphous silicon optical waveguides at the 0.8 μm-wavelength range,” in 7th IEEE International Conference on Group IV Photonics, Beijing, China (2010), pp. 269–271.

Tange, S.

S. Tange, K. Inoue, K. Tonokura, and M. Koshi, “Catalytic decomposition of SiH4 on a hot filament,” Thin Solid Films 395, 42–46 (2001).
[Crossref]

Terzini, E.

G. C. Righini, G. Cocorullo, S. I. Najafi, F. G. Della Corte, R. De Rosa, B. Jalali, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon waveguides and interferometers for low-cost silicon optoelectronics,” Proc. SPIE 3278, 286–292 (1998).
[Crossref]

Thomas, P. A.

D. Kaplan, N. Sol, G. Velasco, and P. A. Thomas, “Hydrogenation of evaporated amorphous silicon films by plasma treatment,” Appl. Phys. Lett. 33, 440–442 (1978).
[Crossref]

Thoms, S.

M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44, 115–116 (2008).
[Crossref]

Thorpe, M. F.

D. Beeman, R. Tsu, and M. F. Thorpe, “Structural information from the Raman spectrum of amorphous silicon,” Phys. Rev. B 32, 874–878 (1985).
[Crossref]

Thourhout, D. V.

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282, 1767–1770 (2009).
[Crossref]

Tonokura, K.

K. Tonokura, K. Inoue, and M. Koshi, “Chemical kinetics for film growth in silicon HWCVD,” J. Non-Cryst. Solids 299–302, 25–29 (2002).
[Crossref]

S. Tange, K. Inoue, K. Tonokura, and M. Koshi, “Catalytic decomposition of SiH4 on a hot filament,” Thin Solid Films 395, 42–46 (2001).
[Crossref]

Tsu, R.

D. Beeman, R. Tsu, and M. F. Thorpe, “Structural information from the Raman spectrum of amorphous silicon,” Phys. Rev. B 32, 874–878 (1985).
[Crossref]

Tsuda, S.

Y. Hishikawa, K. Watanabe, S. Tsuda, M. Ohnishi, and Y. Kuwano, “Raman study on the silicon network of hydrogenated amorphous silicon films deposited by a glow discharge,” Jpn. J. Appl. Phys. 24, 385–389 (1985).
[Crossref]

van de Sanden, M. C. M.

A. H. M. Smets, W. M. M. Kessels, and M. C. M. van de Sanden, “Vacancies and voids in hydrogenated amorphous silicon,” Appl. Phys. Lett. 82, 1547–1549 (2003).
[Crossref]

Van der Weg, W. F.

K. F. Feenstra, R. E. I. Schropp, and W. F. Van der Weg, “Deposition of amorphous silicon films by hot-wire chemical vapor deposition,” J. Appl. Phys. 85, 6843–6852 (1999).
[Crossref]

Vawter, G. A.

E. G. Johnson, M. J. Shaw, G. P. Nordin, J. Guo, G. A. Vawter, T. J. Suleski, S. Habermehl, and C. T. Sullivan, “Fabrication techniques for low-loss silicon nitride waveguides,” Proc. SPIE 5720, 1–11 (2005).
[Crossref]

Velasco, G.

D. Kaplan, N. Sol, G. Velasco, and P. A. Thomas, “Hydrogenation of evaporated amorphous silicon films by plasma treatment,” Appl. Phys. Lett. 33, 440–442 (1978).
[Crossref]

Vlasov, Y. A.

Wagner, H.

L. Houben, M. Luysberg, P. Hapke, R. Carius, F. Finger, and H. Wagner, “Structural properties of microcrystalline silicon in the transition from highly crystalline to amorphous growth,” Philos. Mag. A 77, 1447–1460 (1998).
[Crossref]

Walsh, K. M.

D. Ratnayake, M. D. Martin, U. R. Gowrishetty, D. A. Porter, T. A. Berfield, S. P. McNamara, and K. M. Walsh, “Engineering stress in thin films for the field of bistable MEMS,” J. Micromech. Microeng. 25, 125025 (2015).
[Crossref]

Wang, G. C.

T. Karabacak, Y. P. Zhao, G. C. Wang, and T. M. Lu, “Growth-front roughening in amorphous silicon films by sputtering,” Phys. Rev. B 64, 085323 (2001).
[Crossref]

Wang, Q.

D. Han, J. D. Lorentzen, J. Weinberg-Wolf, L. E. McNeil, and Q. Wang, “Raman study of thin films of amorphous-to-microcrystalline silicon prepared by hot-wire chemical vapor deposition,” J. Appl. Phys. 94, 2930–2936 (2003).
[Crossref]

Wang, Y.-F.

Y.-F. Wang and R. Pollard, “An approach for modeling surface reaction kinetics in chemical vapor deposition processes,” J. Electrochem. Soc. 142, 1712–1725 (1995).
[Crossref]

Wang, Z.

Z. Wang, D. Flötotto, and E. J. Mittemeijer, “Stress originating from nanovoids in hydrogenated amorphous semiconductors,” J. Appl. Phys. 121, 095307 (2017).
[Crossref]

Watanabe, K.

Y. Hishikawa, K. Watanabe, S. Tsuda, M. Ohnishi, and Y. Kuwano, “Raman study on the silicon network of hydrogenated amorphous silicon films deposited by a glow discharge,” Jpn. J. Appl. Phys. 24, 385–389 (1985).
[Crossref]

Weinberg-Wolf, J.

D. Han, J. D. Lorentzen, J. Weinberg-Wolf, L. E. McNeil, and Q. Wang, “Raman study of thin films of amorphous-to-microcrystalline silicon prepared by hot-wire chemical vapor deposition,” J. Appl. Phys. 94, 2930–2936 (2003).
[Crossref]

Weisz, S. Z.

S. Gupta, R. S. Katiyar, G. Morell, S. Z. Weisz, and I. Balberg, “The effect of hydrogen on the network disorder in hydrogenated amorphous silicon,” Appl. Phys. Lett. 75, 2803–2805 (1999).
[Crossref]

Wong, C. K.

C. K. Wong, H. Wong, M. Chan, Y. T. Chow, and H. P. Chan, “Silicon oxynitride integrated waveguide for on-chip optical interconnects applications,” Microelectron. Reliab. 48, 212–218 (2008).
[Crossref]

Wong, H.

C. K. Wong, H. Wong, M. Chan, Y. T. Chow, and H. P. Chan, “Silicon oxynitride integrated waveguide for on-chip optical interconnects applications,” Microelectron. Reliab. 48, 212–218 (2008).
[Crossref]

Wronski, C. R.

A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: applications in thin film photovoltaics,” J. Appl. Phys. 92, 2424–2436 (2002).
[Crossref]

Yeniay, A.

Zhao, Y. P.

T. Karabacak, Y. P. Zhao, G. C. Wang, and T. M. Lu, “Growth-front roughening in amorphous silicon films by sputtering,” Phys. Rev. B 64, 085323 (2001).
[Crossref]

Zhu, S.

AIP Adv. (1)

Y. Abdulraheem, I. Gordon, T. Bearda, H. Meddeb, and J. Poortmans, “Optical bandgap of ultra-thin amorphous silicon films deposited on crystalline silicon by PECVD,” AIP Adv. 4, 057122 (2014).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

D. Kaplan, N. Sol, G. Velasco, and P. A. Thomas, “Hydrogenation of evaporated amorphous silicon films by plasma treatment,” Appl. Phys. Lett. 33, 440–442 (1978).
[Crossref]

R. Sun, K. McComber, J. Cheng, D. K. Sparacin, M. Beals, J. Michel, and L. C. Kimerling, “Transparent amorphous silicon channel waveguides with silicon nitride intercladding layer,” Appl. Phys. Lett. 94, 141108 (2009).
[Crossref]

S. Gupta, R. S. Katiyar, G. Morell, S. Z. Weisz, and I. Balberg, “The effect of hydrogen on the network disorder in hydrogenated amorphous silicon,” Appl. Phys. Lett. 75, 2803–2805 (1999).
[Crossref]

A. H. M. Smets, W. M. M. Kessels, and M. C. M. van de Sanden, “Vacancies and voids in hydrogenated amorphous silicon,” Appl. Phys. Lett. 82, 1547–1549 (2003).
[Crossref]

ECS Trans. (1)

R. E. I. Schropp, “Hot wire chemical vapor deposition: recent progress, present state of the art and competitive opportunities,” ECS Trans. 25, 3–14 (2009).
[Crossref]

Electron. Lett. (2)

M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44, 115–116 (2008).
[Crossref]

A. Harke, M. Krause, and J. Mueller, “Low-loss single mode amorphous silicon waveguides,” Electron. Lett. 41, 1377–1379 (2005).
[Crossref]

J. Appl. Phys. (7)

J. Robertson, “Deposition mechanism of hydrogenated amorphous silicon,” J. Appl. Phys. 87, 2608–2617 (2000).
[Crossref]

K. F. Feenstra, R. E. I. Schropp, and W. F. Van der Weg, “Deposition of amorphous silicon films by hot-wire chemical vapor deposition,” J. Appl. Phys. 85, 6843–6852 (1999).
[Crossref]

A. H. Mahan, J. Carapella, B. P. Nelson, R. S. Crandall, and I. Balberg, “Deposition of device quality, low H content amorphous silicon,” J. Appl. Phys. 69, 6728–6730 (1991).
[Crossref]

D. Han, J. D. Lorentzen, J. Weinberg-Wolf, L. E. McNeil, and Q. Wang, “Raman study of thin films of amorphous-to-microcrystalline silicon prepared by hot-wire chemical vapor deposition,” J. Appl. Phys. 94, 2930–2936 (2003).
[Crossref]

Z. Wang, D. Flötotto, and E. J. Mittemeijer, “Stress originating from nanovoids in hydrogenated amorphous semiconductors,” J. Appl. Phys. 121, 095307 (2017).
[Crossref]

A. H. M. Smets, T. Matsui, and M. Kondo, “High-rate deposition of microcrystalline silicon p-i-n solar cells in the high pressure depletion regime,” J. Appl. Phys. 104, 034508 (2008).
[Crossref]

A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: applications in thin film photovoltaics,” J. Appl. Phys. 92, 2424–2436 (2002).
[Crossref]

J. Electrochem. Soc. (1)

Y.-F. Wang and R. Pollard, “An approach for modeling surface reaction kinetics in chemical vapor deposition processes,” J. Electrochem. Soc. 142, 1712–1725 (1995).
[Crossref]

J. Lightwave Technol. (2)

J. Micromech. Microeng. (1)

D. Ratnayake, M. D. Martin, U. R. Gowrishetty, D. A. Porter, T. A. Berfield, S. P. McNamara, and K. M. Walsh, “Engineering stress in thin films for the field of bistable MEMS,” J. Micromech. Microeng. 25, 125025 (2015).
[Crossref]

J. Non-Cryst. Solids (4)

D. Stryahilev, F. Diehl, and B. Schröder, “The splitting of absorption bands in IR spectra of anisotropic SiH monolayers covering the internal surfaces in μc-Si:H,” J. Non-Cryst. Solids 266–269, 166–170 (2000).
[Crossref]

R. S. Crandalla, X. Liub, and E. Iwaniczkoa, “Recent developments in hot wire amorphous silicon,” J. Non-Cryst. Solids 227–230, 23–28 (1998).
[Crossref]

T. Shimizu, H. Kidoh, M. Matsumoto, A. Morimoto, and M. Kumeda, “Photo-created defects in a-Si:H as elucidated by ESR, LESR and CPM,” J. Non-Cryst. Solids 114, 630–632 (1989).
[Crossref]

K. Tonokura, K. Inoue, and M. Koshi, “Chemical kinetics for film growth in silicon HWCVD,” J. Non-Cryst. Solids 299–302, 25–29 (2002).
[Crossref]

JEOS RP (1)

T. Lipka, O. Horn, J. Amthor, and J. Müller, “Low-loss multilayer compatible a-Si:H optical thin films for photonic applications,” JEOS RP 7, 12033 (2012).
[Crossref]

Jpn. J. Appl. Phys. (4)

H. Matsumura, “Catalytic chemical vapor deposition (CTC-CVD) method producing high quality hydrogenated amorphous silicon,” Jpn. J. Appl. Phys. 25, L949–L951 (1986).
[Crossref]

Y. Hishikawa, K. Watanabe, S. Tsuda, M. Ohnishi, and Y. Kuwano, “Raman study on the silicon network of hydrogenated amorphous silicon films deposited by a glow discharge,” Jpn. J. Appl. Phys. 24, 385–389 (1985).
[Crossref]

J. Kang, Y. Atsumi, M. Oda, T. Amemiya, N. Nishiyama, and S. Arai, “Low-loss amorphous silicon multilayer waveguides vertically stacked on silicon-on-insulator substrate,” Jpn. J. Appl. Phys. 50, 120208 (2011).
[Crossref]

M. Hideki, “Formation of silicon-based thin films prepared by catalytic chemical vapor deposition (Cat-CVD) method,” Jpn. J. Appl. Phys. 37, 3175–3187 (1998).
[Crossref]

Microelectron. Reliab. (1)

C. K. Wong, H. Wong, M. Chan, Y. T. Chow, and H. P. Chan, “Silicon oxynitride integrated waveguide for on-chip optical interconnects applications,” Microelectron. Reliab. 48, 212–218 (2008).
[Crossref]

Opt. Commun. (1)

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282, 1767–1770 (2009).
[Crossref]

Opt. Express (3)

Philos. Mag. A (1)

L. Houben, M. Luysberg, P. Hapke, R. Carius, F. Finger, and H. Wagner, “Structural properties of microcrystalline silicon in the transition from highly crystalline to amorphous growth,” Philos. Mag. A 77, 1447–1460 (1998).
[Crossref]

Phys. Rev. B (3)

T. Karabacak, Y. P. Zhao, G. C. Wang, and T. M. Lu, “Growth-front roughening in amorphous silicon films by sputtering,” Phys. Rev. B 64, 085323 (2001).
[Crossref]

M. H. Brodsky, M. Cardona, and J. J. Cuomo, “Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering,” Phys. Rev. B 16, 3556–3571 (1977).
[Crossref]

D. Beeman, R. Tsu, and M. F. Thorpe, “Structural information from the Raman spectrum of amorphous silicon,” Phys. Rev. B 32, 874–878 (1985).
[Crossref]

Proc. SPIE (2)

E. G. Johnson, M. J. Shaw, G. P. Nordin, J. Guo, G. A. Vawter, T. J. Suleski, S. Habermehl, and C. T. Sullivan, “Fabrication techniques for low-loss silicon nitride waveguides,” Proc. SPIE 5720, 1–11 (2005).
[Crossref]

G. C. Righini, G. Cocorullo, S. I. Najafi, F. G. Della Corte, R. De Rosa, B. Jalali, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon waveguides and interferometers for low-cost silicon optoelectronics,” Proc. SPIE 3278, 286–292 (1998).
[Crossref]

Solar Energy Mater. Sol. Cells (1)

E. V. Johnson, L. Kroely, and P. Roca i Cabarrocas, “Raman scattering analysis of SiH bond stretching modes in hydrogenated microcrystalline silicon for use in thin-film photovoltaics,” Solar Energy Mater. Sol. Cells 93, 1904–1906 (2009).
[Crossref]

Thin Solid Films (1)

S. Tange, K. Inoue, K. Tonokura, and M. Koshi, “Catalytic decomposition of SiH4 on a hot filament,” Thin Solid Films 395, 42–46 (2001).
[Crossref]

Other (4)

A. Takahiro, I. Makoto, M. Takeo, I. Koichi, O. Keisuke, and M. Hideki, “Propagation loss of amorphous silicon optical waveguides at the 0.8 μm-wavelength range,” in 7th IEEE International Conference on Group IV Photonics, Beijing, China (2010), pp. 269–271.

R. Carius, “Structural and optical properties of microcrystalline silicon for solar cell applications,” in Photovoltaic and Photoactive Materials: Properties, Technology and Applications, J. M. Marshall and D. Dimova-Malinovska, eds. (Springer Netherlands, 2002), p. 353.

S. K. A. Neyer, E. Rabe, and D. Cai, “Polymer waveguide technologies for optical interconnects,” in European Conference on Integrated Optics (ECIO), Copenhagen, Denmark (2007), paper ThD0.

G. Franco, “Optoelectronic properties of amorphous silicon, the role of hydrogen: from experiment to modeling,” in Optoeletronics: Materials and Techniques, P. Padmanabhan, ed. (InTech, 2011), p. 496.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Extensive Raman characterization on the structural disorder of an a-Si:H network as a function of Tsub. (a) The Raman spectrum of an a-Si:H network deposited at 230°C of Tsub shows four Raman active modes and the structural information available from those, such as peak position, can indicate chemical species and symmetry; the ω shift can specify the stress and strain; and the FWHM can express the structural disorder and angular distortion of the material network. (b) TO peak position as a function of Tsub, where the dotted line is a guideline for standard TO peak frequency, ωTO of a-Si:H at 480  cm1. Insets are the deconvolution of the TO peak into amorphous and micro-voids in the topology of a-Si:H deposited at 190°C and 320°C, where the solid line represents the TO peak of the Si-Si stretching mode of the deposited film and the dotted lines represent the Gaussian deconvolution of the TO peak. Red dotted lines suggest amorphous and green dotted lines suggest micro-voids. (c) TO peak width ΓTO as a function of Tsub, where dotted lines are guidelines for standard ΓTO at the fully amorphous condition and device-quality a-Si:H. (d) Dependence of the ratio of ITA to ITO on the hydrogen concentration in the diffusion control region. Schematic blue dotted arrows represent how bending modes vary with the hydrogen content in the H-role region and how the stretching mode changes with Tsub in the T-role region.
Fig. 2.
Fig. 2. (a) An Arrhenius plot shows the deposition rate versus the temperature (square symbol) and shows the propagation loss (dB/cm) corresponding to the deposited temperature (diamond symbol). (b) Cross-sectional SEM images of the a-Si:H films deposited at the different substrate temperatures. The red boxes represent the a-Si:H layer surrounded by silicon dioxide. Inset: the field intensity profile of the propagation mode (at λ=1.55  μm) obtained from the 2 μm width waveguide.
Fig. 3.
Fig. 3. (a) Measured propagation loss, which is normalized to the coupling loss for different widths. (b) Measured propagation loss (black dots) (dB/cm) of the fully etched ridge waveguide as a function of waveguide width at excitation wavelength 1550 nm. The dotted line is for the eye guide. The squares are the analytically calculated propagation losses. Inset is the cross-sectional image of the measured waveguide, W=350  nm, H=400  nm.
Fig. 4.
Fig. 4. (a) AFM images of the surface roughness of a-Si:H deposited at 230°C and 320°C. (b) 2D electric field profiles across the different waveguide widths, where all experimental defects [extinction coefficient, sidewall, surface roughness, air void (as shown in inset of Fig. 3(b)] are counted.

Tables (2)

Tables Icon

Table 1. Summary of the Performance of a-Si Waveguides and Techniques Used in Silicon Photonics Applications

Tables Icon

Table 2. Raman Spectral Information of an a-Si:H Network for Different Substrate Temperatures

Metrics