Abstract

Two-dimensional (2D) materials with potential applications in photonic and optoelectronic devices have attracted increasing attention due to their unique structures and captivating properties. However, generation of stable high-energy ultrashort pulses requires further boosting of these materials’ optical properties, such as higher damage threshold and larger modulation depth. Here we investigate a new type of heterostructure material with uniformity by employing the magnetron sputtering technique. Heterostructure materials are synthesized with van der Waals heterostructures consisting of MoS2 and Sb2Te3. The bandgap, carrier mobility, and carrier concentration of the MoS2-Sb2Te3-MoS2 heterostructure materials are calculated theoretically. By using these materials as saturable absorbers (SAs), applications in fiber lasers with Q-switching and mode-locking states are demonstrated experimentally. The modulation depth and damage threshold of SAs are measured to be 64.17% and 14.13  J/cm2, respectively. Both theoretical and experimental results indicate that MoS2-Sb2Te3-MoS2 heterostructure materials have large modulation depth, and can resist high power during the generation of ultrashort pulses. The MoS2-Sb2Te3-MoS2 heterostructure materials have the advantages of low cost, high reliability, and suitability for mass production, and provide a promising solution for the development of 2D-material-based devices with desirable electronic and optoelectronic properties.

© 2018 Chinese Laser Press

1. INTRODUCTION

Two-dimensional (2D) materials have exhibited great promise in microelectronics and optoelectronics since the discovery of graphene [19]. They possess special physical features, and can be used in the construction of various functional devices. Considered as one of the keys to modern technology, low-dimensional materials have been consistently reported and deeply investigated [1020]. For example, carbon nanotubes (CNTs) and some 2D materials have been applied to the preparation of saturable absorption devices, photodetectors, and optical modulators [2128].

As a saturable absorption material, CNTs are not sensitive to polarization, and have relatively high damage threshold and environmental stability. However, their scattering loss needs to be further reduced [2931]. Graphene, which is cheap and convenient to prepare, also has a high damage threshold and ultra-fast recovery time [24]. As a special zero-gap semiconductor, graphene nearly absorbs the light for each band, which makes it suitable as an ultra-wide-band saturable absorber (SA). However, the modulation depth and non-saturable loss should be optimized [3235]. Topological insulators (TIs), the generic term for materials with topological electronic properties, have the advantages of excellent saturable absorption property, large optical modulation depth, and high third-order nonlinear refractive index. Their narrow bandgap enhances their ability to absorb the broadband spectrum, which has potential applications in ultrafast optics [3638]. Nevertheless, their thermal damage threshold should be improved [3638]. Transition metal dichalcogenides (TMDs) have been widely investigated in nonlinear optics after graphene [3945]. To date, molybdenum disulfide (MoS2), tungsten disulphide (WS2), and tungsten diselenide (WSe2) have been proved to have ultrafast electron relaxation ability. TMDs can act as saturable absorption materials. They have higher damage threshold, but their nonlinear absorption properties remain to be enhanced [3945]. Black phosphorus has direct bandgap, and the carrier mobility is high. Although its easy oxidation brings about a bit of difficulty for its direct application [4649], there are plenty of methods to encapsulate and enhance its stability that have achieved satisfactory results [50,51]. In addition, some novel 2D materials have garnered substantial interest. For instance, few-layer antimonene and few-layer bismuthene have successfully realized mode-locking operation [52,53]; they inject new vitality into the study of ultrafast lasers.

In fact, saturable absorption materials are composed of a monolayer or multilayer of atoms arrayed in 2D space or quasi-2D space with a certain thickness. They can be modularized, and then stacked together without lattice mismatch in traditional heterostructures [5456]. Because different 2D materials have different bandgaps and energy band structures, they can be customized with different band structures according to various requirements [5762]. Here, we provide MoS2-Sb2Te3-MoS2 heterostructure materials to produce SAs with higher damage threshold and larger modulation depth. The optical absorption intensity and modulation depth of the MoS2-Sb2Te3-MoS2 heterostructures can be greatly increased due to the greater modulation depth and stronger optical nonlinearity of Sb2Te3. Compared with that of graphene, the damage threshold of MoS2 is higher, and the modulation depth of single-layer MoS2 is greater than that of graphene. Thus, MoS2 will not introduce extra non-saturation losses on account of the increase in modulation depth. The damage threshold and modulation depth of SAs are measured to be 14.13  J/cm2 and 64.17%, respectively, in experiment. The fabricated heterostructure SAs are integrated into an erbium-doped fiber (EDF) laser to demonstrate the related optical properties through Q-switching and mode-locking operation. Both the theoretical and experimental results indicate that the MoS2-Sb2Te3-MoS2 heterostructure materials have excellent optical properties in photonic device applications.

2. RESULTS AND DISCUSSION

A. Heterostructure Material Characterizations

The magnetron sputtering technique is employed to fabricate the MoS2-Sb2Te3-MoS2 heterostructure SAs. The heterostructure materials were divided into three layers, and were composed of MoS2 and Sb2Te3. The structures of the fabricated SAs are presented in Figs. 1(a) and 1(b). The gold film, which serves as a highly reflective mirror, was grown on polished fused silica substrate 1 inch in diameter. The MoS2 target (diameter 60 mm, thickness 5 mm, purity 99.99%), Sb2Te3 target (diameter 49 mm, thickness 3.5 mm, purity 99.99%), and gold target (diameter 50 mm, thickness 2.5 mm, purity 99.9%) were placed in the target chambers, and the pressure in the vacuum chamber was set to be 104  Pa during the process of film deposition. At first, the Au target was excited under direct current (DC) voltage for 5 min with the gold film thickness of 117 nm. Then the sputtered sulfur and molybdenum atoms were ejected out from the MoS2 target and deposited on the gold film.

 

Fig. 1. State-of-the-art SA devices using the MoS2-Sb2Te3-MoS2 heterostructure. (a) Schematic of macrostructure and (b) surface structure of the fabricated MoS2-Sb2Te3-MoS2 heterostructure SA. Sb2Te3 (7 nm thickness) is in the middle of MoS2 (8 nm thickness). The gold film with 117 nm thickness is deposited on the polished fused silica substrate as a broadband reflection mirror. (c) SEM image of the surface of deposited MoS2-Sb2Te3-MoS2 heterostructure film. (d) SEM image of the film thickness.

Download Full Size | PPT Slide | PDF

The MoS2 film, with thickness of 8 nm, was generated under 100 W radio frequency (RF) power for 1 min. Next, Sb2Te3 film with thickness of 7 nm was deposited on the MoS2 film under 0.2 A DC current for 20 s. Finally, another MoS2 film with the thickness of 8 nm was deposited on the Sb2Te3 film. The size and microstructure of the MoS2-Sb2Te3-MoS2 heterostructure materials were verified by scanning electron microscopy (SEM). In Figs. 1(c) and 1(d), the surface of the heterostructure materials on the left side of the graph is compact and robust, and the as-prepared samples are composed of some uniform-scale nanoparticles on the right side of the graph, which demonstrate 8 nm average size. It is generally agreed upon that small particle diameter leads to large active surface area. Therefore, it can be speculated that MoS2-Sb2Te3-MoS2 heterostructures have outstanding activity and superior conductivity. The overall thickness of the heterostructure in Fig. 1(d) is about 24 nm.

B. Bandgap

The heterostructure was modeled by a MoS2-Sb2Te3-MoS2 sandwich-layered structure in Fig. 2(a). To minimize the lattice mismatch between the MoS2 and Sb2Te3, a supercell of (7×7)/(2×2) was used in Fig. 2(b), and the corresponding lattice mismatch is 2%. The corresponding unfolding band structure of the heterostructure was further examined with BandUP code [63,64]. The calculations were performed by density functional theory (DFT) implemented in the Vienna ab initio simulation package [65]. The interaction between core electrons and valence electrons was described with the projector augmented wave pseudopotential [66,67]. The valence electrons were expanded by plane wave functions with a 400 eV cutoff energy. The exchange-correlation energy was calculated by the use of the general gradient approximation of Perdew–Burke–Ernzerhof (PBE) [68]. Atomic spin-orbit coupling (SOC) was considered. The surface structures were modeled with a 20 Å vacuum separation between repeated slabs. To obtain the correct interlayer interaction in heterostructures, the van der Waals correction proposed by Grimme (DFT-D3) was enclosed [69]. By a mesh grid of 2×2×1 k-points, the Brillouin zone was selected with the Gamma-centered Monkhorst–Pack scheme. The structure was relaxed until the change of the total energy was less than 105  eV and the forces became less than 0.01 eV/Å.

 

Fig. 2. Atomic and electronic structures of the MoS2-Sb2Te3-MoS2 heterostructure. (a) Side and (b) top views of the MoS2-Sb2Te3-MoS2 heterostructure. In (b), the detailed matching pattern of the (7×7)/(2×2) MoS2-Sb2Te3-MoS2 heterostructure is shown. The (7×7) MoS2 supercell is highlighted with yellow color, and the (2×2) Sb2Te supercell is denoted by the blue area. (c) Unfolding band structure of the MoS2-Sb2Te3-MoS2 heterostructure. Here, the Fermi level is defined as zero. (d) Band alignment of the MoS2-Sb2Te3-MoS2 heterostructure. The corresponding energy levels of pure MoS2 and Sb2Te3 slabs are shown in both sides.

Download Full Size | PPT Slide | PDF

Bulk Sb2Te3 is a type of TI with a single Dirac cone. The calculated lattice constant of Sb2Te3 is 4.273 Å for a, and 29.975 Å for c using PBE+SOC. These calculated constants agree well with the experimental values: 4.264 Å for a, and 30.458 Å for c [70]. The lattice constant of MoS2 is 3.150 Å for a, and 11.99 Å for c.

The modulation depth of the MoS2-Sb2Te3-MoS2 heterostructure is related to the carrier relaxation time τ and carrier concentration ni. The relaxation time is associated with carrier mobility μ, and the μ in 2D materials can be calculated by the following equation [71,72]:

μ2D=eτm=e3C2DkBTme*md(Ei)2,
where me* (or mh*) is the effective mass along the transport direction (mx along the x direction or my along the y direction, respectively), which can be extracted from the band structure calculation, and md is the average effective mass defined by md=(mxmy). T represents the temperature taken as 300 K. Ei is the deformation potential constant of the valence band maximum (VBM) for the hole and conduction band minimum (CBM) for electron, defined by Ei=ΔEi/(ΔLi/Li), with the lattice compression or dilatation by a step of 0.5%. C2D represents the effective 2D elastic moduli, which can be calculated by C2D=2(EE0)/[S0(ΔLi/Li)2], where E and E0 are the total energies after deformation along the i direction and at the equilibrium state, respectively. S0 is the area of the 2D system at equilibrium. The intrinsic carrier concentration in 2D semiconductor materials can be computed through the following equation [73]:
ni=mh*me*kBTπ2exp(Eg2kBT),
where Eg is the energy bandgap. In Fig. 2(c), the bandgap of the MoS2-Sb2Te3-MoS2 is calculated to be 0.35 eV, slightly smaller than the bandgap of monolayer Sb2Te3 (0.46 eV). As shown in Table 1, the effective masses of holes along the K-Γ(y) and Γ-M(x) directions in the heterostructure are 0.620m0 and 0.423m0, respectively. The corresponding effective masses of electrons are 0.315m0 and 0.405m0, respectively. The effective masses of holes are slightly larger than those of electrons along the same direction. Meanwhile, the effective mass of either electron or hole is smaller than that of the monolayer MoS2, but a little larger than that of the monolayer Sb2Te3.

Tables Icon

Table 1. Effective Mass (m0) and Carrier Mobility (μ) of Monolayer and Heterostructure Materialsa

In Fig. 2(d), the bandgaps of the monolayers MoS2 and Sb2Te3 are 1.79 and 0.46 eV, while that of the MoS2-Sb2Te3-Sb2Te3 heterostructure is 0.35 eV. The main reason for this comes from the van der Waals interlayer coupling between antibonding d+p hybrid orbitals of MoS2 and s+p hybrid orbitals of Sb2Te3, which causes the rise in VBM and the reduction of CBM. Meanwhile, such weak coupling also affects the carrier mobility and concentration, as we discuss subsequently.

C. Carrier Mobility

The effective mass and carrier mobility of the MoS2-Sb2Te3-MoS2 heterostructure and monolayers MoS2 and Sb2Te3 are shown in Table 1. The carrier mobility of the MoS2-Sb2Te3-MoS2 heterostructure is larger than that of the monolayer MoS2, but smaller than that of monolayer Sb2Te3, which indicates that the relaxation time of MoS2-Sb2Te3-MoS2 is longer than that of monolayer MoS2 but shorter than that of monolayer Sb2Te3. The carrier mobility of MoS2-Sb2Te3-MoS2 is greatly affected by the relatively large effective mass compared with that of Sb2Te3. In comparison with MoS2-Sb2Te3-MoS2, grapheme-Sb2Te3-graphene shows a larger effective mass, and thus the graphene-Sb2Te3-graphene should have a shorter relaxation time than the MoS2-Sb2Te3-MoS2. The relatively large carrier mobility of the MoS2-Sb2Te3-MoS2 heterostructure represents the long relaxation time of the structure, which is vital for applications in photonic devices.

D. Carrier Concentration

The intrinsic carrier concentration, which is closely related with the effective mass and bandgap, is further calculated. As shown in Table 2, the carrier concentration of the MoS2-Sb2Te3-MoS2 is 10–100 times larger than that of monolayer Sb2Te3. The large carrier concentration of the MoS2-Sb2Te3-MoS2 heterostructure mainly comes from the small bandgap of 0.35 eV compared with that of monolayer Sb2Te3. The large carrier concentration of the heterostructure indicates the small modulation depth. However, due to the small bandgap of 0.07 eV, the carrier concentration of the graphene–Sb2Te3–graphene structure is about 103 times larger than that of the MoS2-Sb2Te3-MoS2.

Tables Icon

Table 2. Intrinsic Carrier Concentration of Monolayer and Heterostructure Materialsa

E. Optical Property Characterization

Using the balanced twin-detector method as shown in Fig. 3, the modulation depth, saturation intensity, and nonsaturable absorption loss of the fabricated MoS2-Sb2Te3-MoS2 heterostructure SAs are measured. The pulse source is a homemade 125 MHz fiber laser centered at 1550 nm with 100 fs pulse duration and 80 mW output power. A variable optical attenuator (VOA) is used to control the power level of the optical pulses. A 5050 optical coupler (OC) is applied to dividing the incident optical pulses into two paths with the same power. The main function of the circulator is to pass optical pulses through the SA mirror with a spatial structure. The SA mirror (SAM) is the fabricated MoS2-Sb2Te3-MoS2 heterostructure SA. By rotating the VOA, we can measure the different output powers from high to low at two detectors. Based on the measured data, we can fit the saturable absorption of the MoS2-Sb2Te3-MoS2 heterostructure SAs, as described by the two-level model

α(I)=αs1+I/Isat+αns,
where αs is the modulation depth (saturable loss), αns is the non-saturable loss, and Isat is the saturation intensity. As presented in Fig. 4(a), the saturation intensity, non-saturable loss, and modulation depth are measured to be 151.176  MW/cm2, 35.83%, and 64.17%, respectively. Such a large modulation depth considerably affects the performance of mode-locked fiber lasers. The large modulation depth of the MoS2-Sb2Te3-MoS2 heterostructure SAs is not only due to the larger modulation depth and stronger optical nonlinearity of Sb2Te3 in the heterostructure, but also related to the precisely controlled film quality in the manufacturing processes.

 

Fig. 3. Standard two-arm transmission setup. The SAM is the MoS2-Sb2Te3-MoS2 heterostructure SA mirror.

Download Full Size | PPT Slide | PDF

 

Fig. 4. Characterization of the MoS2-Sb2Te3-MoS2 heterostructure SA mirror. (a) The modulation depth is 64.17%. (b) Raman spectrum of the MoS2-Sb2Te3-MoS2 heterostructure. (c), (d) Threshold damage condition of the MoS2-Sb2Te3-MoS2 heterostructure film at 12 mW.

Download Full Size | PPT Slide | PDF

Using a Raman spectrometer which has the central wavelength of the laser around 514 nm, we measure the Raman spectra as shown in Fig. 4(b). In order to excite the Raman scattering, the laser power is set to be 5.6 mW. The peaks observed at 110, 118, 138, and 162  cm1 are well-related to the modes of Sb2Te3. The peaks at 189 and 251  cm1 have relation with Sb2O3. The peaks at 383 and 407  cm1 correspond to the E2g1 and A1g modes of MoS2. Furthermore, owing to the direct interaction with high-power pulses, optically induced thermal damage occurs in Figs. 4(c) and 4(d). Because of the thermal damage, long-term instability and pulse breaking arise, and the high-power operation of the fiber laser is limited. Thus, a high damage threshold for the SA is necessary. Here, the central wavelength of the light source for testing is mode-locked at 800 nm. The pulse duration and repetition rate are 35 fs and 1 kHz, respectively. The optical damage of the SA appears when the measured power is adjusted to 12 mW, corresponding to a 14.13  J/cm2 damage threshold, which is four orders of magnitude higher than that of commercially available semiconductor saturable absorber mirrors (500  μJ/cm2) [39].

3. PULSED LASER APPLICATIONS

The schematic of the all-fiber EDF laser can be seen in Fig. 5. The length of the laser cavity is 5.6 m. The blue curve of the ring cavity represents the transmission fiber (SMF-28), and the green curve is the EDF as gain medium (Liekki 110-4/125). The length of the SMF-28 fiber is about 5 m, and the length of the high-gain EDF is about 60 cm. A polarization controller (PC) is engaged to change the polarization states of light, and a polarization-independent isolator (PI-ISO) is applied to controlling the unidirectional transmission of light in the laser cavity. The saturable absorber mirror is the fabricated MoS2-Sb2Te3-MoS2 heterostructure SA. The EDF laser is pumped by the laser diode (LD) at 976 nm, and the maximum output power of the LD is 600 mW. The pulse is output by 10:90 OC.

 

Fig. 5. Configuration of the mode-locked EDF laser. WDM, wavelength-division multiplexer; LD, laser diode; SMF, single-mode fiber; EDF, erbium-doped fiber; OC, optical coupler; PC, polarization controller; PI-ISO, polarization-independent isolator; SAM, MoS2-Sb2Te3-MoS2 heterostructure SA mirror.

Download Full Size | PPT Slide | PDF

A. Q-Switching

After inserting the MoS2-Sb2Te3-MoS2 heterostructure SAs into the EDF laser cavity, a stable state of Q-switching is obtained in Fig. 6(a), which generates a series of stable pulse trains at 600 mW pump power. The central wavelength is around 1530 nm, as shown in Fig. 6(b). The pulse duration of full width at half maximum is about 1.6 μs in Fig. 6(c). Next, we measure its corresponding RF spectrum in order to investigate the stability of the fiber laser. In Fig. 6(d), the RF spectrum of the output pulse is presented, and the electrical signal to noise ratio (SNR) is about 42 dB, indicating high pulse train stability. The pulse trains without the amplitude fluctuation in Fig. 6(a) are complementary for the stability of our fiber lasers. Moreover, other frequency components are not observed in the RF spectrum with wider span in the inset, which further confirms the high stability of the fiber laser.

 

Fig. 6. Typical Q-switching characteristics. (a) Q-switched pulse trains. (b) Optical spectrum. (c) Q-switched pulse duration at 600 mW pump power. (d) RF spectrum at the fundamental frequency and wideband RF spectrum (inset).

Download Full Size | PPT Slide | PDF

The pulse properties of Q-switched fiber lasers mainly depend on nonlinear dynamics of the EDF, loss, and MoS2-Sb2Te3-MoS2 heterostructure SA. These lead to typical properties of the pulse duration and repetition rate versus incident pump power in Fig. 7. The pulse is emitted once the storage energy of the cavity reaches a certain threshold. When the incident pump power is adjusted from 180 to 600 mW, the pulse duration is reduced from 5.4 to 1.6 μs, and the repetition rate increases from 87 to 182.3 kHz in Fig. 7(a). Therefore, higher repetition rates and shorter durations of pulses can be derived with the larger incident pump power. The relationship among the output power, pump power, and pulse energy is presented in Fig. 7(b). The maximum output power is 21.4 mW, and the highest pulse energy is 120 nJ. We believe that MoS2-Sb2Te3-MoS2 heterostructure SAs can endure higher power due to their homogeneous deposition. During the entire testing range of the pump power, the pulses with Q-switching states remain stable, suggesting the high quality and thermal stability of the heterostructure materials.

 

Fig. 7. (a) Pulse duration and repetition rate versus incident pump power. (b) Average output power and single pulse energy versus incident pump power.

Download Full Size | PPT Slide | PDF

B. Mode Locking

Using a Q-switching system, the mode-locked laser pulses cannot be obtained by increasing the pump power and adjusting the PC in our experiment. We speculate that the nonlinearity and anomalous dispersion have not reached equilibrium in this case, so we are not able to get mode-locking operation. Taking into account the more negative dispersion meeting the increased likelihood of mode-locking, we have added a nearly 50 cm single-mode fiber between ISO and circulator on the basis of the Q-switching laser cavity. After fine-tuning the PC, we obtained mode-locked laser pulses. It is found that the stable mode-locking states appear at a relatively low mode-locking threshold value of 80 mW pump power. Once the mode-locking states of our fiber laser are realized, the fiber laser can remain stable when the pump power increases, without further adjustment of the PC. In Fig. 8, the related parameters are measured when the pump power is 600 mW. Figure 8(a) shows a typical soliton spectrum under the mode-locking state. The central wavelength is at 1554 nm, and the 3 dB bandwidth is about 28 nm. In Fig. 8(b), the pulse duration and maximum average output power are 286 fs and 20 mW, which are measured after the 50 cm single-mode fiber leading from the 10% output port of the OC. It is worth noting that the 286 fs pulse duration and 20 mW average output power reach the best level among the reported fiber lasers based on 2D material heterostructure SAs. Moreover, to the best of our knowledge, we demonstrate for the first time that MoS2-Sb2Te3-MoS2 heterostructures can be used as SA materials in fiber lasers.

 

Fig. 8. Experimental results of fiber laser with mode-locked states. (a) Optical spectrum. (b) Pulse duration. (c) RF spectrum. (d) Phase noise.

Download Full Size | PPT Slide | PDF

To investigate the operation stability, we measure the RF spectrum. The repetition rate of the fiber laser is about 36.4 MHz. We perform 10 kHz frequency span spectrum to detect the fundamental repetition rate at the resolution bandwidth of 20 Hz in Fig. 8(c). There is no noise signal on the background, and the 73 dB SNR is observed, which implies high stability in the mode-locking states. The strong inhibition ability for the noise may be related to the ultrafast electron relaxation of the MoS2-Sb2Te3-MoS2 heterostructure SAs. Besides, we show a wide RF spectrum span to observe the harmonic as a red line in Fig. 8(c). There is no significant spectral modulation, implying that the Q-switching instabilities do not exist. The integrated phase noise is measured in Fig. 8(d). The phase noise integrated from 100 Hz to 1 MHz is about 0.59 mrad, and the corresponding time jitter is about 2.9 ps. The related parameters of our fiber laser reach the best level among all fiber lasers based on heterostructure SAs (see Table 3).

Tables Icon

Table 3. Comparison of Fiber Lasers Based on Different Heterostructure SAs

4. CONCLUSION

MoS2-Sb2Te3-MoS2 heterostructure materials are prepared with magnetron sputtering technique, and successfully applied in ultrafast optics. The first-principles calculations reveal that the MoS2-Sb2Te3-MoS2 heterostructure can effectively improve the relaxation time and carrier concentration, compared with MoS2 or Sb2Te3. The experimentally produced heterostructure SAs show 64.17% modulation depth and 14.13  J/cm2 damage threshold. With the MoS2-Sb2Te3-MoS2 heterostructure SAs, Q-switching and mode-locking states are achieved in fiber lasers. With the incident pump power changing from 180 to 600 mW, we obtain tunable pulse duration from 5.4 to 1.6 μs, and the repetition rate is changed from 87 to 182.3 kHz. For the Q-switched pulses, the maximum output power, SNR, and highest pulse energy are measured to be 21.4 mW, 42 dB, and 120 nJ, respectively. Due to the ultrafast electron relaxation of the prepared heterostructure materials, stable mode-locking pulses with 286 fs pulse duration and 20 mW average output power are also obtained. This work provides an alternative for preparing 2D materials with high quality and accurate controllability. Furthermore, the excellent optical properties of the prepared heterostructure materials indicate they can serve as promising materials for photonic devices.

Funding

National Natural Science Foundation of China (NSFC) (11674036); Beijing University of Posts and Telecommunications (BUPT) (IPOC2016ZT04, IPOC2017ZZ05); Beijing Youth Top-Notch Talent Support Program (2017000026833ZK08); Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund (U1501501); XAFS Station (BL14W1).

Acknowledgment

We thank the XAFS Station of the Shanghai Synchrotron Radiation Facility and acknowledge computation support from Tianhe-JK at the Beijing Computational Science Research Center (CSRC).

REFERENCES

1. A. K. Geim and K. S. Novoselov, “The rise of grapheme,” Nat. Mater. 6, 183–191 (2007). [CrossRef]  

2. F. N. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4, 839–843 (2009). [CrossRef]  

3. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010). [CrossRef]  

4. Q. L. Bao, H. Zhang, B. Wang, Z. H. Ni, C. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5, 411–415 (2011). [CrossRef]  

5. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012). [CrossRef]  

6. A. Martinez and Z. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nat. Photonics 7, 842–845 (2013). [CrossRef]  

7. F. N. Xia, H. Wang, and Y. C. Jia, “Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics,” Nat. Commun. 5, 4458 (2014). [CrossRef]  

8. F. N. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two dimensional material nanophotonics,” Nat. Photonics 8, 899–907 (2014). [CrossRef]  

9. Z. P. Sun, A. Martinez, and F. Wang, “Optical modulators with 2D layered materials,” Nat. Photonics 10, 227–238 (2016). [CrossRef]  

10. T. Hasan, Z. P. Sun, F. Q. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009). [CrossRef]  

11. Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009). [CrossRef]  

12. Z. P. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Q. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010). [CrossRef]  

13. G. Sobon, J. Sotor, and K. M. Abramski, “Passive harmonic mode-locking in Er-doped fiber laser based on graphene saturable absorber with repetition rates scalable to 2.22  GHz,” Appl. Phys. Lett. 100, 161109 (2012). [CrossRef]  

14. F. Bonaccorso and Z. Sun, “Solution processing of graphene, topological insulators and other 2D crystals for ultrafast photonics,” Opt. Mater. Express 4, 63–78 (2014). [CrossRef]  

15. J. Lee, J. Koo, Y. M. Jhon, and J. H. Lee, “A femtosecond pulse erbium fiber laser incorporating a saturable absorber based on bulk-structured Bi2Te3 topological insulator,” Opt. Express 22, 6165–6173 (2014). [CrossRef]  

16. F. H. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9, 780–793 (2014). [CrossRef]  

17. S. X. Wang, H. H. Yu, H. J. Zhang, A. Z. Wang, M. W. Zhao, Y. X. Chen, L. M. Mei, and J. Y. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014). [CrossRef]  

18. H. H. Yu, H. Zhang, Y. C. Wang, C. J. Zhao, B. L. Wang, S. C. Wen, H. J. Zhang, and J. Y. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photon. Rev. 7, L77–L83 (2013). [CrossRef]  

19. D. A. Smirnova, I. V. Shadrivov, A. I. Smirnov, and Y. S. Kivshar, “Dissipative plasmon-solitons in multilayer grapheme,” Laser Photon. Rev. 8, 291–296 (2014). [CrossRef]  

20. H. B. Jiang, Y. L. Zhang, Y. Liu, X. Y. Fu, Y. F. Li, Y. Q. Liu, C. H. Li, and H. B. Sun, “Bioinspired few-layer graphene prepared by chemical vapor deposition on femtosecond laser-structured Cu foil,” Laser Photon. Rev. 10, 441–450 (2016). [CrossRef]  

21. F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3, 738–742 (2008). [CrossRef]  

22. Z. Q. Luo, D. D. Wu, B. Xu, H. Y. Xu, Z. P. Cai, J. Peng, J. Weng, S. Xu, C. H. Zhu, F. Q. Wang, Z. P. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8, 1066–1072 (2016). [CrossRef]  

23. R. I. Woodward and E. J. R. Kelleher, “2D saturable absorbers for fibre lasers,” Appl. Sci. 5, 1440–1456 (2015). [CrossRef]  

24. Z. C. Luo, M. Liu, H. Liu, X. W. Zheng, A. P. Luo, C. J. Zhao, H. Zhang, S. C. Wen, and W. C. Xu, “2  GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber,” Opt. Lett. 38, 5212–5215 (2013). [CrossRef]  

25. Z. Q. Luo, Y. Z. Huang, J. Weng, H. H. Cheng, Z. Q. Lin, B. Xu, Z. P. Cai, and H. Y. Xu, “1.06  μm Q-switched ytterbium-doped fiber laser using few-layer topological insulator Bi2Se3 as a saturable absorber,” Opt. Express 21, 29516–29522 (2013). [CrossRef]  

26. S. L. Yu, X. Q. Wu, K. R. Chen, B. G. Chen, X. Guo, D. X. Dai, L. M. Tong, W. T. Liu, and Y. R. Shen, “All-optical graphene modulator based on optical Kerr phase shift,” Optica 3, 541–544 (2016). [CrossRef]  

27. J. Mohanraj, V. Velmurugan, and S. Sivabalan, “Transition metal dichalcogenides based saturable absorbers for pulsed laser technology,” Opt. Mater. 60, 601–617 (2016). [CrossRef]  

28. J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, and K. M. Abramski, “Black phosphorus saturable absorber for ultrashort pulse generation,” Appl. Phys. Lett. 107, 051108 (2015). [CrossRef]  

29. X. M. Liu, D. D. Han, Z. P. Sun, C. Zeng, H. Lu, D. Mao, Y. D. Cui, and F. Q. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3, 2718 (2013). [CrossRef]  

30. H. Jeong, S. Y. Choi, F. Rotermund, K. Lee, and D. Yeom, “All-polarization maintaining passively mode-locked fiber laser using evanescent field interaction with single-walled carbon nanotube saturable absorber,” J. Lightwave Technol. 34, 3510–3514 (2016). [CrossRef]  

31. W. S. Kwon, H. Lee, J. H. Kim, J. Choi, K. Kim, and S. Kim, “Ultrashort stretched-pulse L-band laser using carbon-nanotube saturable absorber,” Opt. Express 23, 7779–7785 (2015). [CrossRef]  

32. X. M. Liu, H. R. Yang, Y. D. Cui, G. W. Chen, Y. Yang, X. Q. Wu, X. K. Yao, D. D. Han, X. X. Han, C. Zeng, J. Guo, W. L. Li, G. Cheng, and L. M. Tong, “Graphene-clad microfibre saturable absorber for ultrafast fibre lasers,” Sci. Rep. 6, 26024 (2016). [CrossRef]  

33. H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95, 141103 (2009). [CrossRef]  

34. J. Xu, J. Liu, S. D. Wu, Q. H. Yang, and P. Wang, “Graphene oxide mode-locked femtosecond erbium-doped fiber lasers,” Opt. Express 20, 15474–15480 (2012). [CrossRef]  

35. Q. L. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6, 3677–3694 (2012). [CrossRef]  

36. Y. H. Lin, S. F. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n- and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015). [CrossRef]  

37. C. J. Zhao, H. Zhang, X. Qi, Y. Chen, Z. T. Wang, S. C. Wen, and D. Y. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101, 211106 (2012). [CrossRef]  

38. S. B. Lu, C. J. Zhao, Y. H. Zou, S. Q. Chen, Y. Chen, Y. Li, H. Zhang, S. C. Wen, and D. Y. Tang, “Third order nonlinear optical property of Bi2Se3,” Opt. Express 21, 2072–2082 (2013). [CrossRef]  

39. H. Chen, Y. S. Chen, J. D. Yin, X. J. Zhang, T. Guo, and P. G. Yan, “High-damage-resistant tungsten disulfide saturable absorption mirror for passively Q-switched fiber laser,” Opt. Express 24, 16287–16296 (2016). [CrossRef]  

40. P. G. Yang, H. Chen, J. D. Yin, Z. H. Xu, J. R. Li, Z. K. Jiang, W. F. Zhang, J. Z. Wang, I. L. Li, Z. P. Sun, and S. C. Ruan, “Large-area tungsten disulfide for ultrafast photonics,” Nanoscale 9, 1871–1877 (2017). [CrossRef]  

41. K. Wu, X. Y. Zhang, J. Wang, X. Li, and J. P. Chen, “WS2 as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers,” Opt. Express 23, 11453–11461 (2015). [CrossRef]  

42. D. Mao, X. Y. She, B. B. Du, D. X. Yang, W. D. Zhang, K. Song, X. Q. Cui, B. Q. Jiang, T. Peng, and J. L. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6, 23583 (2016). [CrossRef]  

43. X. Y. Zhang, S. F. Zhang, B. H. Chen, H. Wang, K. Wu, Y. Chen, J. T. Fan, S. Qi, X. L. Cui, L. Zhang, and J. Wang, “Direct synthesis of large-scale hierarchical MoS2 films nanostructured with orthogonally oriented vertically and horizontally aligned layers,” Nanoscale 8, 431–439 (2016). [CrossRef]  

44. W. J. Liu, M. L. Liu, M. Lei, S. B. Fang, and Z. Y. Wei, “Titanium selenide saturable absorber mirror for passive Q-switched Er-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 24, 0901005 (2018). [CrossRef]  

45. M. Zhang, R. C. T. Howe, R. I. Woodward, E. J. R. Kelleher, F. Torrisi, G. H. Hu, S. V. Popov, J. R. Taylor, and T. Hasan, “Solution processed MoS2-PVA composite for subbandgap mode-locking of a wideband tunable ultrafast Er:fiber laser,” Nano Res. 8, 1522–1534 (2015). [CrossRef]  

46. S. B. Lu, L. L. Miao, Z. N. Guo, X. Qi, C. J. Zhao, H. Zhang, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material,” Opt. Express 23, 11183–11194 (2015). [CrossRef]  

47. K. Park, J. Lee, Y. T. Lee, W. K. Choi, J. H. Lee, and Y. W. Song, “Black phosphorus saturable absorber for ultrafast mode-locked pulse laser via evanescent field interaction,” Ann. Phys. (Berlin) 527, 770–776 (2015). [CrossRef]  

48. H. R. Mu, S. H. Lin, Z. C. Wang, S. Xiao, P. F. Li, Y. Chen, H. Zhang, H. F. Bao, S. P. Lau, C. X. Pan, D. Y. Fan, and Q. L. Bao, “Black phosphorus-polymer composites for pulsed lasers,” Adv. Opt. Mater. 3, 1447–1453 (2015). [CrossRef]  

49. J. F. Li, H. Y. Luo, B. Zhai, R. G. Lu, Z. N. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6, 30361 (2016). [CrossRef]  

50. Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X. Yu, and P. K. Chu, “From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics,” Adv. Funct. Mater. 25, 6996–7002 (2015). [CrossRef]  

51. Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, L. Liao, P. K. Chu, and X. Yu, “Metal-ion-modified black phosphorus with enhanced stability and transistor performance,” Adv. Mater. 29, 1703811 (2017). [CrossRef]  

52. Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. L. Zheng, S. B. Lu, J. H. Ji, and H. Zhang, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017). [CrossRef]  

53. L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1700221 (2017). [CrossRef]  

54. A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499, 419–425 (2013). [CrossRef]  

55. Z. T. Wang, H. R. Mu, J. Yuan, C. J. Zhao, Q. L. Bao, and H. Zhang, “Graphene-Bi2Te3 heterostructure as broadband saturable absorber for ultra-short pulse generation in Er-doped and Yb-doped fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 8800105 (2017). [CrossRef]  

56. Y. J. Gong, J. H. Lin, X. L. Wang, G. Shi, S. D. Lei, Z. Lin, X. L. Zou, G. L. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Ta, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014). [CrossRef]  

57. G. Zhao, J. Hou, Y. Z. Wu, J. L. He, and X. P. Hao, “Preparation of 2D MoS2/graphene heterostructure through a monolayer intercalation method and its application as an optical modulator in pulsed laser generation,” Adv. Opt. Mater. 3, 937–942 (2015). [CrossRef]  

58. H. R. Mu, Z. T. Wang, J. Yuan, S. Xiao, C. Y. Chen, J. C. Song, Y. S. Wang, Y. Z. Xue, H. Zhang, and Q. L. Bao, “Graphene/Bi2Te3 heterostructure as saturable absorber for short pulse generation,” ACS Photon. 2, 832–841 (2015). [CrossRef]  

59. Z. T. Wang, H. R. Mu, C. J. Zhao, Q. L. Bao, and H. Zhang, “Harmonic mode-locking and wavelength-tunable Q-switching operation in the graphene-Bi2Te3 heterostructure saturable absorber-based fiber laser,” Opt. Eng. 55, 081314 (2016). [CrossRef]  

60. Y. Q. Jiang, L. L. Miao, G. B. Jiang, Y. Chen, X. Qi, X. F. Jiang, H. Zhang, and S. C. Wen, “Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications,” Sci. Rep. 5, 16372 (2015). [CrossRef]  

61. C. Liu, H. P. Li, G. L. Deng, C. Y. Lan, C. Li, and Y. Liu, “Femtosecond Er-doped fiber laser using a graphene/MoS2 heterostructure saturable absorber,” in Asia Communications and Photonics Conference, Vol. 129 of 2016 OSA Technical Digest Series (Optical Society of America, 2016), paper AF2A.

62. W. X. Du, H. P. Li, C. Liu, S. N. Shen, C. Y. Lan, C. Li, and Y. Liu, “Ultrafast pulse erbium-doped fiber laser with a graphene/WS2 heterostructure saturable absorber,” Proc. SPIE 10457, 104571M (2017).

63. P. V. C. Medeiros, S. Stafström, and J. Björk, “Effects of extrinsic and intrinsic perturbations on the electronic structure of graphene: retaining an effective primitive cell band structure by band unfolding,” Phys. Rev. B 89, 041407 (2014). [CrossRef]  

64. P. V. C. Medeiros, S. S. Tsirkin, S. Stafström, and J. Björk, “Unfolding spinor wave functions and expectation values of general operators: introducing the unfolding-density operator,” Phys. Rev. B 91, 041116 (2015). [CrossRef]  

65. G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 11169–11186 (1996). [CrossRef]  

66. P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B 50, 17953–17979 (1994). [CrossRef]  

67. G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59, 1758–1775 (1999). [CrossRef]  

68. J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996). [CrossRef]  

69. S. Grimme, “Semiempirical GGA-type density functional constructed with a long-range dispersion correction,” J. Comput. Chem. 27, 1787–1799 (2006). [CrossRef]  

70. T. L. Anderson and H. B. Krause, “Refinement of the Sb2Te3 structures and their relationship to nonstoichiometric Sb2Te3−ySey compounds,” Acta Crystallogr. Sect. B 30, 1307–1310 (1974). [CrossRef]  

71. S. Bruzzone and G. Fiori, “Ab-initio simulations of deformation potentials and electron mobility in chemically modified graphene and two-dimensional hexagonal boron-nitride,” Appl. Phys. Lett. 99, 222108 (2011). [CrossRef]  

72. S. Takagi, A. Toriumi, M. Iwase, and H. Tango, “On the universality of inversion layer mobility in Si MOSFET’s: part I-effects of substrate impurity concentration,” IEEE Trans. Electron Dev. 41, 2357–2362 (1994). [CrossRef]  

73. N. Ma and D. Jena, “Carrier statistics and quantum capacitance effects on mobility extraction in two-dimensional crystal semiconductor field-effect transistors,” 2D Mater. 2, 015003 (2015). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. A. K. Geim and K. S. Novoselov, “The rise of grapheme,” Nat. Mater. 6, 183–191 (2007).
    [Crossref]
  2. F. N. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4, 839–843 (2009).
    [Crossref]
  3. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
    [Crossref]
  4. Q. L. Bao, H. Zhang, B. Wang, Z. H. Ni, C. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5, 411–415 (2011).
    [Crossref]
  5. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
    [Crossref]
  6. A. Martinez and Z. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nat. Photonics 7, 842–845 (2013).
    [Crossref]
  7. F. N. Xia, H. Wang, and Y. C. Jia, “Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics,” Nat. Commun. 5, 4458 (2014).
    [Crossref]
  8. F. N. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two dimensional material nanophotonics,” Nat. Photonics 8, 899–907 (2014).
    [Crossref]
  9. Z. P. Sun, A. Martinez, and F. Wang, “Optical modulators with 2D layered materials,” Nat. Photonics 10, 227–238 (2016).
    [Crossref]
  10. T. Hasan, Z. P. Sun, F. Q. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009).
    [Crossref]
  11. Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
    [Crossref]
  12. Z. P. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Q. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
    [Crossref]
  13. G. Sobon, J. Sotor, and K. M. Abramski, “Passive harmonic mode-locking in Er-doped fiber laser based on graphene saturable absorber with repetition rates scalable to 2.22  GHz,” Appl. Phys. Lett. 100, 161109 (2012).
    [Crossref]
  14. F. Bonaccorso and Z. Sun, “Solution processing of graphene, topological insulators and other 2D crystals for ultrafast photonics,” Opt. Mater. Express 4, 63–78 (2014).
    [Crossref]
  15. J. Lee, J. Koo, Y. M. Jhon, and J. H. Lee, “A femtosecond pulse erbium fiber laser incorporating a saturable absorber based on bulk-structured Bi2Te3 topological insulator,” Opt. Express 22, 6165–6173 (2014).
    [Crossref]
  16. F. H. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9, 780–793 (2014).
    [Crossref]
  17. S. X. Wang, H. H. Yu, H. J. Zhang, A. Z. Wang, M. W. Zhao, Y. X. Chen, L. M. Mei, and J. Y. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014).
    [Crossref]
  18. H. H. Yu, H. Zhang, Y. C. Wang, C. J. Zhao, B. L. Wang, S. C. Wen, H. J. Zhang, and J. Y. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photon. Rev. 7, L77–L83 (2013).
    [Crossref]
  19. D. A. Smirnova, I. V. Shadrivov, A. I. Smirnov, and Y. S. Kivshar, “Dissipative plasmon-solitons in multilayer grapheme,” Laser Photon. Rev. 8, 291–296 (2014).
    [Crossref]
  20. H. B. Jiang, Y. L. Zhang, Y. Liu, X. Y. Fu, Y. F. Li, Y. Q. Liu, C. H. Li, and H. B. Sun, “Bioinspired few-layer graphene prepared by chemical vapor deposition on femtosecond laser-structured Cu foil,” Laser Photon. Rev. 10, 441–450 (2016).
    [Crossref]
  21. F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3, 738–742 (2008).
    [Crossref]
  22. Z. Q. Luo, D. D. Wu, B. Xu, H. Y. Xu, Z. P. Cai, J. Peng, J. Weng, S. Xu, C. H. Zhu, F. Q. Wang, Z. P. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8, 1066–1072 (2016).
    [Crossref]
  23. R. I. Woodward and E. J. R. Kelleher, “2D saturable absorbers for fibre lasers,” Appl. Sci. 5, 1440–1456 (2015).
    [Crossref]
  24. Z. C. Luo, M. Liu, H. Liu, X. W. Zheng, A. P. Luo, C. J. Zhao, H. Zhang, S. C. Wen, and W. C. Xu, “2  GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber,” Opt. Lett. 38, 5212–5215 (2013).
    [Crossref]
  25. Z. Q. Luo, Y. Z. Huang, J. Weng, H. H. Cheng, Z. Q. Lin, B. Xu, Z. P. Cai, and H. Y. Xu, “1.06  μm Q-switched ytterbium-doped fiber laser using few-layer topological insulator Bi2Se3 as a saturable absorber,” Opt. Express 21, 29516–29522 (2013).
    [Crossref]
  26. S. L. Yu, X. Q. Wu, K. R. Chen, B. G. Chen, X. Guo, D. X. Dai, L. M. Tong, W. T. Liu, and Y. R. Shen, “All-optical graphene modulator based on optical Kerr phase shift,” Optica 3, 541–544 (2016).
    [Crossref]
  27. J. Mohanraj, V. Velmurugan, and S. Sivabalan, “Transition metal dichalcogenides based saturable absorbers for pulsed laser technology,” Opt. Mater. 60, 601–617 (2016).
    [Crossref]
  28. J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, and K. M. Abramski, “Black phosphorus saturable absorber for ultrashort pulse generation,” Appl. Phys. Lett. 107, 051108 (2015).
    [Crossref]
  29. X. M. Liu, D. D. Han, Z. P. Sun, C. Zeng, H. Lu, D. Mao, Y. D. Cui, and F. Q. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3, 2718 (2013).
    [Crossref]
  30. H. Jeong, S. Y. Choi, F. Rotermund, K. Lee, and D. Yeom, “All-polarization maintaining passively mode-locked fiber laser using evanescent field interaction with single-walled carbon nanotube saturable absorber,” J. Lightwave Technol. 34, 3510–3514 (2016).
    [Crossref]
  31. W. S. Kwon, H. Lee, J. H. Kim, J. Choi, K. Kim, and S. Kim, “Ultrashort stretched-pulse L-band laser using carbon-nanotube saturable absorber,” Opt. Express 23, 7779–7785 (2015).
    [Crossref]
  32. X. M. Liu, H. R. Yang, Y. D. Cui, G. W. Chen, Y. Yang, X. Q. Wu, X. K. Yao, D. D. Han, X. X. Han, C. Zeng, J. Guo, W. L. Li, G. Cheng, and L. M. Tong, “Graphene-clad microfibre saturable absorber for ultrafast fibre lasers,” Sci. Rep. 6, 26024 (2016).
    [Crossref]
  33. H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95, 141103 (2009).
    [Crossref]
  34. J. Xu, J. Liu, S. D. Wu, Q. H. Yang, and P. Wang, “Graphene oxide mode-locked femtosecond erbium-doped fiber lasers,” Opt. Express 20, 15474–15480 (2012).
    [Crossref]
  35. Q. L. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6, 3677–3694 (2012).
    [Crossref]
  36. Y. H. Lin, S. F. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n- and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
    [Crossref]
  37. C. J. Zhao, H. Zhang, X. Qi, Y. Chen, Z. T. Wang, S. C. Wen, and D. Y. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101, 211106 (2012).
    [Crossref]
  38. S. B. Lu, C. J. Zhao, Y. H. Zou, S. Q. Chen, Y. Chen, Y. Li, H. Zhang, S. C. Wen, and D. Y. Tang, “Third order nonlinear optical property of Bi2Se3,” Opt. Express 21, 2072–2082 (2013).
    [Crossref]
  39. H. Chen, Y. S. Chen, J. D. Yin, X. J. Zhang, T. Guo, and P. G. Yan, “High-damage-resistant tungsten disulfide saturable absorption mirror for passively Q-switched fiber laser,” Opt. Express 24, 16287–16296 (2016).
    [Crossref]
  40. P. G. Yang, H. Chen, J. D. Yin, Z. H. Xu, J. R. Li, Z. K. Jiang, W. F. Zhang, J. Z. Wang, I. L. Li, Z. P. Sun, and S. C. Ruan, “Large-area tungsten disulfide for ultrafast photonics,” Nanoscale 9, 1871–1877 (2017).
    [Crossref]
  41. K. Wu, X. Y. Zhang, J. Wang, X. Li, and J. P. Chen, “WS2 as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers,” Opt. Express 23, 11453–11461 (2015).
    [Crossref]
  42. D. Mao, X. Y. She, B. B. Du, D. X. Yang, W. D. Zhang, K. Song, X. Q. Cui, B. Q. Jiang, T. Peng, and J. L. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6, 23583 (2016).
    [Crossref]
  43. X. Y. Zhang, S. F. Zhang, B. H. Chen, H. Wang, K. Wu, Y. Chen, J. T. Fan, S. Qi, X. L. Cui, L. Zhang, and J. Wang, “Direct synthesis of large-scale hierarchical MoS2 films nanostructured with orthogonally oriented vertically and horizontally aligned layers,” Nanoscale 8, 431–439 (2016).
    [Crossref]
  44. W. J. Liu, M. L. Liu, M. Lei, S. B. Fang, and Z. Y. Wei, “Titanium selenide saturable absorber mirror for passive Q-switched Er-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 24, 0901005 (2018).
    [Crossref]
  45. M. Zhang, R. C. T. Howe, R. I. Woodward, E. J. R. Kelleher, F. Torrisi, G. H. Hu, S. V. Popov, J. R. Taylor, and T. Hasan, “Solution processed MoS2-PVA composite for subbandgap mode-locking of a wideband tunable ultrafast Er:fiber laser,” Nano Res. 8, 1522–1534 (2015).
    [Crossref]
  46. S. B. Lu, L. L. Miao, Z. N. Guo, X. Qi, C. J. Zhao, H. Zhang, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material,” Opt. Express 23, 11183–11194 (2015).
    [Crossref]
  47. K. Park, J. Lee, Y. T. Lee, W. K. Choi, J. H. Lee, and Y. W. Song, “Black phosphorus saturable absorber for ultrafast mode-locked pulse laser via evanescent field interaction,” Ann. Phys. (Berlin) 527, 770–776 (2015).
    [Crossref]
  48. H. R. Mu, S. H. Lin, Z. C. Wang, S. Xiao, P. F. Li, Y. Chen, H. Zhang, H. F. Bao, S. P. Lau, C. X. Pan, D. Y. Fan, and Q. L. Bao, “Black phosphorus-polymer composites for pulsed lasers,” Adv. Opt. Mater. 3, 1447–1453 (2015).
    [Crossref]
  49. J. F. Li, H. Y. Luo, B. Zhai, R. G. Lu, Z. N. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6, 30361 (2016).
    [Crossref]
  50. Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X. Yu, and P. K. Chu, “From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics,” Adv. Funct. Mater. 25, 6996–7002 (2015).
    [Crossref]
  51. Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, L. Liao, P. K. Chu, and X. Yu, “Metal-ion-modified black phosphorus with enhanced stability and transistor performance,” Adv. Mater. 29, 1703811 (2017).
    [Crossref]
  52. Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. L. Zheng, S. B. Lu, J. H. Ji, and H. Zhang, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
    [Crossref]
  53. L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1700221 (2017).
    [Crossref]
  54. A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499, 419–425 (2013).
    [Crossref]
  55. Z. T. Wang, H. R. Mu, J. Yuan, C. J. Zhao, Q. L. Bao, and H. Zhang, “Graphene-Bi2Te3 heterostructure as broadband saturable absorber for ultra-short pulse generation in Er-doped and Yb-doped fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 8800105 (2017).
    [Crossref]
  56. Y. J. Gong, J. H. Lin, X. L. Wang, G. Shi, S. D. Lei, Z. Lin, X. L. Zou, G. L. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Ta, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
    [Crossref]
  57. G. Zhao, J. Hou, Y. Z. Wu, J. L. He, and X. P. Hao, “Preparation of 2D MoS2/graphene heterostructure through a monolayer intercalation method and its application as an optical modulator in pulsed laser generation,” Adv. Opt. Mater. 3, 937–942 (2015).
    [Crossref]
  58. H. R. Mu, Z. T. Wang, J. Yuan, S. Xiao, C. Y. Chen, J. C. Song, Y. S. Wang, Y. Z. Xue, H. Zhang, and Q. L. Bao, “Graphene/Bi2Te3 heterostructure as saturable absorber for short pulse generation,” ACS Photon. 2, 832–841 (2015).
    [Crossref]
  59. Z. T. Wang, H. R. Mu, C. J. Zhao, Q. L. Bao, and H. Zhang, “Harmonic mode-locking and wavelength-tunable Q-switching operation in the graphene-Bi2Te3 heterostructure saturable absorber-based fiber laser,” Opt. Eng. 55, 081314 (2016).
    [Crossref]
  60. Y. Q. Jiang, L. L. Miao, G. B. Jiang, Y. Chen, X. Qi, X. F. Jiang, H. Zhang, and S. C. Wen, “Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications,” Sci. Rep. 5, 16372 (2015).
    [Crossref]
  61. C. Liu, H. P. Li, G. L. Deng, C. Y. Lan, C. Li, and Y. Liu, “Femtosecond Er-doped fiber laser using a graphene/MoS2 heterostructure saturable absorber,” in Asia Communications and Photonics Conference, Vol. 129 of 2016 OSA Technical Digest Series (Optical Society of America, 2016), paper AF2A.
  62. W. X. Du, H. P. Li, C. Liu, S. N. Shen, C. Y. Lan, C. Li, and Y. Liu, “Ultrafast pulse erbium-doped fiber laser with a graphene/WS2 heterostructure saturable absorber,” Proc. SPIE 10457, 104571M (2017).
  63. P. V. C. Medeiros, S. Stafström, and J. Björk, “Effects of extrinsic and intrinsic perturbations on the electronic structure of graphene: retaining an effective primitive cell band structure by band unfolding,” Phys. Rev. B 89, 041407 (2014).
    [Crossref]
  64. P. V. C. Medeiros, S. S. Tsirkin, S. Stafström, and J. Björk, “Unfolding spinor wave functions and expectation values of general operators: introducing the unfolding-density operator,” Phys. Rev. B 91, 041116 (2015).
    [Crossref]
  65. G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 11169–11186 (1996).
    [Crossref]
  66. P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B 50, 17953–17979 (1994).
    [Crossref]
  67. G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59, 1758–1775 (1999).
    [Crossref]
  68. J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996).
    [Crossref]
  69. S. Grimme, “Semiempirical GGA-type density functional constructed with a long-range dispersion correction,” J. Comput. Chem. 27, 1787–1799 (2006).
    [Crossref]
  70. T. L. Anderson and H. B. Krause, “Refinement of the Sb2Te3 structures and their relationship to nonstoichiometric Sb2Te3−ySey compounds,” Acta Crystallogr. Sect. B 30, 1307–1310 (1974).
    [Crossref]
  71. S. Bruzzone and G. Fiori, “Ab-initio simulations of deformation potentials and electron mobility in chemically modified graphene and two-dimensional hexagonal boron-nitride,” Appl. Phys. Lett. 99, 222108 (2011).
    [Crossref]
  72. S. Takagi, A. Toriumi, M. Iwase, and H. Tango, “On the universality of inversion layer mobility in Si MOSFET’s: part I-effects of substrate impurity concentration,” IEEE Trans. Electron Dev. 41, 2357–2362 (1994).
    [Crossref]
  73. N. Ma and D. Jena, “Carrier statistics and quantum capacitance effects on mobility extraction in two-dimensional crystal semiconductor field-effect transistors,” 2D Mater. 2, 015003 (2015).
    [Crossref]

2018 (1)

W. J. Liu, M. L. Liu, M. Lei, S. B. Fang, and Z. Y. Wei, “Titanium selenide saturable absorber mirror for passive Q-switched Er-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 24, 0901005 (2018).
[Crossref]

2017 (6)

P. G. Yang, H. Chen, J. D. Yin, Z. H. Xu, J. R. Li, Z. K. Jiang, W. F. Zhang, J. Z. Wang, I. L. Li, Z. P. Sun, and S. C. Ruan, “Large-area tungsten disulfide for ultrafast photonics,” Nanoscale 9, 1871–1877 (2017).
[Crossref]

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. L. Zheng, S. B. Lu, J. H. Ji, and H. Zhang, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1700221 (2017).
[Crossref]

Z. T. Wang, H. R. Mu, J. Yuan, C. J. Zhao, Q. L. Bao, and H. Zhang, “Graphene-Bi2Te3 heterostructure as broadband saturable absorber for ultra-short pulse generation in Er-doped and Yb-doped fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 8800105 (2017).
[Crossref]

W. X. Du, H. P. Li, C. Liu, S. N. Shen, C. Y. Lan, C. Li, and Y. Liu, “Ultrafast pulse erbium-doped fiber laser with a graphene/WS2 heterostructure saturable absorber,” Proc. SPIE 10457, 104571M (2017).

Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, L. Liao, P. K. Chu, and X. Yu, “Metal-ion-modified black phosphorus with enhanced stability and transistor performance,” Adv. Mater. 29, 1703811 (2017).
[Crossref]

2016 (12)

X. M. Liu, H. R. Yang, Y. D. Cui, G. W. Chen, Y. Yang, X. Q. Wu, X. K. Yao, D. D. Han, X. X. Han, C. Zeng, J. Guo, W. L. Li, G. Cheng, and L. M. Tong, “Graphene-clad microfibre saturable absorber for ultrafast fibre lasers,” Sci. Rep. 6, 26024 (2016).
[Crossref]

J. F. Li, H. Y. Luo, B. Zhai, R. G. Lu, Z. N. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6, 30361 (2016).
[Crossref]

H. Jeong, S. Y. Choi, F. Rotermund, K. Lee, and D. Yeom, “All-polarization maintaining passively mode-locked fiber laser using evanescent field interaction with single-walled carbon nanotube saturable absorber,” J. Lightwave Technol. 34, 3510–3514 (2016).
[Crossref]

H. B. Jiang, Y. L. Zhang, Y. Liu, X. Y. Fu, Y. F. Li, Y. Q. Liu, C. H. Li, and H. B. Sun, “Bioinspired few-layer graphene prepared by chemical vapor deposition on femtosecond laser-structured Cu foil,” Laser Photon. Rev. 10, 441–450 (2016).
[Crossref]

J. Mohanraj, V. Velmurugan, and S. Sivabalan, “Transition metal dichalcogenides based saturable absorbers for pulsed laser technology,” Opt. Mater. 60, 601–617 (2016).
[Crossref]

Z. T. Wang, H. R. Mu, C. J. Zhao, Q. L. Bao, and H. Zhang, “Harmonic mode-locking and wavelength-tunable Q-switching operation in the graphene-Bi2Te3 heterostructure saturable absorber-based fiber laser,” Opt. Eng. 55, 081314 (2016).
[Crossref]

D. Mao, X. Y. She, B. B. Du, D. X. Yang, W. D. Zhang, K. Song, X. Q. Cui, B. Q. Jiang, T. Peng, and J. L. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6, 23583 (2016).
[Crossref]

Z. P. Sun, A. Martinez, and F. Wang, “Optical modulators with 2D layered materials,” Nat. Photonics 10, 227–238 (2016).
[Crossref]

H. Chen, Y. S. Chen, J. D. Yin, X. J. Zhang, T. Guo, and P. G. Yan, “High-damage-resistant tungsten disulfide saturable absorption mirror for passively Q-switched fiber laser,” Opt. Express 24, 16287–16296 (2016).
[Crossref]

X. Y. Zhang, S. F. Zhang, B. H. Chen, H. Wang, K. Wu, Y. Chen, J. T. Fan, S. Qi, X. L. Cui, L. Zhang, and J. Wang, “Direct synthesis of large-scale hierarchical MoS2 films nanostructured with orthogonally oriented vertically and horizontally aligned layers,” Nanoscale 8, 431–439 (2016).
[Crossref]

S. L. Yu, X. Q. Wu, K. R. Chen, B. G. Chen, X. Guo, D. X. Dai, L. M. Tong, W. T. Liu, and Y. R. Shen, “All-optical graphene modulator based on optical Kerr phase shift,” Optica 3, 541–544 (2016).
[Crossref]

Z. Q. Luo, D. D. Wu, B. Xu, H. Y. Xu, Z. P. Cai, J. Peng, J. Weng, S. Xu, C. H. Zhu, F. Q. Wang, Z. P. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8, 1066–1072 (2016).
[Crossref]

2015 (15)

K. Park, J. Lee, Y. T. Lee, W. K. Choi, J. H. Lee, and Y. W. Song, “Black phosphorus saturable absorber for ultrafast mode-locked pulse laser via evanescent field interaction,” Ann. Phys. (Berlin) 527, 770–776 (2015).
[Crossref]

Y. H. Lin, S. F. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n- and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
[Crossref]

H. R. Mu, Z. T. Wang, J. Yuan, S. Xiao, C. Y. Chen, J. C. Song, Y. S. Wang, Y. Z. Xue, H. Zhang, and Q. L. Bao, “Graphene/Bi2Te3 heterostructure as saturable absorber for short pulse generation,” ACS Photon. 2, 832–841 (2015).
[Crossref]

G. Zhao, J. Hou, Y. Z. Wu, J. L. He, and X. P. Hao, “Preparation of 2D MoS2/graphene heterostructure through a monolayer intercalation method and its application as an optical modulator in pulsed laser generation,” Adv. Opt. Mater. 3, 937–942 (2015).
[Crossref]

S. B. Lu, L. L. Miao, Z. N. Guo, X. Qi, C. J. Zhao, H. Zhang, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material,” Opt. Express 23, 11183–11194 (2015).
[Crossref]

H. R. Mu, S. H. Lin, Z. C. Wang, S. Xiao, P. F. Li, Y. Chen, H. Zhang, H. F. Bao, S. P. Lau, C. X. Pan, D. Y. Fan, and Q. L. Bao, “Black phosphorus-polymer composites for pulsed lasers,” Adv. Opt. Mater. 3, 1447–1453 (2015).
[Crossref]

N. Ma and D. Jena, “Carrier statistics and quantum capacitance effects on mobility extraction in two-dimensional crystal semiconductor field-effect transistors,” 2D Mater. 2, 015003 (2015).
[Crossref]

Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X. Yu, and P. K. Chu, “From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics,” Adv. Funct. Mater. 25, 6996–7002 (2015).
[Crossref]

K. Wu, X. Y. Zhang, J. Wang, X. Li, and J. P. Chen, “WS2 as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers,” Opt. Express 23, 11453–11461 (2015).
[Crossref]

Y. Q. Jiang, L. L. Miao, G. B. Jiang, Y. Chen, X. Qi, X. F. Jiang, H. Zhang, and S. C. Wen, “Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications,” Sci. Rep. 5, 16372 (2015).
[Crossref]

M. Zhang, R. C. T. Howe, R. I. Woodward, E. J. R. Kelleher, F. Torrisi, G. H. Hu, S. V. Popov, J. R. Taylor, and T. Hasan, “Solution processed MoS2-PVA composite for subbandgap mode-locking of a wideband tunable ultrafast Er:fiber laser,” Nano Res. 8, 1522–1534 (2015).
[Crossref]

W. S. Kwon, H. Lee, J. H. Kim, J. Choi, K. Kim, and S. Kim, “Ultrashort stretched-pulse L-band laser using carbon-nanotube saturable absorber,” Opt. Express 23, 7779–7785 (2015).
[Crossref]

P. V. C. Medeiros, S. S. Tsirkin, S. Stafström, and J. Björk, “Unfolding spinor wave functions and expectation values of general operators: introducing the unfolding-density operator,” Phys. Rev. B 91, 041116 (2015).
[Crossref]

J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, and K. M. Abramski, “Black phosphorus saturable absorber for ultrashort pulse generation,” Appl. Phys. Lett. 107, 051108 (2015).
[Crossref]

R. I. Woodward and E. J. R. Kelleher, “2D saturable absorbers for fibre lasers,” Appl. Sci. 5, 1440–1456 (2015).
[Crossref]

2014 (9)

D. A. Smirnova, I. V. Shadrivov, A. I. Smirnov, and Y. S. Kivshar, “Dissipative plasmon-solitons in multilayer grapheme,” Laser Photon. Rev. 8, 291–296 (2014).
[Crossref]

J. Lee, J. Koo, Y. M. Jhon, and J. H. Lee, “A femtosecond pulse erbium fiber laser incorporating a saturable absorber based on bulk-structured Bi2Te3 topological insulator,” Opt. Express 22, 6165–6173 (2014).
[Crossref]

S. X. Wang, H. H. Yu, H. J. Zhang, A. Z. Wang, M. W. Zhao, Y. X. Chen, L. M. Mei, and J. Y. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014).
[Crossref]

Y. J. Gong, J. H. Lin, X. L. Wang, G. Shi, S. D. Lei, Z. Lin, X. L. Zou, G. L. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Ta, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref]

P. V. C. Medeiros, S. Stafström, and J. Björk, “Effects of extrinsic and intrinsic perturbations on the electronic structure of graphene: retaining an effective primitive cell band structure by band unfolding,” Phys. Rev. B 89, 041407 (2014).
[Crossref]

F. H. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9, 780–793 (2014).
[Crossref]

F. Bonaccorso and Z. Sun, “Solution processing of graphene, topological insulators and other 2D crystals for ultrafast photonics,” Opt. Mater. Express 4, 63–78 (2014).
[Crossref]

F. N. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two dimensional material nanophotonics,” Nat. Photonics 8, 899–907 (2014).
[Crossref]

F. N. Xia, H. Wang, and Y. C. Jia, “Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics,” Nat. Commun. 5, 4458 (2014).
[Crossref]

2013 (7)

Z. Q. Luo, Y. Z. Huang, J. Weng, H. H. Cheng, Z. Q. Lin, B. Xu, Z. P. Cai, and H. Y. Xu, “1.06  μm Q-switched ytterbium-doped fiber laser using few-layer topological insulator Bi2Se3 as a saturable absorber,” Opt. Express 21, 29516–29522 (2013).
[Crossref]

A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499, 419–425 (2013).
[Crossref]

X. M. Liu, D. D. Han, Z. P. Sun, C. Zeng, H. Lu, D. Mao, Y. D. Cui, and F. Q. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3, 2718 (2013).
[Crossref]

H. H. Yu, H. Zhang, Y. C. Wang, C. J. Zhao, B. L. Wang, S. C. Wen, H. J. Zhang, and J. Y. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photon. Rev. 7, L77–L83 (2013).
[Crossref]

A. Martinez and Z. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nat. Photonics 7, 842–845 (2013).
[Crossref]

S. B. Lu, C. J. Zhao, Y. H. Zou, S. Q. Chen, Y. Chen, Y. Li, H. Zhang, S. C. Wen, and D. Y. Tang, “Third order nonlinear optical property of Bi2Se3,” Opt. Express 21, 2072–2082 (2013).
[Crossref]

Z. C. Luo, M. Liu, H. Liu, X. W. Zheng, A. P. Luo, C. J. Zhao, H. Zhang, S. C. Wen, and W. C. Xu, “2  GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber,” Opt. Lett. 38, 5212–5215 (2013).
[Crossref]

2012 (5)

G. Sobon, J. Sotor, and K. M. Abramski, “Passive harmonic mode-locking in Er-doped fiber laser based on graphene saturable absorber with repetition rates scalable to 2.22  GHz,” Appl. Phys. Lett. 100, 161109 (2012).
[Crossref]

J. Xu, J. Liu, S. D. Wu, Q. H. Yang, and P. Wang, “Graphene oxide mode-locked femtosecond erbium-doped fiber lasers,” Opt. Express 20, 15474–15480 (2012).
[Crossref]

Q. L. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6, 3677–3694 (2012).
[Crossref]

C. J. Zhao, H. Zhang, X. Qi, Y. Chen, Z. T. Wang, S. C. Wen, and D. Y. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101, 211106 (2012).
[Crossref]

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

2011 (2)

S. Bruzzone and G. Fiori, “Ab-initio simulations of deformation potentials and electron mobility in chemically modified graphene and two-dimensional hexagonal boron-nitride,” Appl. Phys. Lett. 99, 222108 (2011).
[Crossref]

Q. L. Bao, H. Zhang, B. Wang, Z. H. Ni, C. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5, 411–415 (2011).
[Crossref]

2010 (2)

Z. P. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Q. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

2009 (4)

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95, 141103 (2009).
[Crossref]

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

F. N. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4, 839–843 (2009).
[Crossref]

T. Hasan, Z. P. Sun, F. Q. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009).
[Crossref]

2008 (1)

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3, 738–742 (2008).
[Crossref]

2007 (1)

A. K. Geim and K. S. Novoselov, “The rise of grapheme,” Nat. Mater. 6, 183–191 (2007).
[Crossref]

2006 (1)

S. Grimme, “Semiempirical GGA-type density functional constructed with a long-range dispersion correction,” J. Comput. Chem. 27, 1787–1799 (2006).
[Crossref]

1999 (1)

G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59, 1758–1775 (1999).
[Crossref]

1996 (2)

G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 11169–11186 (1996).
[Crossref]

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996).
[Crossref]

1994 (2)

P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B 50, 17953–17979 (1994).
[Crossref]

S. Takagi, A. Toriumi, M. Iwase, and H. Tango, “On the universality of inversion layer mobility in Si MOSFET’s: part I-effects of substrate impurity concentration,” IEEE Trans. Electron Dev. 41, 2357–2362 (1994).
[Crossref]

1974 (1)

T. L. Anderson and H. B. Krause, “Refinement of the Sb2Te3 structures and their relationship to nonstoichiometric Sb2Te3−ySey compounds,” Acta Crystallogr. Sect. B 30, 1307–1310 (1974).
[Crossref]

Abramski, K. M.

J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, and K. M. Abramski, “Black phosphorus saturable absorber for ultrashort pulse generation,” Appl. Phys. Lett. 107, 051108 (2015).
[Crossref]

G. Sobon, J. Sotor, and K. M. Abramski, “Passive harmonic mode-locking in Er-doped fiber laser based on graphene saturable absorber with repetition rates scalable to 2.22  GHz,” Appl. Phys. Lett. 100, 161109 (2012).
[Crossref]

Ajayan, P. M.

Y. J. Gong, J. H. Lin, X. L. Wang, G. Shi, S. D. Lei, Z. Lin, X. L. Zou, G. L. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Ta, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref]

Anderson, T. L.

T. L. Anderson and H. B. Krause, “Refinement of the Sb2Te3 structures and their relationship to nonstoichiometric Sb2Te3−ySey compounds,” Acta Crystallogr. Sect. B 30, 1307–1310 (1974).
[Crossref]

Avouris, P.

F. H. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9, 780–793 (2014).
[Crossref]

F. N. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4, 839–843 (2009).
[Crossref]

Bao, H. F.

H. R. Mu, S. H. Lin, Z. C. Wang, S. Xiao, P. F. Li, Y. Chen, H. Zhang, H. F. Bao, S. P. Lau, C. X. Pan, D. Y. Fan, and Q. L. Bao, “Black phosphorus-polymer composites for pulsed lasers,” Adv. Opt. Mater. 3, 1447–1453 (2015).
[Crossref]

Bao, Q. L.

Z. T. Wang, H. R. Mu, J. Yuan, C. J. Zhao, Q. L. Bao, and H. Zhang, “Graphene-Bi2Te3 heterostructure as broadband saturable absorber for ultra-short pulse generation in Er-doped and Yb-doped fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 8800105 (2017).
[Crossref]

Z. T. Wang, H. R. Mu, C. J. Zhao, Q. L. Bao, and H. Zhang, “Harmonic mode-locking and wavelength-tunable Q-switching operation in the graphene-Bi2Te3 heterostructure saturable absorber-based fiber laser,” Opt. Eng. 55, 081314 (2016).
[Crossref]

H. R. Mu, Z. T. Wang, J. Yuan, S. Xiao, C. Y. Chen, J. C. Song, Y. S. Wang, Y. Z. Xue, H. Zhang, and Q. L. Bao, “Graphene/Bi2Te3 heterostructure as saturable absorber for short pulse generation,” ACS Photon. 2, 832–841 (2015).
[Crossref]

H. R. Mu, S. H. Lin, Z. C. Wang, S. Xiao, P. F. Li, Y. Chen, H. Zhang, H. F. Bao, S. P. Lau, C. X. Pan, D. Y. Fan, and Q. L. Bao, “Black phosphorus-polymer composites for pulsed lasers,” Adv. Opt. Mater. 3, 1447–1453 (2015).
[Crossref]

Q. L. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6, 3677–3694 (2012).
[Crossref]

Q. L. Bao, H. Zhang, B. Wang, Z. H. Ni, C. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5, 411–415 (2011).
[Crossref]

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95, 141103 (2009).
[Crossref]

Basko, D. M.

Z. P. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Q. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Björk, J.

P. V. C. Medeiros, S. S. Tsirkin, S. Stafström, and J. Björk, “Unfolding spinor wave functions and expectation values of general operators: introducing the unfolding-density operator,” Phys. Rev. B 91, 041116 (2015).
[Crossref]

P. V. C. Medeiros, S. Stafström, and J. Björk, “Effects of extrinsic and intrinsic perturbations on the electronic structure of graphene: retaining an effective primitive cell band structure by band unfolding,” Phys. Rev. B 89, 041407 (2014).
[Crossref]

Blöchl, P. E.

P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B 50, 17953–17979 (1994).
[Crossref]

Bonaccorso, F.

F. Bonaccorso and Z. Sun, “Solution processing of graphene, topological insulators and other 2D crystals for ultrafast photonics,” Opt. Mater. Express 4, 63–78 (2014).
[Crossref]

Z. P. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Q. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

T. Hasan, Z. P. Sun, F. Q. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009).
[Crossref]

Bruzzone, S.

S. Bruzzone and G. Fiori, “Ab-initio simulations of deformation potentials and electron mobility in chemically modified graphene and two-dimensional hexagonal boron-nitride,” Appl. Phys. Lett. 99, 222108 (2011).
[Crossref]

Burke, K.

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996).
[Crossref]

Cai, Z. P.

Z. Q. Luo, D. D. Wu, B. Xu, H. Y. Xu, Z. P. Cai, J. Peng, J. Weng, S. Xu, C. H. Zhu, F. Q. Wang, Z. P. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8, 1066–1072 (2016).
[Crossref]

Z. Q. Luo, Y. Z. Huang, J. Weng, H. H. Cheng, Z. Q. Lin, B. Xu, Z. P. Cai, and H. Y. Xu, “1.06  μm Q-switched ytterbium-doped fiber laser using few-layer topological insulator Bi2Se3 as a saturable absorber,” Opt. Express 21, 29516–29522 (2013).
[Crossref]

Chen, B. G.

Chen, B. H.

X. Y. Zhang, S. F. Zhang, B. H. Chen, H. Wang, K. Wu, Y. Chen, J. T. Fan, S. Qi, X. L. Cui, L. Zhang, and J. Wang, “Direct synthesis of large-scale hierarchical MoS2 films nanostructured with orthogonally oriented vertically and horizontally aligned layers,” Nanoscale 8, 431–439 (2016).
[Crossref]

Chen, C. Y.

H. R. Mu, Z. T. Wang, J. Yuan, S. Xiao, C. Y. Chen, J. C. Song, Y. S. Wang, Y. Z. Xue, H. Zhang, and Q. L. Bao, “Graphene/Bi2Te3 heterostructure as saturable absorber for short pulse generation,” ACS Photon. 2, 832–841 (2015).
[Crossref]

Chen, G. W.

X. M. Liu, H. R. Yang, Y. D. Cui, G. W. Chen, Y. Yang, X. Q. Wu, X. K. Yao, D. D. Han, X. X. Han, C. Zeng, J. Guo, W. L. Li, G. Cheng, and L. M. Tong, “Graphene-clad microfibre saturable absorber for ultrafast fibre lasers,” Sci. Rep. 6, 26024 (2016).
[Crossref]

Chen, H.

P. G. Yang, H. Chen, J. D. Yin, Z. H. Xu, J. R. Li, Z. K. Jiang, W. F. Zhang, J. Z. Wang, I. L. Li, Z. P. Sun, and S. C. Ruan, “Large-area tungsten disulfide for ultrafast photonics,” Nanoscale 9, 1871–1877 (2017).
[Crossref]

H. Chen, Y. S. Chen, J. D. Yin, X. J. Zhang, T. Guo, and P. G. Yan, “High-damage-resistant tungsten disulfide saturable absorption mirror for passively Q-switched fiber laser,” Opt. Express 24, 16287–16296 (2016).
[Crossref]

Chen, J. P.

Chen, K. R.

Chen, S.

Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, L. Liao, P. K. Chu, and X. Yu, “Metal-ion-modified black phosphorus with enhanced stability and transistor performance,” Adv. Mater. 29, 1703811 (2017).
[Crossref]

Chen, S. Q.

Chen, Y.

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. L. Zheng, S. B. Lu, J. H. Ji, and H. Zhang, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1700221 (2017).
[Crossref]

X. Y. Zhang, S. F. Zhang, B. H. Chen, H. Wang, K. Wu, Y. Chen, J. T. Fan, S. Qi, X. L. Cui, L. Zhang, and J. Wang, “Direct synthesis of large-scale hierarchical MoS2 films nanostructured with orthogonally oriented vertically and horizontally aligned layers,” Nanoscale 8, 431–439 (2016).
[Crossref]

H. R. Mu, S. H. Lin, Z. C. Wang, S. Xiao, P. F. Li, Y. Chen, H. Zhang, H. F. Bao, S. P. Lau, C. X. Pan, D. Y. Fan, and Q. L. Bao, “Black phosphorus-polymer composites for pulsed lasers,” Adv. Opt. Mater. 3, 1447–1453 (2015).
[Crossref]

Y. Q. Jiang, L. L. Miao, G. B. Jiang, Y. Chen, X. Qi, X. F. Jiang, H. Zhang, and S. C. Wen, “Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications,” Sci. Rep. 5, 16372 (2015).
[Crossref]

S. B. Lu, C. J. Zhao, Y. H. Zou, S. Q. Chen, Y. Chen, Y. Li, H. Zhang, S. C. Wen, and D. Y. Tang, “Third order nonlinear optical property of Bi2Se3,” Opt. Express 21, 2072–2082 (2013).
[Crossref]

C. J. Zhao, H. Zhang, X. Qi, Y. Chen, Z. T. Wang, S. C. Wen, and D. Y. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101, 211106 (2012).
[Crossref]

Chen, Y. S.

Chen, Y. X.

S. X. Wang, H. H. Yu, H. J. Zhang, A. Z. Wang, M. W. Zhao, Y. X. Chen, L. M. Mei, and J. Y. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014).
[Crossref]

Cheng, C. H.

Y. H. Lin, S. F. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n- and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
[Crossref]

Cheng, G.

X. M. Liu, H. R. Yang, Y. D. Cui, G. W. Chen, Y. Yang, X. Q. Wu, X. K. Yao, D. D. Han, X. X. Han, C. Zeng, J. Guo, W. L. Li, G. Cheng, and L. M. Tong, “Graphene-clad microfibre saturable absorber for ultrafast fibre lasers,” Sci. Rep. 6, 26024 (2016).
[Crossref]

Cheng, H. H.

Chi, Y. C.

Y. H. Lin, S. F. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n- and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
[Crossref]

Choi, J.

Choi, S. Y.

Choi, W. K.

K. Park, J. Lee, Y. T. Lee, W. K. Choi, J. H. Lee, and Y. W. Song, “Black phosphorus saturable absorber for ultrafast mode-locked pulse laser via evanescent field interaction,” Ann. Phys. (Berlin) 527, 770–776 (2015).
[Crossref]

Chu, P. K.

Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, L. Liao, P. K. Chu, and X. Yu, “Metal-ion-modified black phosphorus with enhanced stability and transistor performance,” Adv. Mater. 29, 1703811 (2017).
[Crossref]

Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X. Yu, and P. K. Chu, “From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics,” Adv. Funct. Mater. 25, 6996–7002 (2015).
[Crossref]

Coleman, J. N.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

Cui, X. L.

X. Y. Zhang, S. F. Zhang, B. H. Chen, H. Wang, K. Wu, Y. Chen, J. T. Fan, S. Qi, X. L. Cui, L. Zhang, and J. Wang, “Direct synthesis of large-scale hierarchical MoS2 films nanostructured with orthogonally oriented vertically and horizontally aligned layers,” Nanoscale 8, 431–439 (2016).
[Crossref]

Cui, X. Q.

D. Mao, X. Y. She, B. B. Du, D. X. Yang, W. D. Zhang, K. Song, X. Q. Cui, B. Q. Jiang, T. Peng, and J. L. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6, 23583 (2016).
[Crossref]

Cui, Y. D.

X. M. Liu, H. R. Yang, Y. D. Cui, G. W. Chen, Y. Yang, X. Q. Wu, X. K. Yao, D. D. Han, X. X. Han, C. Zeng, J. Guo, W. L. Li, G. Cheng, and L. M. Tong, “Graphene-clad microfibre saturable absorber for ultrafast fibre lasers,” Sci. Rep. 6, 26024 (2016).
[Crossref]

X. M. Liu, D. D. Han, Z. P. Sun, C. Zeng, H. Lu, D. Mao, Y. D. Cui, and F. Q. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3, 2718 (2013).
[Crossref]

Dai, D. X.

Deng, G. L.

C. Liu, H. P. Li, G. L. Deng, C. Y. Lan, C. Li, and Y. Liu, “Femtosecond Er-doped fiber laser using a graphene/MoS2 heterostructure saturable absorber,” in Asia Communications and Photonics Conference, Vol. 129 of 2016 OSA Technical Digest Series (Optical Society of America, 2016), paper AF2A.

Dhanabalan, S. C.

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1700221 (2017).
[Crossref]

Dong, B.

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1700221 (2017).
[Crossref]

Du, B. B.

D. Mao, X. Y. She, B. B. Du, D. X. Yang, W. D. Zhang, K. Song, X. Q. Cui, B. Q. Jiang, T. Peng, and J. L. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6, 23583 (2016).
[Crossref]

Du, W. X.

W. X. Du, H. P. Li, C. Liu, S. N. Shen, C. Y. Lan, C. Li, and Y. Liu, “Ultrafast pulse erbium-doped fiber laser with a graphene/WS2 heterostructure saturable absorber,” Proc. SPIE 10457, 104571M (2017).

Dubey, M.

F. N. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two dimensional material nanophotonics,” Nat. Photonics 8, 899–907 (2014).
[Crossref]

Ernzerhof, M.

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996).
[Crossref]

Fan, D.

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1700221 (2017).
[Crossref]

Fan, D. Y.

S. B. Lu, L. L. Miao, Z. N. Guo, X. Qi, C. J. Zhao, H. Zhang, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material,” Opt. Express 23, 11183–11194 (2015).
[Crossref]

H. R. Mu, S. H. Lin, Z. C. Wang, S. Xiao, P. F. Li, Y. Chen, H. Zhang, H. F. Bao, S. P. Lau, C. X. Pan, D. Y. Fan, and Q. L. Bao, “Black phosphorus-polymer composites for pulsed lasers,” Adv. Opt. Mater. 3, 1447–1453 (2015).
[Crossref]

Fan, J. T.

X. Y. Zhang, S. F. Zhang, B. H. Chen, H. Wang, K. Wu, Y. Chen, J. T. Fan, S. Qi, X. L. Cui, L. Zhang, and J. Wang, “Direct synthesis of large-scale hierarchical MoS2 films nanostructured with orthogonally oriented vertically and horizontally aligned layers,” Nanoscale 8, 431–439 (2016).
[Crossref]

Fang, S. B.

W. J. Liu, M. L. Liu, M. Lei, S. B. Fang, and Z. Y. Wei, “Titanium selenide saturable absorber mirror for passive Q-switched Er-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 24, 0901005 (2018).
[Crossref]

Ferrari, A. C.

F. H. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9, 780–793 (2014).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

Z. P. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Q. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

T. Hasan, Z. P. Sun, F. Q. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009).
[Crossref]

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3, 738–742 (2008).
[Crossref]

Fiori, G.

S. Bruzzone and G. Fiori, “Ab-initio simulations of deformation potentials and electron mobility in chemically modified graphene and two-dimensional hexagonal boron-nitride,” Appl. Phys. Lett. 99, 222108 (2011).
[Crossref]

Fu, X. Y.

H. B. Jiang, Y. L. Zhang, Y. Liu, X. Y. Fu, Y. F. Li, Y. Q. Liu, C. H. Li, and H. B. Sun, “Bioinspired few-layer graphene prepared by chemical vapor deposition on femtosecond laser-structured Cu foil,” Laser Photon. Rev. 10, 441–450 (2016).
[Crossref]

Furthmüller, J.

G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 11169–11186 (1996).
[Crossref]

Ge, Y.

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. L. Zheng, S. B. Lu, J. H. Ji, and H. Zhang, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

Geim, A. K.

A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499, 419–425 (2013).
[Crossref]

A. K. Geim and K. S. Novoselov, “The rise of grapheme,” Nat. Mater. 6, 183–191 (2007).
[Crossref]

Gong, Y. J.

Y. J. Gong, J. H. Lin, X. L. Wang, G. Shi, S. D. Lei, Z. Lin, X. L. Zou, G. L. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Ta, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref]

Grigorieva, I. V.

A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499, 419–425 (2013).
[Crossref]

Grimme, S.

S. Grimme, “Semiempirical GGA-type density functional constructed with a long-range dispersion correction,” J. Comput. Chem. 27, 1787–1799 (2006).
[Crossref]

Guo, J.

X. M. Liu, H. R. Yang, Y. D. Cui, G. W. Chen, Y. Yang, X. Q. Wu, X. K. Yao, D. D. Han, X. X. Han, C. Zeng, J. Guo, W. L. Li, G. Cheng, and L. M. Tong, “Graphene-clad microfibre saturable absorber for ultrafast fibre lasers,” Sci. Rep. 6, 26024 (2016).
[Crossref]

Guo, T.

Guo, X.

Guo, Z.

Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, L. Liao, P. K. Chu, and X. Yu, “Metal-ion-modified black phosphorus with enhanced stability and transistor performance,” Adv. Mater. 29, 1703811 (2017).
[Crossref]

Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X. Yu, and P. K. Chu, “From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics,” Adv. Funct. Mater. 25, 6996–7002 (2015).
[Crossref]

Guo, Z. N.

J. F. Li, H. Y. Luo, B. Zhai, R. G. Lu, Z. N. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6, 30361 (2016).
[Crossref]

S. B. Lu, L. L. Miao, Z. N. Guo, X. Qi, C. J. Zhao, H. Zhang, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material,” Opt. Express 23, 11183–11194 (2015).
[Crossref]

Han, D. D.

X. M. Liu, H. R. Yang, Y. D. Cui, G. W. Chen, Y. Yang, X. Q. Wu, X. K. Yao, D. D. Han, X. X. Han, C. Zeng, J. Guo, W. L. Li, G. Cheng, and L. M. Tong, “Graphene-clad microfibre saturable absorber for ultrafast fibre lasers,” Sci. Rep. 6, 26024 (2016).
[Crossref]

X. M. Liu, D. D. Han, Z. P. Sun, C. Zeng, H. Lu, D. Mao, Y. D. Cui, and F. Q. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3, 2718 (2013).
[Crossref]

Han, X. X.

X. M. Liu, H. R. Yang, Y. D. Cui, G. W. Chen, Y. Yang, X. Q. Wu, X. K. Yao, D. D. Han, X. X. Han, C. Zeng, J. Guo, W. L. Li, G. Cheng, and L. M. Tong, “Graphene-clad microfibre saturable absorber for ultrafast fibre lasers,” Sci. Rep. 6, 26024 (2016).
[Crossref]

Hao, X. P.

G. Zhao, J. Hou, Y. Z. Wu, J. L. He, and X. P. Hao, “Preparation of 2D MoS2/graphene heterostructure through a monolayer intercalation method and its application as an optical modulator in pulsed laser generation,” Adv. Opt. Mater. 3, 937–942 (2015).
[Crossref]

Hasan, T.

M. Zhang, R. C. T. Howe, R. I. Woodward, E. J. R. Kelleher, F. Torrisi, G. H. Hu, S. V. Popov, J. R. Taylor, and T. Hasan, “Solution processed MoS2-PVA composite for subbandgap mode-locking of a wideband tunable ultrafast Er:fiber laser,” Nano Res. 8, 1522–1534 (2015).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

Z. P. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Q. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

T. Hasan, Z. P. Sun, F. Q. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009).
[Crossref]

He, J. H.

Y. H. Lin, S. F. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n- and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
[Crossref]

He, J. L.

G. Zhao, J. Hou, Y. Z. Wu, J. L. He, and X. P. Hao, “Preparation of 2D MoS2/graphene heterostructure through a monolayer intercalation method and its application as an optical modulator in pulsed laser generation,” Adv. Opt. Mater. 3, 937–942 (2015).
[Crossref]

Hennrich, F.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3, 738–742 (2008).
[Crossref]

Hou, J.

G. Zhao, J. Hou, Y. Z. Wu, J. L. He, and X. P. Hao, “Preparation of 2D MoS2/graphene heterostructure through a monolayer intercalation method and its application as an optical modulator in pulsed laser generation,” Adv. Opt. Mater. 3, 937–942 (2015).
[Crossref]

Howe, R. C. T.

M. Zhang, R. C. T. Howe, R. I. Woodward, E. J. R. Kelleher, F. Torrisi, G. H. Hu, S. V. Popov, J. R. Taylor, and T. Hasan, “Solution processed MoS2-PVA composite for subbandgap mode-locking of a wideband tunable ultrafast Er:fiber laser,” Nano Res. 8, 1522–1534 (2015).
[Crossref]

Hu, G. H.

M. Zhang, R. C. T. Howe, R. I. Woodward, E. J. R. Kelleher, F. Torrisi, G. H. Hu, S. V. Popov, J. R. Taylor, and T. Hasan, “Solution processed MoS2-PVA composite for subbandgap mode-locking of a wideband tunable ultrafast Er:fiber laser,” Nano Res. 8, 1522–1534 (2015).
[Crossref]

Huang, Y. Z.

Iwase, M.

S. Takagi, A. Toriumi, M. Iwase, and H. Tango, “On the universality of inversion layer mobility in Si MOSFET’s: part I-effects of substrate impurity concentration,” IEEE Trans. Electron Dev. 41, 2357–2362 (1994).
[Crossref]

Jena, D.

N. Ma and D. Jena, “Carrier statistics and quantum capacitance effects on mobility extraction in two-dimensional crystal semiconductor field-effect transistors,” 2D Mater. 2, 015003 (2015).
[Crossref]

Jeong, H.

Jhon, Y. M.

Ji, J. H.

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. L. Zheng, S. B. Lu, J. H. Ji, and H. Zhang, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

Jia, Y. C.

F. N. Xia, H. Wang, and Y. C. Jia, “Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics,” Nat. Commun. 5, 4458 (2014).
[Crossref]

Jiang, B. Q.

D. Mao, X. Y. She, B. B. Du, D. X. Yang, W. D. Zhang, K. Song, X. Q. Cui, B. Q. Jiang, T. Peng, and J. L. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6, 23583 (2016).
[Crossref]

Jiang, G. B.

Y. Q. Jiang, L. L. Miao, G. B. Jiang, Y. Chen, X. Qi, X. F. Jiang, H. Zhang, and S. C. Wen, “Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications,” Sci. Rep. 5, 16372 (2015).
[Crossref]

Jiang, H. B.

H. B. Jiang, Y. L. Zhang, Y. Liu, X. Y. Fu, Y. F. Li, Y. Q. Liu, C. H. Li, and H. B. Sun, “Bioinspired few-layer graphene prepared by chemical vapor deposition on femtosecond laser-structured Cu foil,” Laser Photon. Rev. 10, 441–450 (2016).
[Crossref]

Jiang, X.

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. L. Zheng, S. B. Lu, J. H. Ji, and H. Zhang, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

Jiang, X. F.

Y. Q. Jiang, L. L. Miao, G. B. Jiang, Y. Chen, X. Qi, X. F. Jiang, H. Zhang, and S. C. Wen, “Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications,” Sci. Rep. 5, 16372 (2015).
[Crossref]

Jiang, Y. Q.

Y. Q. Jiang, L. L. Miao, G. B. Jiang, Y. Chen, X. Qi, X. F. Jiang, H. Zhang, and S. C. Wen, “Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications,” Sci. Rep. 5, 16372 (2015).
[Crossref]

Jiang, Z. K.

P. G. Yang, H. Chen, J. D. Yin, Z. H. Xu, J. R. Li, Z. K. Jiang, W. F. Zhang, J. Z. Wang, I. L. Li, Z. P. Sun, and S. C. Ruan, “Large-area tungsten disulfide for ultrafast photonics,” Nanoscale 9, 1871–1877 (2017).
[Crossref]

Joubert, D.

G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59, 1758–1775 (1999).
[Crossref]

Kalantar-Zadeh, K.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

Kelleher, E. J. R.

R. I. Woodward and E. J. R. Kelleher, “2D saturable absorbers for fibre lasers,” Appl. Sci. 5, 1440–1456 (2015).
[Crossref]

M. Zhang, R. C. T. Howe, R. I. Woodward, E. J. R. Kelleher, F. Torrisi, G. H. Hu, S. V. Popov, J. R. Taylor, and T. Hasan, “Solution processed MoS2-PVA composite for subbandgap mode-locking of a wideband tunable ultrafast Er:fiber laser,” Nano Res. 8, 1522–1534 (2015).
[Crossref]

Kim, J. H.

Kim, K.

Kim, S.

Kis, A.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

Kivshar, Y. S.

D. A. Smirnova, I. V. Shadrivov, A. I. Smirnov, and Y. S. Kivshar, “Dissipative plasmon-solitons in multilayer grapheme,” Laser Photon. Rev. 8, 291–296 (2014).
[Crossref]

Koo, J.

Koppens, F. H.

F. H. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9, 780–793 (2014).
[Crossref]

Krause, H. B.

T. L. Anderson and H. B. Krause, “Refinement of the Sb2Te3 structures and their relationship to nonstoichiometric Sb2Te3−ySey compounds,” Acta Crystallogr. Sect. B 30, 1307–1310 (1974).
[Crossref]

Kresse, G.

G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59, 1758–1775 (1999).
[Crossref]

G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 11169–11186 (1996).
[Crossref]

Kwon, W. S.

Lan, C. Y.

W. X. Du, H. P. Li, C. Liu, S. N. Shen, C. Y. Lan, C. Li, and Y. Liu, “Ultrafast pulse erbium-doped fiber laser with a graphene/WS2 heterostructure saturable absorber,” Proc. SPIE 10457, 104571M (2017).

C. Liu, H. P. Li, G. L. Deng, C. Y. Lan, C. Li, and Y. Liu, “Femtosecond Er-doped fiber laser using a graphene/MoS2 heterostructure saturable absorber,” in Asia Communications and Photonics Conference, Vol. 129 of 2016 OSA Technical Digest Series (Optical Society of America, 2016), paper AF2A.

Lau, S. P.

H. R. Mu, S. H. Lin, Z. C. Wang, S. Xiao, P. F. Li, Y. Chen, H. Zhang, H. F. Bao, S. P. Lau, C. X. Pan, D. Y. Fan, and Q. L. Bao, “Black phosphorus-polymer composites for pulsed lasers,” Adv. Opt. Mater. 3, 1447–1453 (2015).
[Crossref]

Lee, C. K.

Y. H. Lin, S. F. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n- and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
[Crossref]

Lee, H.

Lee, J.

K. Park, J. Lee, Y. T. Lee, W. K. Choi, J. H. Lee, and Y. W. Song, “Black phosphorus saturable absorber for ultrafast mode-locked pulse laser via evanescent field interaction,” Ann. Phys. (Berlin) 527, 770–776 (2015).
[Crossref]

J. Lee, J. Koo, Y. M. Jhon, and J. H. Lee, “A femtosecond pulse erbium fiber laser incorporating a saturable absorber based on bulk-structured Bi2Te3 topological insulator,” Opt. Express 22, 6165–6173 (2014).
[Crossref]

Lee, J. H.

K. Park, J. Lee, Y. T. Lee, W. K. Choi, J. H. Lee, and Y. W. Song, “Black phosphorus saturable absorber for ultrafast mode-locked pulse laser via evanescent field interaction,” Ann. Phys. (Berlin) 527, 770–776 (2015).
[Crossref]

J. Lee, J. Koo, Y. M. Jhon, and J. H. Lee, “A femtosecond pulse erbium fiber laser incorporating a saturable absorber based on bulk-structured Bi2Te3 topological insulator,” Opt. Express 22, 6165–6173 (2014).
[Crossref]

Lee, K.

Lee, Y. T.

K. Park, J. Lee, Y. T. Lee, W. K. Choi, J. H. Lee, and Y. W. Song, “Black phosphorus saturable absorber for ultrafast mode-locked pulse laser via evanescent field interaction,” Ann. Phys. (Berlin) 527, 770–776 (2015).
[Crossref]

Lei, M.

W. J. Liu, M. L. Liu, M. Lei, S. B. Fang, and Z. Y. Wei, “Titanium selenide saturable absorber mirror for passive Q-switched Er-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 24, 0901005 (2018).
[Crossref]

Lei, S. D.

Y. J. Gong, J. H. Lin, X. L. Wang, G. Shi, S. D. Lei, Z. Lin, X. L. Zou, G. L. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Ta, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref]

Li, C.

W. X. Du, H. P. Li, C. Liu, S. N. Shen, C. Y. Lan, C. Li, and Y. Liu, “Ultrafast pulse erbium-doped fiber laser with a graphene/WS2 heterostructure saturable absorber,” Proc. SPIE 10457, 104571M (2017).

C. Liu, H. P. Li, G. L. Deng, C. Y. Lan, C. Li, and Y. Liu, “Femtosecond Er-doped fiber laser using a graphene/MoS2 heterostructure saturable absorber,” in Asia Communications and Photonics Conference, Vol. 129 of 2016 OSA Technical Digest Series (Optical Society of America, 2016), paper AF2A.

Li, C. H.

H. B. Jiang, Y. L. Zhang, Y. Liu, X. Y. Fu, Y. F. Li, Y. Q. Liu, C. H. Li, and H. B. Sun, “Bioinspired few-layer graphene prepared by chemical vapor deposition on femtosecond laser-structured Cu foil,” Laser Photon. Rev. 10, 441–450 (2016).
[Crossref]

Li, H. P.

W. X. Du, H. P. Li, C. Liu, S. N. Shen, C. Y. Lan, C. Li, and Y. Liu, “Ultrafast pulse erbium-doped fiber laser with a graphene/WS2 heterostructure saturable absorber,” Proc. SPIE 10457, 104571M (2017).

C. Liu, H. P. Li, G. L. Deng, C. Y. Lan, C. Li, and Y. Liu, “Femtosecond Er-doped fiber laser using a graphene/MoS2 heterostructure saturable absorber,” in Asia Communications and Photonics Conference, Vol. 129 of 2016 OSA Technical Digest Series (Optical Society of America, 2016), paper AF2A.

Li, I. L.

P. G. Yang, H. Chen, J. D. Yin, Z. H. Xu, J. R. Li, Z. K. Jiang, W. F. Zhang, J. Z. Wang, I. L. Li, Z. P. Sun, and S. C. Ruan, “Large-area tungsten disulfide for ultrafast photonics,” Nanoscale 9, 1871–1877 (2017).
[Crossref]

Li, J. F.

J. F. Li, H. Y. Luo, B. Zhai, R. G. Lu, Z. N. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6, 30361 (2016).
[Crossref]

Li, J. R.

P. G. Yang, H. Chen, J. D. Yin, Z. H. Xu, J. R. Li, Z. K. Jiang, W. F. Zhang, J. Z. Wang, I. L. Li, Z. P. Sun, and S. C. Ruan, “Large-area tungsten disulfide for ultrafast photonics,” Nanoscale 9, 1871–1877 (2017).
[Crossref]

Li, P. F.

H. R. Mu, S. H. Lin, Z. C. Wang, S. Xiao, P. F. Li, Y. Chen, H. Zhang, H. F. Bao, S. P. Lau, C. X. Pan, D. Y. Fan, and Q. L. Bao, “Black phosphorus-polymer composites for pulsed lasers,” Adv. Opt. Mater. 3, 1447–1453 (2015).
[Crossref]

Li, W. L.

X. M. Liu, H. R. Yang, Y. D. Cui, G. W. Chen, Y. Yang, X. Q. Wu, X. K. Yao, D. D. Han, X. X. Han, C. Zeng, J. Guo, W. L. Li, G. Cheng, and L. M. Tong, “Graphene-clad microfibre saturable absorber for ultrafast fibre lasers,” Sci. Rep. 6, 26024 (2016).
[Crossref]

Li, X.

Li, Y.

Li, Y. F.

H. B. Jiang, Y. L. Zhang, Y. Liu, X. Y. Fu, Y. F. Li, Y. Q. Liu, C. H. Li, and H. B. Sun, “Bioinspired few-layer graphene prepared by chemical vapor deposition on femtosecond laser-structured Cu foil,” Laser Photon. Rev. 10, 441–450 (2016).
[Crossref]

Li, Z.

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. L. Zheng, S. B. Lu, J. H. Ji, and H. Zhang, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

Liang, Z.

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. L. Zheng, S. B. Lu, J. H. Ji, and H. Zhang, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1700221 (2017).
[Crossref]

Liao, L.

Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, L. Liao, P. K. Chu, and X. Yu, “Metal-ion-modified black phosphorus with enhanced stability and transistor performance,” Adv. Mater. 29, 1703811 (2017).
[Crossref]

Lim, C.

Q. L. Bao, H. Zhang, B. Wang, Z. H. Ni, C. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5, 411–415 (2011).
[Crossref]

Lin, G. R.

Y. H. Lin, S. F. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n- and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
[Crossref]

Lin, J. H.

Y. J. Gong, J. H. Lin, X. L. Wang, G. Shi, S. D. Lei, Z. Lin, X. L. Zou, G. L. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Ta, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref]

Lin, S. F.

Y. H. Lin, S. F. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n- and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
[Crossref]

Lin, S. H.

H. R. Mu, S. H. Lin, Z. C. Wang, S. Xiao, P. F. Li, Y. Chen, H. Zhang, H. F. Bao, S. P. Lau, C. X. Pan, D. Y. Fan, and Q. L. Bao, “Black phosphorus-polymer composites for pulsed lasers,” Adv. Opt. Mater. 3, 1447–1453 (2015).
[Crossref]

Lin, Y. H.

Y. H. Lin, S. F. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n- and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
[Crossref]

Lin, Y. M.

F. N. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4, 839–843 (2009).
[Crossref]

Lin, Z.

Y. J. Gong, J. H. Lin, X. L. Wang, G. Shi, S. D. Lei, Z. Lin, X. L. Zou, G. L. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Ta, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref]

Lin, Z. Q.

Liu, C.

W. X. Du, H. P. Li, C. Liu, S. N. Shen, C. Y. Lan, C. Li, and Y. Liu, “Ultrafast pulse erbium-doped fiber laser with a graphene/WS2 heterostructure saturable absorber,” Proc. SPIE 10457, 104571M (2017).

C. Liu, H. P. Li, G. L. Deng, C. Y. Lan, C. Li, and Y. Liu, “Femtosecond Er-doped fiber laser using a graphene/MoS2 heterostructure saturable absorber,” in Asia Communications and Photonics Conference, Vol. 129 of 2016 OSA Technical Digest Series (Optical Society of America, 2016), paper AF2A.

Liu, F.

Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, L. Liao, P. K. Chu, and X. Yu, “Metal-ion-modified black phosphorus with enhanced stability and transistor performance,” Adv. Mater. 29, 1703811 (2017).
[Crossref]

Liu, H.

Liu, J.

Liu, M.

Liu, M. L.

W. J. Liu, M. L. Liu, M. Lei, S. B. Fang, and Z. Y. Wei, “Titanium selenide saturable absorber mirror for passive Q-switched Er-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 24, 0901005 (2018).
[Crossref]

Liu, W. J.

W. J. Liu, M. L. Liu, M. Lei, S. B. Fang, and Z. Y. Wei, “Titanium selenide saturable absorber mirror for passive Q-switched Er-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 24, 0901005 (2018).
[Crossref]

Liu, W. T.

Liu, X. M.

X. M. Liu, H. R. Yang, Y. D. Cui, G. W. Chen, Y. Yang, X. Q. Wu, X. K. Yao, D. D. Han, X. X. Han, C. Zeng, J. Guo, W. L. Li, G. Cheng, and L. M. Tong, “Graphene-clad microfibre saturable absorber for ultrafast fibre lasers,” Sci. Rep. 6, 26024 (2016).
[Crossref]

X. M. Liu, D. D. Han, Z. P. Sun, C. Zeng, H. Lu, D. Mao, Y. D. Cui, and F. Q. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3, 2718 (2013).
[Crossref]

Liu, Y.

W. X. Du, H. P. Li, C. Liu, S. N. Shen, C. Y. Lan, C. Li, and Y. Liu, “Ultrafast pulse erbium-doped fiber laser with a graphene/WS2 heterostructure saturable absorber,” Proc. SPIE 10457, 104571M (2017).

J. F. Li, H. Y. Luo, B. Zhai, R. G. Lu, Z. N. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6, 30361 (2016).
[Crossref]

H. B. Jiang, Y. L. Zhang, Y. Liu, X. Y. Fu, Y. F. Li, Y. Q. Liu, C. H. Li, and H. B. Sun, “Bioinspired few-layer graphene prepared by chemical vapor deposition on femtosecond laser-structured Cu foil,” Laser Photon. Rev. 10, 441–450 (2016).
[Crossref]

C. Liu, H. P. Li, G. L. Deng, C. Y. Lan, C. Li, and Y. Liu, “Femtosecond Er-doped fiber laser using a graphene/MoS2 heterostructure saturable absorber,” in Asia Communications and Photonics Conference, Vol. 129 of 2016 OSA Technical Digest Series (Optical Society of America, 2016), paper AF2A.

Liu, Y. Q.

H. B. Jiang, Y. L. Zhang, Y. Liu, X. Y. Fu, Y. F. Li, Y. Q. Liu, C. H. Li, and H. B. Sun, “Bioinspired few-layer graphene prepared by chemical vapor deposition on femtosecond laser-structured Cu foil,” Laser Photon. Rev. 10, 441–450 (2016).
[Crossref]

Liu, Z.

Y. J. Gong, J. H. Lin, X. L. Wang, G. Shi, S. D. Lei, Z. Lin, X. L. Zou, G. L. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Ta, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref]

Loh, K. P.

Q. L. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6, 3677–3694 (2012).
[Crossref]

Q. L. Bao, H. Zhang, B. Wang, Z. H. Ni, C. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5, 411–415 (2011).
[Crossref]

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95, 141103 (2009).
[Crossref]

Lou, J.

Y. J. Gong, J. H. Lin, X. L. Wang, G. Shi, S. D. Lei, Z. Lin, X. L. Zou, G. L. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Ta, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref]

Lu, H.

X. M. Liu, D. D. Han, Z. P. Sun, C. Zeng, H. Lu, D. Mao, Y. D. Cui, and F. Q. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3, 2718 (2013).
[Crossref]

Lu, L.

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1700221 (2017).
[Crossref]

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. L. Zheng, S. B. Lu, J. H. Ji, and H. Zhang, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

Lu, R. G.

J. F. Li, H. Y. Luo, B. Zhai, R. G. Lu, Z. N. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6, 30361 (2016).
[Crossref]

Lu, S.

Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X. Yu, and P. K. Chu, “From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics,” Adv. Funct. Mater. 25, 6996–7002 (2015).
[Crossref]

Lu, S. B.

Luo, A. P.

Luo, H. Y.

J. F. Li, H. Y. Luo, B. Zhai, R. G. Lu, Z. N. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6, 30361 (2016).
[Crossref]

Luo, Z. C.

Luo, Z. Q.

Z. Q. Luo, D. D. Wu, B. Xu, H. Y. Xu, Z. P. Cai, J. Peng, J. Weng, S. Xu, C. H. Zhu, F. Q. Wang, Z. P. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8, 1066–1072 (2016).
[Crossref]

Z. Q. Luo, Y. Z. Huang, J. Weng, H. H. Cheng, Z. Q. Lin, B. Xu, Z. P. Cai, and H. Y. Xu, “1.06  μm Q-switched ytterbium-doped fiber laser using few-layer topological insulator Bi2Se3 as a saturable absorber,” Opt. Express 21, 29516–29522 (2013).
[Crossref]

Ma, N.

N. Ma and D. Jena, “Carrier statistics and quantum capacitance effects on mobility extraction in two-dimensional crystal semiconductor field-effect transistors,” 2D Mater. 2, 015003 (2015).
[Crossref]

Macherzynski, W.

J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, and K. M. Abramski, “Black phosphorus saturable absorber for ultrashort pulse generation,” Appl. Phys. Lett. 107, 051108 (2015).
[Crossref]

Mao, D.

D. Mao, X. Y. She, B. B. Du, D. X. Yang, W. D. Zhang, K. Song, X. Q. Cui, B. Q. Jiang, T. Peng, and J. L. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6, 23583 (2016).
[Crossref]

X. M. Liu, D. D. Han, Z. P. Sun, C. Zeng, H. Lu, D. Mao, Y. D. Cui, and F. Q. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3, 2718 (2013).
[Crossref]

Martinez, A.

Z. P. Sun, A. Martinez, and F. Wang, “Optical modulators with 2D layered materials,” Nat. Photonics 10, 227–238 (2016).
[Crossref]

A. Martinez and Z. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nat. Photonics 7, 842–845 (2013).
[Crossref]

Medeiros, P. V. C.

P. V. C. Medeiros, S. S. Tsirkin, S. Stafström, and J. Björk, “Unfolding spinor wave functions and expectation values of general operators: introducing the unfolding-density operator,” Phys. Rev. B 91, 041116 (2015).
[Crossref]

P. V. C. Medeiros, S. Stafström, and J. Björk, “Effects of extrinsic and intrinsic perturbations on the electronic structure of graphene: retaining an effective primitive cell band structure by band unfolding,” Phys. Rev. B 89, 041407 (2014).
[Crossref]

Mei, L. M.

S. X. Wang, H. H. Yu, H. J. Zhang, A. Z. Wang, M. W. Zhao, Y. X. Chen, L. M. Mei, and J. Y. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014).
[Crossref]

Miao, L. L.

S. B. Lu, L. L. Miao, Z. N. Guo, X. Qi, C. J. Zhao, H. Zhang, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material,” Opt. Express 23, 11183–11194 (2015).
[Crossref]

Y. Q. Jiang, L. L. Miao, G. B. Jiang, Y. Chen, X. Qi, X. F. Jiang, H. Zhang, and S. C. Wen, “Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications,” Sci. Rep. 5, 16372 (2015).
[Crossref]

Milne, W. I.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3, 738–742 (2008).
[Crossref]

Mohanraj, J.

J. Mohanraj, V. Velmurugan, and S. Sivabalan, “Transition metal dichalcogenides based saturable absorbers for pulsed laser technology,” Opt. Mater. 60, 601–617 (2016).
[Crossref]

Mu, H. R.

Z. T. Wang, H. R. Mu, J. Yuan, C. J. Zhao, Q. L. Bao, and H. Zhang, “Graphene-Bi2Te3 heterostructure as broadband saturable absorber for ultra-short pulse generation in Er-doped and Yb-doped fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 8800105 (2017).
[Crossref]

Z. T. Wang, H. R. Mu, C. J. Zhao, Q. L. Bao, and H. Zhang, “Harmonic mode-locking and wavelength-tunable Q-switching operation in the graphene-Bi2Te3 heterostructure saturable absorber-based fiber laser,” Opt. Eng. 55, 081314 (2016).
[Crossref]

H. R. Mu, Z. T. Wang, J. Yuan, S. Xiao, C. Y. Chen, J. C. Song, Y. S. Wang, Y. Z. Xue, H. Zhang, and Q. L. Bao, “Graphene/Bi2Te3 heterostructure as saturable absorber for short pulse generation,” ACS Photon. 2, 832–841 (2015).
[Crossref]

H. R. Mu, S. H. Lin, Z. C. Wang, S. Xiao, P. F. Li, Y. Chen, H. Zhang, H. F. Bao, S. P. Lau, C. X. Pan, D. Y. Fan, and Q. L. Bao, “Black phosphorus-polymer composites for pulsed lasers,” Adv. Opt. Mater. 3, 1447–1453 (2015).
[Crossref]

Mueller, T.

F. H. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9, 780–793 (2014).
[Crossref]

F. N. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4, 839–843 (2009).
[Crossref]

Ni, Z. H.

Q. L. Bao, H. Zhang, B. Wang, Z. H. Ni, C. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5, 411–415 (2011).
[Crossref]

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Novoselov, K. S.

A. K. Geim and K. S. Novoselov, “The rise of grapheme,” Nat. Mater. 6, 183–191 (2007).
[Crossref]

Paletko, P.

J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, and K. M. Abramski, “Black phosphorus saturable absorber for ultrashort pulse generation,” Appl. Phys. Lett. 107, 051108 (2015).
[Crossref]

Pan, C. X.

H. R. Mu, S. H. Lin, Z. C. Wang, S. Xiao, P. F. Li, Y. Chen, H. Zhang, H. F. Bao, S. P. Lau, C. X. Pan, D. Y. Fan, and Q. L. Bao, “Black phosphorus-polymer composites for pulsed lasers,” Adv. Opt. Mater. 3, 1447–1453 (2015).
[Crossref]

Pantelides, S. T.

Y. J. Gong, J. H. Lin, X. L. Wang, G. Shi, S. D. Lei, Z. Lin, X. L. Zou, G. L. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Ta, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref]

Park, K.

K. Park, J. Lee, Y. T. Lee, W. K. Choi, J. H. Lee, and Y. W. Song, “Black phosphorus saturable absorber for ultrafast mode-locked pulse laser via evanescent field interaction,” Ann. Phys. (Berlin) 527, 770–776 (2015).
[Crossref]

Peng, J.

Z. Q. Luo, D. D. Wu, B. Xu, H. Y. Xu, Z. P. Cai, J. Peng, J. Weng, S. Xu, C. H. Zhu, F. Q. Wang, Z. P. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8, 1066–1072 (2016).
[Crossref]

Peng, T.

D. Mao, X. Y. She, B. B. Du, D. X. Yang, W. D. Zhang, K. Song, X. Q. Cui, B. Q. Jiang, T. Peng, and J. L. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6, 23583 (2016).
[Crossref]

Perdew, J. P.

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996).
[Crossref]

Polini, M.

F. H. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9, 780–793 (2014).
[Crossref]

Ponraj, J. S.

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1700221 (2017).
[Crossref]

Popa, D.

Z. P. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Q. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Popov, S. V.

M. Zhang, R. C. T. Howe, R. I. Woodward, E. J. R. Kelleher, F. Torrisi, G. H. Hu, S. V. Popov, J. R. Taylor, and T. Hasan, “Solution processed MoS2-PVA composite for subbandgap mode-locking of a wideband tunable ultrafast Er:fiber laser,” Nano Res. 8, 1522–1534 (2015).
[Crossref]

Privitera, G.

Z. P. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Q. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Qi, S.

X. Y. Zhang, S. F. Zhang, B. H. Chen, H. Wang, K. Wu, Y. Chen, J. T. Fan, S. Qi, X. L. Cui, L. Zhang, and J. Wang, “Direct synthesis of large-scale hierarchical MoS2 films nanostructured with orthogonally oriented vertically and horizontally aligned layers,” Nanoscale 8, 431–439 (2016).
[Crossref]

Qi, X.

S. B. Lu, L. L. Miao, Z. N. Guo, X. Qi, C. J. Zhao, H. Zhang, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material,” Opt. Express 23, 11183–11194 (2015).
[Crossref]

Y. Q. Jiang, L. L. Miao, G. B. Jiang, Y. Chen, X. Qi, X. F. Jiang, H. Zhang, and S. C. Wen, “Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications,” Sci. Rep. 5, 16372 (2015).
[Crossref]

C. J. Zhao, H. Zhang, X. Qi, Y. Chen, Z. T. Wang, S. C. Wen, and D. Y. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101, 211106 (2012).
[Crossref]

Ramasubramaniam, A.

F. N. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two dimensional material nanophotonics,” Nat. Photonics 8, 899–907 (2014).
[Crossref]

Rotermund, F.

Rozhin, A. G.

T. Hasan, Z. P. Sun, F. Q. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009).
[Crossref]

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3, 738–742 (2008).
[Crossref]

Ruan, S. C.

P. G. Yang, H. Chen, J. D. Yin, Z. H. Xu, J. R. Li, Z. K. Jiang, W. F. Zhang, J. Z. Wang, I. L. Li, Z. P. Sun, and S. C. Ruan, “Large-area tungsten disulfide for ultrafast photonics,” Nanoscale 9, 1871–1877 (2017).
[Crossref]

Scardaci, V.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3, 738–742 (2008).
[Crossref]

Shadrivov, I. V.

D. A. Smirnova, I. V. Shadrivov, A. I. Smirnov, and Y. S. Kivshar, “Dissipative plasmon-solitons in multilayer grapheme,” Laser Photon. Rev. 8, 291–296 (2014).
[Crossref]

Shao, J.

Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X. Yu, and P. K. Chu, “From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics,” Adv. Funct. Mater. 25, 6996–7002 (2015).
[Crossref]

She, X. Y.

D. Mao, X. Y. She, B. B. Du, D. X. Yang, W. D. Zhang, K. Song, X. Q. Cui, B. Q. Jiang, T. Peng, and J. L. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6, 23583 (2016).
[Crossref]

Shen, S. N.

W. X. Du, H. P. Li, C. Liu, S. N. Shen, C. Y. Lan, C. Li, and Y. Liu, “Ultrafast pulse erbium-doped fiber laser with a graphene/WS2 heterostructure saturable absorber,” Proc. SPIE 10457, 104571M (2017).

Shen, Y. R.

Shen, Z. X.

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Shi, G.

Y. J. Gong, J. H. Lin, X. L. Wang, G. Shi, S. D. Lei, Z. Lin, X. L. Zou, G. L. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Ta, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref]

Sivabalan, S.

J. Mohanraj, V. Velmurugan, and S. Sivabalan, “Transition metal dichalcogenides based saturable absorbers for pulsed laser technology,” Opt. Mater. 60, 601–617 (2016).
[Crossref]

Smirnov, A. I.

D. A. Smirnova, I. V. Shadrivov, A. I. Smirnov, and Y. S. Kivshar, “Dissipative plasmon-solitons in multilayer grapheme,” Laser Photon. Rev. 8, 291–296 (2014).
[Crossref]

Smirnova, D. A.

D. A. Smirnova, I. V. Shadrivov, A. I. Smirnov, and Y. S. Kivshar, “Dissipative plasmon-solitons in multilayer grapheme,” Laser Photon. Rev. 8, 291–296 (2014).
[Crossref]

Sobon, G.

J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, and K. M. Abramski, “Black phosphorus saturable absorber for ultrashort pulse generation,” Appl. Phys. Lett. 107, 051108 (2015).
[Crossref]

G. Sobon, J. Sotor, and K. M. Abramski, “Passive harmonic mode-locking in Er-doped fiber laser based on graphene saturable absorber with repetition rates scalable to 2.22  GHz,” Appl. Phys. Lett. 100, 161109 (2012).
[Crossref]

Song, J. C.

H. R. Mu, Z. T. Wang, J. Yuan, S. Xiao, C. Y. Chen, J. C. Song, Y. S. Wang, Y. Z. Xue, H. Zhang, and Q. L. Bao, “Graphene/Bi2Te3 heterostructure as saturable absorber for short pulse generation,” ACS Photon. 2, 832–841 (2015).
[Crossref]

Song, K.

D. Mao, X. Y. She, B. B. Du, D. X. Yang, W. D. Zhang, K. Song, X. Q. Cui, B. Q. Jiang, T. Peng, and J. L. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6, 23583 (2016).
[Crossref]

Song, Y.

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. L. Zheng, S. B. Lu, J. H. Ji, and H. Zhang, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1700221 (2017).
[Crossref]

Song, Y. W.

K. Park, J. Lee, Y. T. Lee, W. K. Choi, J. H. Lee, and Y. W. Song, “Black phosphorus saturable absorber for ultrafast mode-locked pulse laser via evanescent field interaction,” Ann. Phys. (Berlin) 527, 770–776 (2015).
[Crossref]

Sotor, J.

J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, and K. M. Abramski, “Black phosphorus saturable absorber for ultrashort pulse generation,” Appl. Phys. Lett. 107, 051108 (2015).
[Crossref]

G. Sobon, J. Sotor, and K. M. Abramski, “Passive harmonic mode-locking in Er-doped fiber laser based on graphene saturable absorber with repetition rates scalable to 2.22  GHz,” Appl. Phys. Lett. 100, 161109 (2012).
[Crossref]

Stafström, S.

P. V. C. Medeiros, S. S. Tsirkin, S. Stafström, and J. Björk, “Unfolding spinor wave functions and expectation values of general operators: introducing the unfolding-density operator,” Phys. Rev. B 91, 041116 (2015).
[Crossref]

P. V. C. Medeiros, S. Stafström, and J. Björk, “Effects of extrinsic and intrinsic perturbations on the electronic structure of graphene: retaining an effective primitive cell band structure by band unfolding,” Phys. Rev. B 89, 041407 (2014).
[Crossref]

Strano, M. S.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

Sun, H. B.

H. B. Jiang, Y. L. Zhang, Y. Liu, X. Y. Fu, Y. F. Li, Y. Q. Liu, C. H. Li, and H. B. Sun, “Bioinspired few-layer graphene prepared by chemical vapor deposition on femtosecond laser-structured Cu foil,” Laser Photon. Rev. 10, 441–450 (2016).
[Crossref]

Sun, Z.

Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X. Yu, and P. K. Chu, “From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics,” Adv. Funct. Mater. 25, 6996–7002 (2015).
[Crossref]

F. Bonaccorso and Z. Sun, “Solution processing of graphene, topological insulators and other 2D crystals for ultrafast photonics,” Opt. Mater. Express 4, 63–78 (2014).
[Crossref]

A. Martinez and Z. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nat. Photonics 7, 842–845 (2013).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3, 738–742 (2008).
[Crossref]

Sun, Z. P.

P. G. Yang, H. Chen, J. D. Yin, Z. H. Xu, J. R. Li, Z. K. Jiang, W. F. Zhang, J. Z. Wang, I. L. Li, Z. P. Sun, and S. C. Ruan, “Large-area tungsten disulfide for ultrafast photonics,” Nanoscale 9, 1871–1877 (2017).
[Crossref]

Z. Q. Luo, D. D. Wu, B. Xu, H. Y. Xu, Z. P. Cai, J. Peng, J. Weng, S. Xu, C. H. Zhu, F. Q. Wang, Z. P. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8, 1066–1072 (2016).
[Crossref]

Z. P. Sun, A. Martinez, and F. Wang, “Optical modulators with 2D layered materials,” Nat. Photonics 10, 227–238 (2016).
[Crossref]

X. M. Liu, D. D. Han, Z. P. Sun, C. Zeng, H. Lu, D. Mao, Y. D. Cui, and F. Q. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3, 2718 (2013).
[Crossref]

Z. P. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Q. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

T. Hasan, Z. P. Sun, F. Q. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009).
[Crossref]

Ta, B. K.

Y. J. Gong, J. H. Lin, X. L. Wang, G. Shi, S. D. Lei, Z. Lin, X. L. Zou, G. L. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Ta, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref]

Takagi, S.

S. Takagi, A. Toriumi, M. Iwase, and H. Tango, “On the universality of inversion layer mobility in Si MOSFET’s: part I-effects of substrate impurity concentration,” IEEE Trans. Electron Dev. 41, 2357–2362 (1994).
[Crossref]

Tan, P. H.

T. Hasan, Z. P. Sun, F. Q. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009).
[Crossref]

Tang, D. Y.

S. B. Lu, L. L. Miao, Z. N. Guo, X. Qi, C. J. Zhao, H. Zhang, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material,” Opt. Express 23, 11183–11194 (2015).
[Crossref]

S. B. Lu, C. J. Zhao, Y. H. Zou, S. Q. Chen, Y. Chen, Y. Li, H. Zhang, S. C. Wen, and D. Y. Tang, “Third order nonlinear optical property of Bi2Se3,” Opt. Express 21, 2072–2082 (2013).
[Crossref]

C. J. Zhao, H. Zhang, X. Qi, Y. Chen, Z. T. Wang, S. C. Wen, and D. Y. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101, 211106 (2012).
[Crossref]

Q. L. Bao, H. Zhang, B. Wang, Z. H. Ni, C. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5, 411–415 (2011).
[Crossref]

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95, 141103 (2009).
[Crossref]

Tang, S.

Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X. Yu, and P. K. Chu, “From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics,” Adv. Funct. Mater. 25, 6996–7002 (2015).
[Crossref]

Tango, H.

S. Takagi, A. Toriumi, M. Iwase, and H. Tango, “On the universality of inversion layer mobility in Si MOSFET’s: part I-effects of substrate impurity concentration,” IEEE Trans. Electron Dev. 41, 2357–2362 (1994).
[Crossref]

Taylor, J. R.

M. Zhang, R. C. T. Howe, R. I. Woodward, E. J. R. Kelleher, F. Torrisi, G. H. Hu, S. V. Popov, J. R. Taylor, and T. Hasan, “Solution processed MoS2-PVA composite for subbandgap mode-locking of a wideband tunable ultrafast Er:fiber laser,” Nano Res. 8, 1522–1534 (2015).
[Crossref]

Terrones, H.

Y. J. Gong, J. H. Lin, X. L. Wang, G. Shi, S. D. Lei, Z. Lin, X. L. Zou, G. L. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Ta, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref]

Terrones, M.

Y. J. Gong, J. H. Lin, X. L. Wang, G. Shi, S. D. Lei, Z. Lin, X. L. Zou, G. L. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Ta, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref]

Tong, L. M.

X. M. Liu, H. R. Yang, Y. D. Cui, G. W. Chen, Y. Yang, X. Q. Wu, X. K. Yao, D. D. Han, X. X. Han, C. Zeng, J. Guo, W. L. Li, G. Cheng, and L. M. Tong, “Graphene-clad microfibre saturable absorber for ultrafast fibre lasers,” Sci. Rep. 6, 26024 (2016).
[Crossref]

S. L. Yu, X. Q. Wu, K. R. Chen, B. G. Chen, X. Guo, D. X. Dai, L. M. Tong, W. T. Liu, and Y. R. Shen, “All-optical graphene modulator based on optical Kerr phase shift,” Optica 3, 541–544 (2016).
[Crossref]

Toriumi, A.

S. Takagi, A. Toriumi, M. Iwase, and H. Tango, “On the universality of inversion layer mobility in Si MOSFET’s: part I-effects of substrate impurity concentration,” IEEE Trans. Electron Dev. 41, 2357–2362 (1994).
[Crossref]

Torrisi, F.

M. Zhang, R. C. T. Howe, R. I. Woodward, E. J. R. Kelleher, F. Torrisi, G. H. Hu, S. V. Popov, J. R. Taylor, and T. Hasan, “Solution processed MoS2-PVA composite for subbandgap mode-locking of a wideband tunable ultrafast Er:fiber laser,” Nano Res. 8, 1522–1534 (2015).
[Crossref]

Z. P. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Q. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Tseng, W. H.

Y. H. Lin, S. F. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n- and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
[Crossref]

Tsirkin, S. S.

P. V. C. Medeiros, S. S. Tsirkin, S. Stafström, and J. Björk, “Unfolding spinor wave functions and expectation values of general operators: introducing the unfolding-density operator,” Phys. Rev. B 91, 041116 (2015).
[Crossref]

Vajtai, R.

Y. J. Gong, J. H. Lin, X. L. Wang, G. Shi, S. D. Lei, Z. Lin, X. L. Zou, G. L. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Ta, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref]

Valdes-Garcia, A.

F. N. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4, 839–843 (2009).
[Crossref]

Velmurugan, V.

J. Mohanraj, V. Velmurugan, and S. Sivabalan, “Transition metal dichalcogenides based saturable absorbers for pulsed laser technology,” Opt. Mater. 60, 601–617 (2016).
[Crossref]

Vitiello, M. S.

F. H. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9, 780–793 (2014).
[Crossref]

Wang, A. Z.

S. X. Wang, H. H. Yu, H. J. Zhang, A. Z. Wang, M. W. Zhao, Y. X. Chen, L. M. Mei, and J. Y. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014).
[Crossref]

Wang, B.

Q. L. Bao, H. Zhang, B. Wang, Z. H. Ni, C. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5, 411–415 (2011).
[Crossref]

Wang, B. L.

H. H. Yu, H. Zhang, Y. C. Wang, C. J. Zhao, B. L. Wang, S. C. Wen, H. J. Zhang, and J. Y. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photon. Rev. 7, L77–L83 (2013).
[Crossref]

Wang, F.

Z. P. Sun, A. Martinez, and F. Wang, “Optical modulators with 2D layered materials,” Nat. Photonics 10, 227–238 (2016).
[Crossref]

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3, 738–742 (2008).
[Crossref]

Wang, F. Q.

Z. Q. Luo, D. D. Wu, B. Xu, H. Y. Xu, Z. P. Cai, J. Peng, J. Weng, S. Xu, C. H. Zhu, F. Q. Wang, Z. P. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8, 1066–1072 (2016).
[Crossref]

X. M. Liu, D. D. Han, Z. P. Sun, C. Zeng, H. Lu, D. Mao, Y. D. Cui, and F. Q. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3, 2718 (2013).
[Crossref]

Z. P. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Q. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

T. Hasan, Z. P. Sun, F. Q. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009).
[Crossref]

Wang, H.

X. Y. Zhang, S. F. Zhang, B. H. Chen, H. Wang, K. Wu, Y. Chen, J. T. Fan, S. Qi, X. L. Cui, L. Zhang, and J. Wang, “Direct synthesis of large-scale hierarchical MoS2 films nanostructured with orthogonally oriented vertically and horizontally aligned layers,” Nanoscale 8, 431–439 (2016).
[Crossref]

Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X. Yu, and P. K. Chu, “From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics,” Adv. Funct. Mater. 25, 6996–7002 (2015).
[Crossref]

F. N. Xia, H. Wang, and Y. C. Jia, “Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics,” Nat. Commun. 5, 4458 (2014).
[Crossref]

F. N. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two dimensional material nanophotonics,” Nat. Photonics 8, 899–907 (2014).
[Crossref]

Wang, J.

Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, L. Liao, P. K. Chu, and X. Yu, “Metal-ion-modified black phosphorus with enhanced stability and transistor performance,” Adv. Mater. 29, 1703811 (2017).
[Crossref]

X. Y. Zhang, S. F. Zhang, B. H. Chen, H. Wang, K. Wu, Y. Chen, J. T. Fan, S. Qi, X. L. Cui, L. Zhang, and J. Wang, “Direct synthesis of large-scale hierarchical MoS2 films nanostructured with orthogonally oriented vertically and horizontally aligned layers,” Nanoscale 8, 431–439 (2016).
[Crossref]

K. Wu, X. Y. Zhang, J. Wang, X. Li, and J. P. Chen, “WS2 as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers,” Opt. Express 23, 11453–11461 (2015).
[Crossref]

Wang, J. Y.

S. X. Wang, H. H. Yu, H. J. Zhang, A. Z. Wang, M. W. Zhao, Y. X. Chen, L. M. Mei, and J. Y. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014).
[Crossref]

H. H. Yu, H. Zhang, Y. C. Wang, C. J. Zhao, B. L. Wang, S. C. Wen, H. J. Zhang, and J. Y. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photon. Rev. 7, L77–L83 (2013).
[Crossref]

Wang, J. Z.

P. G. Yang, H. Chen, J. D. Yin, Z. H. Xu, J. R. Li, Z. K. Jiang, W. F. Zhang, J. Z. Wang, I. L. Li, Z. P. Sun, and S. C. Ruan, “Large-area tungsten disulfide for ultrafast photonics,” Nanoscale 9, 1871–1877 (2017).
[Crossref]

Wang, K.

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. L. Zheng, S. B. Lu, J. H. Ji, and H. Zhang, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

Wang, P.

Wang, Q. H.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

Wang, S. X.

S. X. Wang, H. H. Yu, H. J. Zhang, A. Z. Wang, M. W. Zhao, Y. X. Chen, L. M. Mei, and J. Y. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014).
[Crossref]

Wang, X. L.

Y. J. Gong, J. H. Lin, X. L. Wang, G. Shi, S. D. Lei, Z. Lin, X. L. Zou, G. L. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Ta, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref]

Wang, Y.

Q. L. Bao, H. Zhang, B. Wang, Z. H. Ni, C. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5, 411–415 (2011).
[Crossref]

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Wang, Y. C.

H. H. Yu, H. Zhang, Y. C. Wang, C. J. Zhao, B. L. Wang, S. C. Wen, H. J. Zhang, and J. Y. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photon. Rev. 7, L77–L83 (2013).
[Crossref]

Wang, Y. S.

H. R. Mu, Z. T. Wang, J. Yuan, S. Xiao, C. Y. Chen, J. C. Song, Y. S. Wang, Y. Z. Xue, H. Zhang, and Q. L. Bao, “Graphene/Bi2Te3 heterostructure as saturable absorber for short pulse generation,” ACS Photon. 2, 832–841 (2015).
[Crossref]

Wang, Z.

Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, L. Liao, P. K. Chu, and X. Yu, “Metal-ion-modified black phosphorus with enhanced stability and transistor performance,” Adv. Mater. 29, 1703811 (2017).
[Crossref]

Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X. Yu, and P. K. Chu, “From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics,” Adv. Funct. Mater. 25, 6996–7002 (2015).
[Crossref]

Wang, Z. C.

H. R. Mu, S. H. Lin, Z. C. Wang, S. Xiao, P. F. Li, Y. Chen, H. Zhang, H. F. Bao, S. P. Lau, C. X. Pan, D. Y. Fan, and Q. L. Bao, “Black phosphorus-polymer composites for pulsed lasers,” Adv. Opt. Mater. 3, 1447–1453 (2015).
[Crossref]

Wang, Z. T.

Z. T. Wang, H. R. Mu, J. Yuan, C. J. Zhao, Q. L. Bao, and H. Zhang, “Graphene-Bi2Te3 heterostructure as broadband saturable absorber for ultra-short pulse generation in Er-doped and Yb-doped fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 8800105 (2017).
[Crossref]

Z. T. Wang, H. R. Mu, C. J. Zhao, Q. L. Bao, and H. Zhang, “Harmonic mode-locking and wavelength-tunable Q-switching operation in the graphene-Bi2Te3 heterostructure saturable absorber-based fiber laser,” Opt. Eng. 55, 081314 (2016).
[Crossref]

H. R. Mu, Z. T. Wang, J. Yuan, S. Xiao, C. Y. Chen, J. C. Song, Y. S. Wang, Y. Z. Xue, H. Zhang, and Q. L. Bao, “Graphene/Bi2Te3 heterostructure as saturable absorber for short pulse generation,” ACS Photon. 2, 832–841 (2015).
[Crossref]

C. J. Zhao, H. Zhang, X. Qi, Y. Chen, Z. T. Wang, S. C. Wen, and D. Y. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101, 211106 (2012).
[Crossref]

Wei, Z. Y.

W. J. Liu, M. L. Liu, M. Lei, S. B. Fang, and Z. Y. Wei, “Titanium selenide saturable absorber mirror for passive Q-switched Er-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 24, 0901005 (2018).
[Crossref]

Wen, S. C.

S. B. Lu, L. L. Miao, Z. N. Guo, X. Qi, C. J. Zhao, H. Zhang, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material,” Opt. Express 23, 11183–11194 (2015).
[Crossref]

Y. Q. Jiang, L. L. Miao, G. B. Jiang, Y. Chen, X. Qi, X. F. Jiang, H. Zhang, and S. C. Wen, “Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications,” Sci. Rep. 5, 16372 (2015).
[Crossref]

S. B. Lu, C. J. Zhao, Y. H. Zou, S. Q. Chen, Y. Chen, Y. Li, H. Zhang, S. C. Wen, and D. Y. Tang, “Third order nonlinear optical property of Bi2Se3,” Opt. Express 21, 2072–2082 (2013).
[Crossref]

H. H. Yu, H. Zhang, Y. C. Wang, C. J. Zhao, B. L. Wang, S. C. Wen, H. J. Zhang, and J. Y. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photon. Rev. 7, L77–L83 (2013).
[Crossref]

Z. C. Luo, M. Liu, H. Liu, X. W. Zheng, A. P. Luo, C. J. Zhao, H. Zhang, S. C. Wen, and W. C. Xu, “2  GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber,” Opt. Lett. 38, 5212–5215 (2013).
[Crossref]

C. J. Zhao, H. Zhang, X. Qi, Y. Chen, Z. T. Wang, S. C. Wen, and D. Y. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101, 211106 (2012).
[Crossref]

Weng, J.

Z. Q. Luo, D. D. Wu, B. Xu, H. Y. Xu, Z. P. Cai, J. Peng, J. Weng, S. Xu, C. H. Zhu, F. Q. Wang, Z. P. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8, 1066–1072 (2016).
[Crossref]

Z. Q. Luo, Y. Z. Huang, J. Weng, H. H. Cheng, Z. Q. Lin, B. Xu, Z. P. Cai, and H. Y. Xu, “1.06  μm Q-switched ytterbium-doped fiber laser using few-layer topological insulator Bi2Se3 as a saturable absorber,” Opt. Express 21, 29516–29522 (2013).
[Crossref]

White, I. H.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3, 738–742 (2008).
[Crossref]

Woodward, R. I.

R. I. Woodward and E. J. R. Kelleher, “2D saturable absorbers for fibre lasers,” Appl. Sci. 5, 1440–1456 (2015).
[Crossref]

M. Zhang, R. C. T. Howe, R. I. Woodward, E. J. R. Kelleher, F. Torrisi, G. H. Hu, S. V. Popov, J. R. Taylor, and T. Hasan, “Solution processed MoS2-PVA composite for subbandgap mode-locking of a wideband tunable ultrafast Er:fiber laser,” Nano Res. 8, 1522–1534 (2015).
[Crossref]

Wu, C. I.

Y. H. Lin, S. F. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n- and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
[Crossref]

Wu, C. L.

Y. H. Lin, S. F. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n- and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
[Crossref]

Wu, D. D.

Z. Q. Luo, D. D. Wu, B. Xu, H. Y. Xu, Z. P. Cai, J. Peng, J. Weng, S. Xu, C. H. Zhu, F. Q. Wang, Z. P. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8, 1066–1072 (2016).
[Crossref]

Wu, K.

X. Y. Zhang, S. F. Zhang, B. H. Chen, H. Wang, K. Wu, Y. Chen, J. T. Fan, S. Qi, X. L. Cui, L. Zhang, and J. Wang, “Direct synthesis of large-scale hierarchical MoS2 films nanostructured with orthogonally oriented vertically and horizontally aligned layers,” Nanoscale 8, 431–439 (2016).
[Crossref]

K. Wu, X. Y. Zhang, J. Wang, X. Li, and J. P. Chen, “WS2 as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers,” Opt. Express 23, 11453–11461 (2015).
[Crossref]

Wu, L.

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1700221 (2017).
[Crossref]

Wu, S. D.

Wu, X. Q.

X. M. Liu, H. R. Yang, Y. D. Cui, G. W. Chen, Y. Yang, X. Q. Wu, X. K. Yao, D. D. Han, X. X. Han, C. Zeng, J. Guo, W. L. Li, G. Cheng, and L. M. Tong, “Graphene-clad microfibre saturable absorber for ultrafast fibre lasers,” Sci. Rep. 6, 26024 (2016).
[Crossref]

S. L. Yu, X. Q. Wu, K. R. Chen, B. G. Chen, X. Guo, D. X. Dai, L. M. Tong, W. T. Liu, and Y. R. Shen, “All-optical graphene modulator based on optical Kerr phase shift,” Optica 3, 541–544 (2016).
[Crossref]

Wu, Y. Z.

G. Zhao, J. Hou, Y. Z. Wu, J. L. He, and X. P. Hao, “Preparation of 2D MoS2/graphene heterostructure through a monolayer intercalation method and its application as an optical modulator in pulsed laser generation,” Adv. Opt. Mater. 3, 937–942 (2015).
[Crossref]

Xia, F. N.

F. N. Xia, H. Wang, and Y. C. Jia, “Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics,” Nat. Commun. 5, 4458 (2014).
[Crossref]

F. N. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two dimensional material nanophotonics,” Nat. Photonics 8, 899–907 (2014).
[Crossref]

F. N. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4, 839–843 (2009).
[Crossref]

Xiang, Y.

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1700221 (2017).
[Crossref]

Xiao, D.

F. N. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two dimensional material nanophotonics,” Nat. Photonics 8, 899–907 (2014).
[Crossref]

Xiao, S.

H. R. Mu, Z. T. Wang, J. Yuan, S. Xiao, C. Y. Chen, J. C. Song, Y. S. Wang, Y. Z. Xue, H. Zhang, and Q. L. Bao, “Graphene/Bi2Te3 heterostructure as saturable absorber for short pulse generation,” ACS Photon. 2, 832–841 (2015).
[Crossref]

H. R. Mu, S. H. Lin, Z. C. Wang, S. Xiao, P. F. Li, Y. Chen, H. Zhang, H. F. Bao, S. P. Lau, C. X. Pan, D. Y. Fan, and Q. L. Bao, “Black phosphorus-polymer composites for pulsed lasers,” Adv. Opt. Mater. 3, 1447–1453 (2015).
[Crossref]

Xie, H.

Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X. Yu, and P. K. Chu, “From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics,” Adv. Funct. Mater. 25, 6996–7002 (2015).
[Crossref]

Xing, F.

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1700221 (2017).
[Crossref]

Xu, B.

Z. Q. Luo, D. D. Wu, B. Xu, H. Y. Xu, Z. P. Cai, J. Peng, J. Weng, S. Xu, C. H. Zhu, F. Q. Wang, Z. P. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8, 1066–1072 (2016).
[Crossref]

Z. Q. Luo, Y. Z. Huang, J. Weng, H. H. Cheng, Z. Q. Lin, B. Xu, Z. P. Cai, and H. Y. Xu, “1.06  μm Q-switched ytterbium-doped fiber laser using few-layer topological insulator Bi2Se3 as a saturable absorber,” Opt. Express 21, 29516–29522 (2013).
[Crossref]

Xu, H. Y.

Z. Q. Luo, D. D. Wu, B. Xu, H. Y. Xu, Z. P. Cai, J. Peng, J. Weng, S. Xu, C. H. Zhu, F. Q. Wang, Z. P. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8, 1066–1072 (2016).
[Crossref]

Z. Q. Luo, Y. Z. Huang, J. Weng, H. H. Cheng, Z. Q. Lin, B. Xu, Z. P. Cai, and H. Y. Xu, “1.06  μm Q-switched ytterbium-doped fiber laser using few-layer topological insulator Bi2Se3 as a saturable absorber,” Opt. Express 21, 29516–29522 (2013).
[Crossref]

Xu, J.

Xu, S.

Z. Q. Luo, D. D. Wu, B. Xu, H. Y. Xu, Z. P. Cai, J. Peng, J. Weng, S. Xu, C. H. Zhu, F. Q. Wang, Z. P. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8, 1066–1072 (2016).
[Crossref]

Xu, W. C.

Xu, Y.

Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, L. Liao, P. K. Chu, and X. Yu, “Metal-ion-modified black phosphorus with enhanced stability and transistor performance,” Adv. Mater. 29, 1703811 (2017).
[Crossref]

Xu, Z. H.

P. G. Yang, H. Chen, J. D. Yin, Z. H. Xu, J. R. Li, Z. K. Jiang, W. F. Zhang, J. Z. Wang, I. L. Li, Z. P. Sun, and S. C. Ruan, “Large-area tungsten disulfide for ultrafast photonics,” Nanoscale 9, 1871–1877 (2017).
[Crossref]

Xue, Y. Z.

H. R. Mu, Z. T. Wang, J. Yuan, S. Xiao, C. Y. Chen, J. C. Song, Y. S. Wang, Y. Z. Xue, H. Zhang, and Q. L. Bao, “Graphene/Bi2Te3 heterostructure as saturable absorber for short pulse generation,” ACS Photon. 2, 832–841 (2015).
[Crossref]

Yakobson, B. I.

Y. J. Gong, J. H. Lin, X. L. Wang, G. Shi, S. D. Lei, Z. Lin, X. L. Zou, G. L. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Ta, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref]

Yan, P. G.

Yan, Y. L.

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Yang, D. X.

D. Mao, X. Y. She, B. B. Du, D. X. Yang, W. D. Zhang, K. Song, X. Q. Cui, B. Q. Jiang, T. Peng, and J. L. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6, 23583 (2016).
[Crossref]

Yang, H. R.

X. M. Liu, H. R. Yang, Y. D. Cui, G. W. Chen, Y. Yang, X. Q. Wu, X. K. Yao, D. D. Han, X. X. Han, C. Zeng, J. Guo, W. L. Li, G. Cheng, and L. M. Tong, “Graphene-clad microfibre saturable absorber for ultrafast fibre lasers,” Sci. Rep. 6, 26024 (2016).
[Crossref]

Yang, P. G.

P. G. Yang, H. Chen, J. D. Yin, Z. H. Xu, J. R. Li, Z. K. Jiang, W. F. Zhang, J. Z. Wang, I. L. Li, Z. P. Sun, and S. C. Ruan, “Large-area tungsten disulfide for ultrafast photonics,” Nanoscale 9, 1871–1877 (2017).
[Crossref]

Yang, Q. H.

Yang, Y.

X. M. Liu, H. R. Yang, Y. D. Cui, G. W. Chen, Y. Yang, X. Q. Wu, X. K. Yao, D. D. Han, X. X. Han, C. Zeng, J. Guo, W. L. Li, G. Cheng, and L. M. Tong, “Graphene-clad microfibre saturable absorber for ultrafast fibre lasers,” Sci. Rep. 6, 26024 (2016).
[Crossref]

Yang, Z.

Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, L. Liao, P. K. Chu, and X. Yu, “Metal-ion-modified black phosphorus with enhanced stability and transistor performance,” Adv. Mater. 29, 1703811 (2017).
[Crossref]

Yao, X. K.

X. M. Liu, H. R. Yang, Y. D. Cui, G. W. Chen, Y. Yang, X. Q. Wu, X. K. Yao, D. D. Han, X. X. Han, C. Zeng, J. Guo, W. L. Li, G. Cheng, and L. M. Tong, “Graphene-clad microfibre saturable absorber for ultrafast fibre lasers,” Sci. Rep. 6, 26024 (2016).
[Crossref]

Ye, G. L.

Y. J. Gong, J. H. Lin, X. L. Wang, G. Shi, S. D. Lei, Z. Lin, X. L. Zou, G. L. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Ta, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref]

Yeom, D.

Yi, Y.

Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, L. Liao, P. K. Chu, and X. Yu, “Metal-ion-modified black phosphorus with enhanced stability and transistor performance,” Adv. Mater. 29, 1703811 (2017).
[Crossref]

Yin, J. D.

P. G. Yang, H. Chen, J. D. Yin, Z. H. Xu, J. R. Li, Z. K. Jiang, W. F. Zhang, J. Z. Wang, I. L. Li, Z. P. Sun, and S. C. Ruan, “Large-area tungsten disulfide for ultrafast photonics,” Nanoscale 9, 1871–1877 (2017).
[Crossref]

H. Chen, Y. S. Chen, J. D. Yin, X. J. Zhang, T. Guo, and P. G. Yan, “High-damage-resistant tungsten disulfide saturable absorption mirror for passively Q-switched fiber laser,” Opt. Express 24, 16287–16296 (2016).
[Crossref]

Yu, H. H.

S. X. Wang, H. H. Yu, H. J. Zhang, A. Z. Wang, M. W. Zhao, Y. X. Chen, L. M. Mei, and J. Y. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014).
[Crossref]

H. H. Yu, H. Zhang, Y. C. Wang, C. J. Zhao, B. L. Wang, S. C. Wen, H. J. Zhang, and J. Y. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photon. Rev. 7, L77–L83 (2013).
[Crossref]

Yu, S. L.

Yu, X.

Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, L. Liao, P. K. Chu, and X. Yu, “Metal-ion-modified black phosphorus with enhanced stability and transistor performance,” Adv. Mater. 29, 1703811 (2017).
[Crossref]

Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X. Yu, and P. K. Chu, “From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics,” Adv. Funct. Mater. 25, 6996–7002 (2015).
[Crossref]

Yuan, J.

Z. T. Wang, H. R. Mu, J. Yuan, C. J. Zhao, Q. L. Bao, and H. Zhang, “Graphene-Bi2Te3 heterostructure as broadband saturable absorber for ultra-short pulse generation in Er-doped and Yb-doped fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 8800105 (2017).
[Crossref]

H. R. Mu, Z. T. Wang, J. Yuan, S. Xiao, C. Y. Chen, J. C. Song, Y. S. Wang, Y. Z. Xue, H. Zhang, and Q. L. Bao, “Graphene/Bi2Te3 heterostructure as saturable absorber for short pulse generation,” ACS Photon. 2, 832–841 (2015).
[Crossref]

Zeng, C.

X. M. Liu, H. R. Yang, Y. D. Cui, G. W. Chen, Y. Yang, X. Q. Wu, X. K. Yao, D. D. Han, X. X. Han, C. Zeng, J. Guo, W. L. Li, G. Cheng, and L. M. Tong, “Graphene-clad microfibre saturable absorber for ultrafast fibre lasers,” Sci. Rep. 6, 26024 (2016).
[Crossref]

X. M. Liu, D. D. Han, Z. P. Sun, C. Zeng, H. Lu, D. Mao, Y. D. Cui, and F. Q. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3, 2718 (2013).
[Crossref]

Zhai, B.

J. F. Li, H. Y. Luo, B. Zhai, R. G. Lu, Z. N. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6, 30361 (2016).
[Crossref]

Zhang, H.

Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, L. Liao, P. K. Chu, and X. Yu, “Metal-ion-modified black phosphorus with enhanced stability and transistor performance,” Adv. Mater. 29, 1703811 (2017).
[Crossref]

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. L. Zheng, S. B. Lu, J. H. Ji, and H. Zhang, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1700221 (2017).
[Crossref]

Z. T. Wang, H. R. Mu, J. Yuan, C. J. Zhao, Q. L. Bao, and H. Zhang, “Graphene-Bi2Te3 heterostructure as broadband saturable absorber for ultra-short pulse generation in Er-doped and Yb-doped fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 8800105 (2017).
[Crossref]

Z. T. Wang, H. R. Mu, C. J. Zhao, Q. L. Bao, and H. Zhang, “Harmonic mode-locking and wavelength-tunable Q-switching operation in the graphene-Bi2Te3 heterostructure saturable absorber-based fiber laser,” Opt. Eng. 55, 081314 (2016).
[Crossref]

J. F. Li, H. Y. Luo, B. Zhai, R. G. Lu, Z. N. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6, 30361 (2016).
[Crossref]

Z. Q. Luo, D. D. Wu, B. Xu, H. Y. Xu, Z. P. Cai, J. Peng, J. Weng, S. Xu, C. H. Zhu, F. Q. Wang, Z. P. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8, 1066–1072 (2016).
[Crossref]

Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X. Yu, and P. K. Chu, “From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics,” Adv. Funct. Mater. 25, 6996–7002 (2015).
[Crossref]

H. R. Mu, S. H. Lin, Z. C. Wang, S. Xiao, P. F. Li, Y. Chen, H. Zhang, H. F. Bao, S. P. Lau, C. X. Pan, D. Y. Fan, and Q. L. Bao, “Black phosphorus-polymer composites for pulsed lasers,” Adv. Opt. Mater. 3, 1447–1453 (2015).
[Crossref]

S. B. Lu, L. L. Miao, Z. N. Guo, X. Qi, C. J. Zhao, H. Zhang, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material,” Opt. Express 23, 11183–11194 (2015).
[Crossref]

H. R. Mu, Z. T. Wang, J. Yuan, S. Xiao, C. Y. Chen, J. C. Song, Y. S. Wang, Y. Z. Xue, H. Zhang, and Q. L. Bao, “Graphene/Bi2Te3 heterostructure as saturable absorber for short pulse generation,” ACS Photon. 2, 832–841 (2015).
[Crossref]

Y. Q. Jiang, L. L. Miao, G. B. Jiang, Y. Chen, X. Qi, X. F. Jiang, H. Zhang, and S. C. Wen, “Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications,” Sci. Rep. 5, 16372 (2015).
[Crossref]

Z. C. Luo, M. Liu, H. Liu, X. W. Zheng, A. P. Luo, C. J. Zhao, H. Zhang, S. C. Wen, and W. C. Xu, “2  GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber,” Opt. Lett. 38, 5212–5215 (2013).
[Crossref]

H. H. Yu, H. Zhang, Y. C. Wang, C. J. Zhao, B. L. Wang, S. C. Wen, H. J. Zhang, and J. Y. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photon. Rev. 7, L77–L83 (2013).
[Crossref]

S. B. Lu, C. J. Zhao, Y. H. Zou, S. Q. Chen, Y. Chen, Y. Li, H. Zhang, S. C. Wen, and D. Y. Tang, “Third order nonlinear optical property of Bi2Se3,” Opt. Express 21, 2072–2082 (2013).
[Crossref]

C. J. Zhao, H. Zhang, X. Qi, Y. Chen, Z. T. Wang, S. C. Wen, and D. Y. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101, 211106 (2012).
[Crossref]

Q. L. Bao, H. Zhang, B. Wang, Z. H. Ni, C. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5, 411–415 (2011).
[Crossref]

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95, 141103 (2009).
[Crossref]

Zhang, H. J.

S. X. Wang, H. H. Yu, H. J. Zhang, A. Z. Wang, M. W. Zhao, Y. X. Chen, L. M. Mei, and J. Y. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014).
[Crossref]

H. H. Yu, H. Zhang, Y. C. Wang, C. J. Zhao, B. L. Wang, S. C. Wen, H. J. Zhang, and J. Y. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photon. Rev. 7, L77–L83 (2013).
[Crossref]

Zhang, L.

X. Y. Zhang, S. F. Zhang, B. H. Chen, H. Wang, K. Wu, Y. Chen, J. T. Fan, S. Qi, X. L. Cui, L. Zhang, and J. Wang, “Direct synthesis of large-scale hierarchical MoS2 films nanostructured with orthogonally oriented vertically and horizontally aligned layers,” Nanoscale 8, 431–439 (2016).
[Crossref]

Zhang, M.

M. Zhang, R. C. T. Howe, R. I. Woodward, E. J. R. Kelleher, F. Torrisi, G. H. Hu, S. V. Popov, J. R. Taylor, and T. Hasan, “Solution processed MoS2-PVA composite for subbandgap mode-locking of a wideband tunable ultrafast Er:fiber laser,” Nano Res. 8, 1522–1534 (2015).
[Crossref]

Zhang, S. F.

X. Y. Zhang, S. F. Zhang, B. H. Chen, H. Wang, K. Wu, Y. Chen, J. T. Fan, S. Qi, X. L. Cui, L. Zhang, and J. Wang, “Direct synthesis of large-scale hierarchical MoS2 films nanostructured with orthogonally oriented vertically and horizontally aligned layers,” Nanoscale 8, 431–439 (2016).
[Crossref]

Zhang, W. D.

D. Mao, X. Y. She, B. B. Du, D. X. Yang, W. D. Zhang, K. Song, X. Q. Cui, B. Q. Jiang, T. Peng, and J. L. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6, 23583 (2016).
[Crossref]

Zhang, W. F.

P. G. Yang, H. Chen, J. D. Yin, Z. H. Xu, J. R. Li, Z. K. Jiang, W. F. Zhang, J. Z. Wang, I. L. Li, Z. P. Sun, and S. C. Ruan, “Large-area tungsten disulfide for ultrafast photonics,” Nanoscale 9, 1871–1877 (2017).
[Crossref]

Zhang, X. J.

Zhang, X. Y.

X. Y. Zhang, S. F. Zhang, B. H. Chen, H. Wang, K. Wu, Y. Chen, J. T. Fan, S. Qi, X. L. Cui, L. Zhang, and J. Wang, “Direct synthesis of large-scale hierarchical MoS2 films nanostructured with orthogonally oriented vertically and horizontally aligned layers,” Nanoscale 8, 431–439 (2016).
[Crossref]

K. Wu, X. Y. Zhang, J. Wang, X. Li, and J. P. Chen, “WS2 as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers,” Opt. Express 23, 11453–11461 (2015).
[Crossref]

Zhang, Y. L.

H. B. Jiang, Y. L. Zhang, Y. Liu, X. Y. Fu, Y. F. Li, Y. Q. Liu, C. H. Li, and H. B. Sun, “Bioinspired few-layer graphene prepared by chemical vapor deposition on femtosecond laser-structured Cu foil,” Laser Photon. Rev. 10, 441–450 (2016).
[Crossref]

Zhao, C. J.

Z. T. Wang, H. R. Mu, J. Yuan, C. J. Zhao, Q. L. Bao, and H. Zhang, “Graphene-Bi2Te3 heterostructure as broadband saturable absorber for ultra-short pulse generation in Er-doped and Yb-doped fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 8800105 (2017).
[Crossref]

Z. T. Wang, H. R. Mu, C. J. Zhao, Q. L. Bao, and H. Zhang, “Harmonic mode-locking and wavelength-tunable Q-switching operation in the graphene-Bi2Te3 heterostructure saturable absorber-based fiber laser,” Opt. Eng. 55, 081314 (2016).
[Crossref]

S. B. Lu, L. L. Miao, Z. N. Guo, X. Qi, C. J. Zhao, H. Zhang, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material,” Opt. Express 23, 11183–11194 (2015).
[Crossref]

S. B. Lu, C. J. Zhao, Y. H. Zou, S. Q. Chen, Y. Chen, Y. Li, H. Zhang, S. C. Wen, and D. Y. Tang, “Third order nonlinear optical property of Bi2Se3,” Opt. Express 21, 2072–2082 (2013).
[Crossref]

H. H. Yu, H. Zhang, Y. C. Wang, C. J. Zhao, B. L. Wang, S. C. Wen, H. J. Zhang, and J. Y. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photon. Rev. 7, L77–L83 (2013).
[Crossref]

Z. C. Luo, M. Liu, H. Liu, X. W. Zheng, A. P. Luo, C. J. Zhao, H. Zhang, S. C. Wen, and W. C. Xu, “2  GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber,” Opt. Lett. 38, 5212–5215 (2013).
[Crossref]

C. J. Zhao, H. Zhang, X. Qi, Y. Chen, Z. T. Wang, S. C. Wen, and D. Y. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101, 211106 (2012).
[Crossref]

Zhao, G.

G. Zhao, J. Hou, Y. Z. Wu, J. L. He, and X. P. Hao, “Preparation of 2D MoS2/graphene heterostructure through a monolayer intercalation method and its application as an optical modulator in pulsed laser generation,” Adv. Opt. Mater. 3, 937–942 (2015).
[Crossref]

Zhao, J. L.

D. Mao, X. Y. She, B. B. Du, D. X. Yang, W. D. Zhang, K. Song, X. Q. Cui, B. Q. Jiang, T. Peng, and J. L. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6, 23583 (2016).
[Crossref]

Zhao, L. M.

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95, 141103 (2009).
[Crossref]

Zhao, M. W.

S. X. Wang, H. H. Yu, H. J. Zhang, A. Z. Wang, M. W. Zhao, Y. X. Chen, L. M. Mei, and J. Y. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014).
[Crossref]

Zheng, J. L.

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. L. Zheng, S. B. Lu, J. H. Ji, and H. Zhang, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

Zheng, X. W.

Zhou, W.

Y. J. Gong, J. H. Lin, X. L. Wang, G. Shi, S. D. Lei, Z. Lin, X. L. Zou, G. L. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Ta, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref]

Zhu, C. H.

Z. Q. Luo, D. D. Wu, B. Xu, H. Y. Xu, Z. P. Cai, J. Peng, J. Weng, S. Xu, C. H. Zhu, F. Q. Wang, Z. P. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8, 1066–1072 (2016).
[Crossref]

Zou, X. L.

Y. J. Gong, J. H. Lin, X. L. Wang, G. Shi, S. D. Lei, Z. Lin, X. L. Zou, G. L. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Ta, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref]

Zou, Y. H.

2D Mater. (2)

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. L. Zheng, S. B. Lu, J. H. Ji, and H. Zhang, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

N. Ma and D. Jena, “Carrier statistics and quantum capacitance effects on mobility extraction in two-dimensional crystal semiconductor field-effect transistors,” 2D Mater. 2, 015003 (2015).
[Crossref]

ACS Nano (2)

Z. P. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Q. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Q. L. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6, 3677–3694 (2012).
[Crossref]

ACS Photon. (2)

Y. H. Lin, S. F. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n- and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2, 481–490 (2015).
[Crossref]

H. R. Mu, Z. T. Wang, J. Yuan, S. Xiao, C. Y. Chen, J. C. Song, Y. S. Wang, Y. Z. Xue, H. Zhang, and Q. L. Bao, “Graphene/Bi2Te3 heterostructure as saturable absorber for short pulse generation,” ACS Photon. 2, 832–841 (2015).
[Crossref]

Acta Crystallogr. Sect. B (1)

T. L. Anderson and H. B. Krause, “Refinement of the Sb2Te3 structures and their relationship to nonstoichiometric Sb2Te3−ySey compounds,” Acta Crystallogr. Sect. B 30, 1307–1310 (1974).
[Crossref]

Adv. Funct. Mater. (2)

Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X. Yu, and P. K. Chu, “From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics,” Adv. Funct. Mater. 25, 6996–7002 (2015).
[Crossref]

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Adv. Mater. (3)

T. Hasan, Z. P. Sun, F. Q. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009).
[Crossref]

S. X. Wang, H. H. Yu, H. J. Zhang, A. Z. Wang, M. W. Zhao, Y. X. Chen, L. M. Mei, and J. Y. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014).
[Crossref]

Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, L. Liao, P. K. Chu, and X. Yu, “Metal-ion-modified black phosphorus with enhanced stability and transistor performance,” Adv. Mater. 29, 1703811 (2017).
[Crossref]

Adv. Opt. Mater. (2)

H. R. Mu, S. H. Lin, Z. C. Wang, S. Xiao, P. F. Li, Y. Chen, H. Zhang, H. F. Bao, S. P. Lau, C. X. Pan, D. Y. Fan, and Q. L. Bao, “Black phosphorus-polymer composites for pulsed lasers,” Adv. Opt. Mater. 3, 1447–1453 (2015).
[Crossref]

G. Zhao, J. Hou, Y. Z. Wu, J. L. He, and X. P. Hao, “Preparation of 2D MoS2/graphene heterostructure through a monolayer intercalation method and its application as an optical modulator in pulsed laser generation,” Adv. Opt. Mater. 3, 937–942 (2015).
[Crossref]

Ann. Phys. (Berlin) (1)

K. Park, J. Lee, Y. T. Lee, W. K. Choi, J. H. Lee, and Y. W. Song, “Black phosphorus saturable absorber for ultrafast mode-locked pulse laser via evanescent field interaction,” Ann. Phys. (Berlin) 527, 770–776 (2015).
[Crossref]

Appl. Phys. Lett. (5)

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95, 141103 (2009).
[Crossref]

S. Bruzzone and G. Fiori, “Ab-initio simulations of deformation potentials and electron mobility in chemically modified graphene and two-dimensional hexagonal boron-nitride,” Appl. Phys. Lett. 99, 222108 (2011).
[Crossref]

G. Sobon, J. Sotor, and K. M. Abramski, “Passive harmonic mode-locking in Er-doped fiber laser based on graphene saturable absorber with repetition rates scalable to 2.22  GHz,” Appl. Phys. Lett. 100, 161109 (2012).
[Crossref]

C. J. Zhao, H. Zhang, X. Qi, Y. Chen, Z. T. Wang, S. C. Wen, and D. Y. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101, 211106 (2012).
[Crossref]

J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, and K. M. Abramski, “Black phosphorus saturable absorber for ultrashort pulse generation,” Appl. Phys. Lett. 107, 051108 (2015).
[Crossref]

Appl. Sci. (1)

R. I. Woodward and E. J. R. Kelleher, “2D saturable absorbers for fibre lasers,” Appl. Sci. 5, 1440–1456 (2015).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

W. J. Liu, M. L. Liu, M. Lei, S. B. Fang, and Z. Y. Wei, “Titanium selenide saturable absorber mirror for passive Q-switched Er-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 24, 0901005 (2018).
[Crossref]

Z. T. Wang, H. R. Mu, J. Yuan, C. J. Zhao, Q. L. Bao, and H. Zhang, “Graphene-Bi2Te3 heterostructure as broadband saturable absorber for ultra-short pulse generation in Er-doped and Yb-doped fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 8800105 (2017).
[Crossref]

IEEE Trans. Electron Dev. (1)

S. Takagi, A. Toriumi, M. Iwase, and H. Tango, “On the universality of inversion layer mobility in Si MOSFET’s: part I-effects of substrate impurity concentration,” IEEE Trans. Electron Dev. 41, 2357–2362 (1994).
[Crossref]

J. Comput. Chem. (1)

S. Grimme, “Semiempirical GGA-type density functional constructed with a long-range dispersion correction,” J. Comput. Chem. 27, 1787–1799 (2006).
[Crossref]

J. Lightwave Technol. (1)

Laser Photon. Rev. (4)

H. H. Yu, H. Zhang, Y. C. Wang, C. J. Zhao, B. L. Wang, S. C. Wen, H. J. Zhang, and J. Y. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photon. Rev. 7, L77–L83 (2013).
[Crossref]

D. A. Smirnova, I. V. Shadrivov, A. I. Smirnov, and Y. S. Kivshar, “Dissipative plasmon-solitons in multilayer grapheme,” Laser Photon. Rev. 8, 291–296 (2014).
[Crossref]

H. B. Jiang, Y. L. Zhang, Y. Liu, X. Y. Fu, Y. F. Li, Y. Q. Liu, C. H. Li, and H. B. Sun, “Bioinspired few-layer graphene prepared by chemical vapor deposition on femtosecond laser-structured Cu foil,” Laser Photon. Rev. 10, 441–450 (2016).
[Crossref]

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1700221 (2017).
[Crossref]

Nano Res. (1)

M. Zhang, R. C. T. Howe, R. I. Woodward, E. J. R. Kelleher, F. Torrisi, G. H. Hu, S. V. Popov, J. R. Taylor, and T. Hasan, “Solution processed MoS2-PVA composite for subbandgap mode-locking of a wideband tunable ultrafast Er:fiber laser,” Nano Res. 8, 1522–1534 (2015).
[Crossref]

Nanoscale (3)

X. Y. Zhang, S. F. Zhang, B. H. Chen, H. Wang, K. Wu, Y. Chen, J. T. Fan, S. Qi, X. L. Cui, L. Zhang, and J. Wang, “Direct synthesis of large-scale hierarchical MoS2 films nanostructured with orthogonally oriented vertically and horizontally aligned layers,” Nanoscale 8, 431–439 (2016).
[Crossref]

P. G. Yang, H. Chen, J. D. Yin, Z. H. Xu, J. R. Li, Z. K. Jiang, W. F. Zhang, J. Z. Wang, I. L. Li, Z. P. Sun, and S. C. Ruan, “Large-area tungsten disulfide for ultrafast photonics,” Nanoscale 9, 1871–1877 (2017).
[Crossref]

Z. Q. Luo, D. D. Wu, B. Xu, H. Y. Xu, Z. P. Cai, J. Peng, J. Weng, S. Xu, C. H. Zhu, F. Q. Wang, Z. P. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8, 1066–1072 (2016).
[Crossref]

Nat. Commun. (1)

F. N. Xia, H. Wang, and Y. C. Jia, “Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics,” Nat. Commun. 5, 4458 (2014).
[Crossref]

Nat. Mater. (2)

A. K. Geim and K. S. Novoselov, “The rise of grapheme,” Nat. Mater. 6, 183–191 (2007).
[Crossref]

Y. J. Gong, J. H. Lin, X. L. Wang, G. Shi, S. D. Lei, Z. Lin, X. L. Zou, G. L. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Ta, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref]

Nat. Nanotechnol. (4)

F. N. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4, 839–843 (2009).
[Crossref]

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3, 738–742 (2008).
[Crossref]

F. H. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9, 780–793 (2014).
[Crossref]

Nat. Photonics (5)

A. Martinez and Z. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nat. Photonics 7, 842–845 (2013).
[Crossref]

F. N. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two dimensional material nanophotonics,” Nat. Photonics 8, 899–907 (2014).
[Crossref]

Z. P. Sun, A. Martinez, and F. Wang, “Optical modulators with 2D layered materials,” Nat. Photonics 10, 227–238 (2016).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

Q. L. Bao, H. Zhang, B. Wang, Z. H. Ni, C. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5, 411–415 (2011).
[Crossref]

Nature (1)

A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499, 419–425 (2013).
[Crossref]

Opt. Eng. (1)

Z. T. Wang, H. R. Mu, C. J. Zhao, Q. L. Bao, and H. Zhang, “Harmonic mode-locking and wavelength-tunable Q-switching operation in the graphene-Bi2Te3 heterostructure saturable absorber-based fiber laser,” Opt. Eng. 55, 081314 (2016).
[Crossref]

Opt. Express (8)

K. Wu, X. Y. Zhang, J. Wang, X. Li, and J. P. Chen, “WS2 as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers,” Opt. Express 23, 11453–11461 (2015).
[Crossref]

J. Xu, J. Liu, S. D. Wu, Q. H. Yang, and P. Wang, “Graphene oxide mode-locked femtosecond erbium-doped fiber lasers,” Opt. Express 20, 15474–15480 (2012).
[Crossref]

S. B. Lu, L. L. Miao, Z. N. Guo, X. Qi, C. J. Zhao, H. Zhang, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material,” Opt. Express 23, 11183–11194 (2015).
[Crossref]

J. Lee, J. Koo, Y. M. Jhon, and J. H. Lee, “A femtosecond pulse erbium fiber laser incorporating a saturable absorber based on bulk-structured Bi2Te3 topological insulator,” Opt. Express 22, 6165–6173 (2014).
[Crossref]

Z. Q. Luo, Y. Z. Huang, J. Weng, H. H. Cheng, Z. Q. Lin, B. Xu, Z. P. Cai, and H. Y. Xu, “1.06  μm Q-switched ytterbium-doped fiber laser using few-layer topological insulator Bi2Se3 as a saturable absorber,” Opt. Express 21, 29516–29522 (2013).
[Crossref]

W. S. Kwon, H. Lee, J. H. Kim, J. Choi, K. Kim, and S. Kim, “Ultrashort stretched-pulse L-band laser using carbon-nanotube saturable absorber,” Opt. Express 23, 7779–7785 (2015).
[Crossref]

S. B. Lu, C. J. Zhao, Y. H. Zou, S. Q. Chen, Y. Chen, Y. Li, H. Zhang, S. C. Wen, and D. Y. Tang, “Third order nonlinear optical property of Bi2Se3,” Opt. Express 21, 2072–2082 (2013).
[Crossref]

H. Chen, Y. S. Chen, J. D. Yin, X. J. Zhang, T. Guo, and P. G. Yan, “High-damage-resistant tungsten disulfide saturable absorption mirror for passively Q-switched fiber laser,” Opt. Express 24, 16287–16296 (2016).
[Crossref]

Opt. Lett. (1)

Opt. Mater. (1)

J. Mohanraj, V. Velmurugan, and S. Sivabalan, “Transition metal dichalcogenides based saturable absorbers for pulsed laser technology,” Opt. Mater. 60, 601–617 (2016).
[Crossref]

Opt. Mater. Express (1)

Optica (1)

Phys. Rev. B (5)

P. V. C. Medeiros, S. Stafström, and J. Björk, “Effects of extrinsic and intrinsic perturbations on the electronic structure of graphene: retaining an effective primitive cell band structure by band unfolding,” Phys. Rev. B 89, 041407 (2014).
[Crossref]

P. V. C. Medeiros, S. S. Tsirkin, S. Stafström, and J. Björk, “Unfolding spinor wave functions and expectation values of general operators: introducing the unfolding-density operator,” Phys. Rev. B 91, 041116 (2015).
[Crossref]

G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 11169–11186 (1996).
[Crossref]

P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B 50, 17953–17979 (1994).
[Crossref]

G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59, 1758–1775 (1999).
[Crossref]

Phys. Rev. Lett. (1)

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996).
[Crossref]

Proc. SPIE (1)

W. X. Du, H. P. Li, C. Liu, S. N. Shen, C. Y. Lan, C. Li, and Y. Liu, “Ultrafast pulse erbium-doped fiber laser with a graphene/WS2 heterostructure saturable absorber,” Proc. SPIE 10457, 104571M (2017).

Sci. Rep. (5)

Y. Q. Jiang, L. L. Miao, G. B. Jiang, Y. Chen, X. Qi, X. F. Jiang, H. Zhang, and S. C. Wen, “Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications,” Sci. Rep. 5, 16372 (2015).
[Crossref]

D. Mao, X. Y. She, B. B. Du, D. X. Yang, W. D. Zhang, K. Song, X. Q. Cui, B. Q. Jiang, T. Peng, and J. L. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6, 23583 (2016).
[Crossref]

J. F. Li, H. Y. Luo, B. Zhai, R. G. Lu, Z. N. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6, 30361 (2016).
[Crossref]

X. M. Liu, H. R. Yang, Y. D. Cui, G. W. Chen, Y. Yang, X. Q. Wu, X. K. Yao, D. D. Han, X. X. Han, C. Zeng, J. Guo, W. L. Li, G. Cheng, and L. M. Tong, “Graphene-clad microfibre saturable absorber for ultrafast fibre lasers,” Sci. Rep. 6, 26024 (2016).
[Crossref]

X. M. Liu, D. D. Han, Z. P. Sun, C. Zeng, H. Lu, D. Mao, Y. D. Cui, and F. Q. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3, 2718 (2013).
[Crossref]

Other (1)

C. Liu, H. P. Li, G. L. Deng, C. Y. Lan, C. Li, and Y. Liu, “Femtosecond Er-doped fiber laser using a graphene/MoS2 heterostructure saturable absorber,” in Asia Communications and Photonics Conference, Vol. 129 of 2016 OSA Technical Digest Series (Optical Society of America, 2016), paper AF2A.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. State-of-the-art SA devices using the MoS2-Sb2Te3-MoS2 heterostructure. (a) Schematic of macrostructure and (b) surface structure of the fabricated MoS2-Sb2Te3-MoS2 heterostructure SA. Sb2Te3 (7 nm thickness) is in the middle of MoS2 (8 nm thickness). The gold film with 117 nm thickness is deposited on the polished fused silica substrate as a broadband reflection mirror. (c) SEM image of the surface of deposited MoS2-Sb2Te3-MoS2 heterostructure film. (d) SEM image of the film thickness.
Fig. 2.
Fig. 2. Atomic and electronic structures of the MoS2-Sb2Te3-MoS2 heterostructure. (a) Side and (b) top views of the MoS2-Sb2Te3-MoS2 heterostructure. In (b), the detailed matching pattern of the (7×7)/(2×2) MoS2-Sb2Te3-MoS2 heterostructure is shown. The (7×7) MoS2 supercell is highlighted with yellow color, and the (2×2) Sb2Te supercell is denoted by the blue area. (c) Unfolding band structure of the MoS2-Sb2Te3-MoS2 heterostructure. Here, the Fermi level is defined as zero. (d) Band alignment of the MoS2-Sb2Te3-MoS2 heterostructure. The corresponding energy levels of pure MoS2 and Sb2Te3 slabs are shown in both sides.
Fig. 3.
Fig. 3. Standard two-arm transmission setup. The SAM is the MoS2-Sb2Te3-MoS2 heterostructure SA mirror.
Fig. 4.
Fig. 4. Characterization of the MoS2-Sb2Te3-MoS2 heterostructure SA mirror. (a) The modulation depth is 64.17%. (b) Raman spectrum of the MoS2-Sb2Te3-MoS2 heterostructure. (c), (d) Threshold damage condition of the MoS2-Sb2Te3-MoS2 heterostructure film at 12 mW.
Fig. 5.
Fig. 5. Configuration of the mode-locked EDF laser. WDM, wavelength-division multiplexer; LD, laser diode; SMF, single-mode fiber; EDF, erbium-doped fiber; OC, optical coupler; PC, polarization controller; PI-ISO, polarization-independent isolator; SAM, MoS2-Sb2Te3-MoS2 heterostructure SA mirror.
Fig. 6.
Fig. 6. Typical Q-switching characteristics. (a) Q-switched pulse trains. (b) Optical spectrum. (c) Q-switched pulse duration at 600 mW pump power. (d) RF spectrum at the fundamental frequency and wideband RF spectrum (inset).
Fig. 7.
Fig. 7. (a) Pulse duration and repetition rate versus incident pump power. (b) Average output power and single pulse energy versus incident pump power.
Fig. 8.
Fig. 8. Experimental results of fiber laser with mode-locked states. (a) Optical spectrum. (b) Pulse duration. (c) RF spectrum. (d) Phase noise.

Tables (3)

Tables Icon

Table 1. Effective Mass (m0) and Carrier Mobility (μ) of Monolayer and Heterostructure Materialsa

Tables Icon

Table 2. Intrinsic Carrier Concentration of Monolayer and Heterostructure Materialsa

Tables Icon

Table 3. Comparison of Fiber Lasers Based on Different Heterostructure SAs

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

μ2D=eτm=e3C2DkBTme*md(Ei)2,
ni=mh*me*kBTπ2exp(Eg2kBT),
α(I)=αs1+I/Isat+αns,

Metrics