Abstract

We propose a design for efficient end-fire coupling of surface plasmon polaritons in a metal-insulator-metal (MIM) waveguide with an optical fiber as part of a simple photoplastic connector. The design was analyzed and optimized using the three-dimensional finite-difference time-domain method. The calculated excitation efficiency coefficient of the waveguide is 83.7% (0.77dB) at a wavelength of 405 nm. This design enables simple connection of an optical fiber to a MIM waveguide and highly efficient local excitation of the waveguide. Moreover, the length of the metallic elements of the waveguide, and thus the dissipative losses, can be reduced. The proposed design may be useful in plasmonic-type waveguide applications such as near-field investigation of live cells and other objects with super-resolution.

© 2018 Chinese Laser Press

1. INTRODUCTION

Plasmonic nanostructures enable light waveguiding beyond the diffraction limit, making them potentially useful for applications such as super-resolution imaging [1], optical communications [2], and ultrahigh-density data storage [3]. Devices based on the metal-insulator-metal (MIM) structure are among the most promising because of their ability to minimize the losses that occur during nanofocusing processes. This ability is attributed to the fact that this structure has no cutoff size; further, all the energy from the probe base can propagate to the probe aperture, and the aperture is not shielded by a metal screen. In addition, the probe can possess a large tapering angle (which leads to a small probe length) in accordance with a rapid decrease in mode wavelength with decreasing MIM waveguide height. However, devices that can support surface plasmon polaritons (SPPs) suffer from high ohmic losses in the constituent plasmonic materials (usually gold, silver, or aluminum) [4]. This reduces the propagation distance of highly confined SPPs and therefore limits the application of such devices.

Owing to the high dissipative losses, it is crucial to use an excitation configuration in which SPPs can be excited with high energy efficiency and the length of the metallic elements of the plasmonic devices can be reduced. A major concern here is the efficiency of the interface between conventional micrometer-size photonics and plasmonics with sizes of tens of nanometers. SPPs cannot be excited by a single freely propagating photon because of the momentum mismatch between freely propagating light and SPPs on the metal surface. There are other methods of SPP excitation, such as use of the Kretschmann and Otto geometries [5], end-fire coupling [6], vertical excitation [7], use of diffraction gratings [8,9], and excitation by a focused laser beam [10,11].

MIM waveguides such as the recently fabricated gap plasmon waveguide with a three-dimensional (3D) linear taper [12] can play a crucial role in future near-field investigation of the features of live cells and other objects with super-resolution, owing to their unique ability to image biological processes at the cell membrane, the site of many medically important events [13,14]. Nevertheless, excitation of the structure by direct laser irradiation requires complex and precise adjustment of the entire system. At the same time, the creation of a high-power Gaussian beam using a fiber-coupled 405-nm diode laser system [15,16] and fiber lasers [17,18] is a well-known and extensively investigated process. In this work, we propose a design for efficient end-fire coupling of SPPs in a MIM waveguide with an optical fiber as part of a photoplastic connector. Fiber coupling of the laser beam to a near-field probe allows one to move only the MIM part of a scanning near-field optical microscope during object scanning, making it possible to significantly increase the speed and working area of the microscope. The main advantage of this design is that it enables simple connection of an optical fiber to a MIM waveguide and local excitation of the waveguides with high energy efficiency. In addition, use of the design allows one to reduce the length of the metallic elements of the MIM waveguide and, therefore, reduce the dissipative losses. The design was analyzed and optimized by the 3D finite-difference time-domain (FDTD) method [19] using light with a wavelength of 405 nm. Violet light was used in the simulation because it is very informative and widely employed for analysis of biological objects [20,21].

2. DESIGN OF THE PHOTOPLASTIC CONNECTOR

The spatial geometry of the connector is shown in Fig. 1. The connector consists of an aluminum screen and a hollow cylinder with a bottom (resembling a glass tumbler) made of photoplastic epoxy-type SU-8 material [22]. The optical fiber is inserted into the tumbler. A metal layer with a rectangular hole is deposited on the bottom of the tumbler. This port hole (PH) is used to connect the fiber to the MIM waveguide, and the aluminum screen is used to suppress background radiation. The structure was excited by the fundamental LP01 (HE11) mode [23] of the optical fiber. The MIM waveguide is connected to the optical fiber via the PH. Figure 2 shows a schematic representation of the connector design with a legend.

 figure: Fig. 1.

Fig. 1. Spatial geometry of the photoplastic connector: (a) view from the PH; (b) view from the excitation area.

Download Full Size | PPT Slide | PDF

 figure: Fig. 2.

Fig. 2. Schematic representation of the connector design: (a) view from the excitation area, (b) view from the PH, and (c) longitudinal view. d1 is a diameter of the optical fiber, and thus the inner diameter of the tumbler; d2 is the external diameter of the tumbler, and thus the diameter of the Al screen; a and u are the width and height of the PH, respectively; L1 is the length of the optical fiber; L2 is the length of the tumbler; L3 is the thickness of the Al screen; L4 is the distance between the optical fiber and Al screen, that is, the thickness of the tumbler bottom; L5 is the length of the MIM waveguide; b is the thickness of the MIM waveguide dielectric layer; t is the thickness of the MIM waveguide’s metallic coatings.

Download Full Size | PPT Slide | PDF

The dimensions of the PH are also such that they allow only the fundamental TE10 mode to propagate in the PH. As considerable attention was paid to calculation of the fundamental symmetric plasmon quasi-TM00-mode excitation efficiency in the MIM waveguide [2426], the design of the waveguide was simplified to a regular line with transverse dimensions equal to the dimensions of the device base: b=200nm, t=50nm, a=500nm, and L5=1000nm. This rectangular base from Ref. [12] serves as the input coupler of a sub-100-nm-scale SPP focusing tip. The materials for the MIM waveguide were fused quartz (central layer) and aluminum (coatings).

3. NUMERICAL SIMULATION

A. Numerical Analysis Technique

The proposed design was numerically simulated by the 3D FDTD method [19]. The simulation was performed for light with a wavelength of 405 nm (frequency f=740THz). The Drude model was used to describe the interaction of the metals with electromagnetic radiation. The parameters of the employed materials were taken from Ref. [27]. The relative permittivity of aluminum is 24+i5. We chose aluminum because of its low dissipative losses at 405 nm. The relative permittivity is 2.62 for the tumbler [28] and 2.16 for the optical fiber core and MIM waveguide fused quartz layer. The convergence of the results and mesh adaptation of the model were analyzed before the simulation. Note that end-fire coupling requires an optical fiber without cladding. In this case, the optical fiber can be considered as a circular dielectric waveguide. In the analysis, the fundamental propagating LP01 (HE11) mode of a circular dielectric waveguide (Fig. 3) is considered.

 figure: Fig. 3.

Fig. 3. Contour plot and profiles of the absolute value of the electric field of the fundamental propagation LP01 (HE11) mode of a circular dielectric waveguide; white dashed circle corresponds to outer edge of the optical fiber core; red dashed lines correspond to the PH dimension along the x axis; a.u., arbitrary units.

Download Full Size | PPT Slide | PDF

An optical fiber with a reduced diameter of 1 μm was used to realize the single-mode regime as nearly as possible. The LP01 (HE11) mode does not have a cutoff frequency and is commonly used in fiber optics.

Starting from the fundamental Maxwell’s equations [29,30], the dispersion relation for the fundamental symmetric plasmon quasi-TM00 mode of the five-layer airAlSiO2Alair structure (uniform and infinite along the y axis) was obtained in the form

kdϵdth(kdw)={kmϵmth[km(uw)]+kaϵa}·{1+kaϵaϵmkmth[km(uw)]}1,
where kd2=γ2ω2ϵd, km2=γ2ω2ϵm, and ka2=γ2ω2ϵa; γ is a complex propagation constant; ω is the angular frequency of the considered electromagnetic process; ϵ is the relative permittivity: ϵd(SiO2)=2.16, ϵm(Al)=24+i5, ϵa(air)=1; w=b/2; and u=b/2+t. For the quasi-TM00 mode, the electric field is expressed as E¯=x^E(x)exp(jγz) and is assumed to depend on the time τ as exp(jωτ). The electric field amplitude (Ex) profile of this mode is shown in Fig. 4.

 figure: Fig. 4.

Fig. 4. Electric field amplitude (Ex) profile of the fundamental symmetric plasmon quasi-TM00 mode; b=200nm, t=50nm; red dashed lines correspond to the PH dimension along the x axis; black dashed line corresponds to the |E| profile of the fundamental propagation LP01 (HE11) mode of a circular dielectric waveguide along the x axis from Fig. 3.

Download Full Size | PPT Slide | PDF

A comparison of Figs. 3 and 4 reveals that the field structure of the LP01 (HE11) mode is closest to the field of the fundamental symmetric plasmon mode of the MIM waveguide when the electric field polarization (transverse component) is orthogonal to the metal surface of the MIM waveguide [transverse magnetic (TM) mode]. Therefore, it should provide good coupling efficiency of the fiber mode to the MIM waveguide plasmon mode.

The connector has a metal part that can cause significant dissipative losses. Therefore, the structure of the coupler should not have a high-Q-factor resonator, and all the parts of the connector should be well matched to each other to reduce the ohmic losses. To obtain the best match between the connector and the fiber, it is necessary to first analyze the parameters of the connector alone (without the MIM waveguide) before studying the MIM waveguide excitation efficiency.

This allows us to analyze the dependence on the connector parameters of the power coupling efficiency of an optical fiber directly with the connector and of the connector with the free-space plane waves. Here, the power transmission coefficient ceff_1 was considered. This coefficient is determined as the ratio of the radiant flux emitted by the PH and the radiant flux that falls on the PH. Therefore, ceff_1 indicates the ability of the connector to radiate light energy. It is determined by the following expression:

ceff_1=PP0,
where P0 is the radiant flux through the circular control area S0, and P is the radiant flux through a square control area Srad. The area S0 is located 10 nm in front of the Al screen and has a diameter of 600 nm. The area Srad is located 10 nm behind the Al screen and has a size of 600nm×400nm. P0 was determined taking into account the wave reflection at the interface between the tumbler and the aluminum screen. To this end, first, the standing-wave ratio in the considered area was calculated, and then the power reflection coefficient |R|2 was determined [31,32].

The MIM waveguide was then connected to the optical fiber via the PH. The coefficient of the MIM waveguide excitation efficiency, ceff_2, is determined by Eq. (2) [32,33]. The measurement technique is described in detail in Ref. [32].

B. Results and Discussion

Figure 5 shows the dependence of ceff_1 and the power reflection coefficient |R1|2 at the control area S0 on the Al screen thickness L3. As shown in Fig. 5, ceff_1 and |R1|2 vary according to the harmonic law (sine) as the thickness of the aluminum screen, L3, increases. Further, the functions ceff_1(L3) and |R1|2(L3) are phase-shifted relative to each other by approximately π. Although the fiber used in the simulation can support several waveguide propagation modes, the analyzed structure is highly symmetric, and higher fiber modes have little influence on the energy transmission in the structure.

 figure: Fig. 5.

Fig. 5. Dependence of ceff_1 and power reflection coefficient |R1|2 on the Al screen thickness L3; d1=1000nm, d2=1200nm, L1=500nm, L2=400nm, L4=100nm, a=500nm, u=200nm.

Download Full Size | PPT Slide | PDF

All the other waveguides, which can be considered as parts of our structure, have only a few modes, which cannot be excited owing to structural symmetry [25]. Therefore, the analysis based on the single–mode approximation can give a good first-order approximation and will be used below for the energy transmission analysis.

We can consider the inhomogeneous area between the beginning of the tumbler and free space as an open resonator connected to the fiber on one end and to free space on the other side. Weak coupling efficiency from any side of the resonator would result in high reflection for any resonator length. If the coupling efficiency from both sides of the resonator is weak, the resonance of the reflection and transmission coefficients depends strongly on the resonator length. At resonance, the transmission and reflection coefficients exhibit a large narrow peak and deep dip at lengths far from the resonance length. However, the power transmission coefficient shown in Fig. 5 shows relatively large values for all resonator lengths. The harmonic variation and phase shift of π of the functions ceff_1(L3) and |R1|2(L3) can be attributed to the fact that in this case, the PH is a Fabry–Perot cavity with length L3. As a result, as more energy is radiated from the resonator end, less energy is reflected back to the resonator. By varying the cavity length L3, one can control the intensity of the reflected and transmitted electromagnetic waves. Here, the PH can be considered as a Fabry–Perot cavity with perfect electric conductors because the wavelength normalized by the height of the cavity, u/λ, is approximately 0.5, and the relative permittivity of aluminum is 24 [34]. In more detail, the PH can be represented as an unfilled two-plate line [35] with a characteristic impedance Z0 and propagation constant β1, which is open at the end. The line is loaded with an impedance Zl approximately equal to the impedance of free space. The modulus of the complex reflection coefficient from the load can be written as

|Γl|=|ZlZ0Zl+Z0|.

From Eq. (3), it is obvious that the condition under which the complex reflection coefficient from the load Γl is equal to 0 is ZlZ0=0, or Zl=Z0. The wavelength in the PH was determined using the standing wave pattern in the line. For the TE10 mode, the calculated characteristic impedance is Z0=(u/a)(k/β1)η0=163.1Ω, where k is the free-space wavenumber, and η0=(μ0/ϵ0)1/2377Ω. The modulus of Γl calculated by Eq. (3) is 0.4. In summary, at the control area S0, the electromagnetic field can be represented as a superposition of one incident and two reflected waves. The first reflected wave was reflected at the tumbler/Al screen interface, and the second was reflected at the Al screen/free space interface (at the PH end). Therefore, the phase of the second reflected wave at S0 changes depending on the thickness of the aluminum screen, L3. This leads to a change in the total electromagnetic field at that point and a corresponding change in the radiant flux P0, which can be seen in Fig. 5. A criterion of our optimization is to find the Al thickness that corresponds to the highest power transmission coefficient ceff_1. The highest value of ceff_1 is 79.5% at L3=50nm in the considered thickness range. Note that an Al screen thickness of 50 nm is sufficient to prevent light radiation through the screen (the skin depth of aluminum is approximately 25 nm at the wavelength of interest) and, therefore, to decrease the level of background radiation behind the Al screen.

Figure 6 shows the dependence of ceff_1 and |R1|2 on the distance L4 between the optical fiber and Al screen, i.e., on the thickness of the photoplastic tumbler bottom (the thickness of the Al screen is 50 nm).

 figure: Fig. 6.

Fig. 6. Dependence of ceff_1 and |R1|2 on the tumbler bottom thickness L4; d1=1000nm, d2=1200nm, L1=500nm, L2=400nm, L3=50nm, a=500nm, u=200nm.

Download Full Size | PPT Slide | PDF

As shown in Fig. 6, the power transmission coefficient ceff_1 is approximately 79.5% at L3=50nm and L4=100nm. The data in Figs. 5 and 6 show only small peaks in the transmission coefficient at the resonance lengths and a relatively large transmission coefficient in the entire range of thicknesses of the simulated metal screen L3 and the tumbler bottom L4 (the smallest value is less than the largest one by 15.9% and 8.9% in Figs. 5 and 6, respectively). This fact confirms that the fundamental LP01 (HE11) mode of the fiber has a large coupling efficiency to free-space plane waves, and therefore the thickness of the metal screen is not crucial to the coupling efficiency of this connector.

A cross-sectional view of the electric field and energy flux in the structure is shown in Fig. 7. The optical fiber obviously has a significant factor of the working mode coupling with plane waves in free space via the PH of the connector. In addition, local field enhancement appears at the external edges of the PH [36,37] [see Fig. 7(b)]. This enhancement makes it possible to locally excite the MIM waveguide with high efficiency.

 figure: Fig. 7.

Fig. 7. Cross-sectional view of the electric field and energy flux in the structure: (a) x component of the electric field; (b) absolute value of the electric field; (c) z component of the Poynting vector. d1=1000nm, d2=1200nm, L1=500nm, L2=400nm, L3=50nm, L4=100nm, a=500nm, u=200nm; a.u., arbitrary units.

Download Full Size | PPT Slide | PDF

In the next part of the simulation, the MIM waveguide was connected to the optical fiber via the PH of the connector. Note that the optimization of the connector parameters performed earlier gives only a qualitative estimate, because connecting the MIM waveguide to the optical fiber changes the conditions at the end of the PH. In this case, the load impedance Zl is equal to the characteristic impedance of the MIM waveguide, ZMIM=(b/a)(β2/kϵ)η0=108.8Ω, where β2 is the propagation constant of the MIM waveguide, and ϵ=2.16. The wavelength of the MIM waveguide was determined using the standing wave pattern in the line. The modulus of Γl calculated by Eq. (3) is equal to 0.2 (it is half of that without the MIM waveguide). Therefore, in this case, the parameters of the connector are different from those obtained in the earlier calculation; however, the previously presented results give a good first-order approximation and may be fruitful for preliminary qualitative analysis of the connector parameters and understanding of connector operation.

Figure 8 outlines the dependence of the coefficient of the MIM excitation efficiency ceff_2 calculated by Eq. (2) on the Al screen thickness L3. The radiant flux P was determined taking into account the wave reflection at the end of the MIM waveguide. Because we calculated the fundamental symmetric quasi-TM00-mode excitation efficiency in the MIM waveguide, we do not consider subsequent propagation of light along the MIM waveguide and the conditions at the MIM waveguide end (which generally do influence the field distribution in the connector).

 figure: Fig. 8.

Fig. 8. Dependence of ceff_2 on the Al screen thickness L3; d1=1000nm, d2=1200nm, L1=500nm, L2=400nm, L3=50nm, L4=100nm, L5=1000nm, a=500nm, u=200nm, b=200nm, t=50nm.

Download Full Size | PPT Slide | PDF

The data in Fig. 8 are in good qualitative agreement with the results obtained without the MIM waveguide. The coefficient ceff_2 is 83.7% (0.77dB) at L3=50nm. This finding confirms that the fundamental LP01 (HE11) mode of the optical fiber core has high coupling efficiency to the fundamental symmetric quasi-TM00 mode of the MIM waveguide. An aluminum screen thickness of less than 50 nm is undesirable because of field penetration through the screen.

A cross-sectional view of the electric field and energy flux in the structure with the MIM waveguide is shown in Fig. 9. In Figs. 9(a) and 9(b), the fundamental symmetric plasmon quasi-TM00 mode, which propagates along the MIM waveguide in the positive z direction, is clearly visible.

 figure: Fig. 9.

Fig. 9. Cross-sectional view of the electric field and energy flux in the structure with the MIM waveguide: (a) x component of the electric field; (b) absolute value of the electric field; (c) z component of the Poynting vector. d1=1000nm, d2=1200nm, L1=500nm, L2=400nm, L3=50nm, L4=100nm, L5=1000nm, a=500nm, u=200nm, b=200nm, t=50nm; a.u., arbitrary units.

Download Full Size | PPT Slide | PDF

Note that when this photoplastic connector is used, the length of the waveguide base L5 can be significantly reduced. This is because one can locally excite the MIM waveguide with high efficiency, and the aluminum screen reduces the background radiation to the device tip, so there is no need to strictly exclude the tip from the excitation area. In this case, the reduction in the length of the metallic elements leads to a reduction in the dissipative losses in the waveguide.

4. EXPERIMENTAL FEASIBILITY

Although our design is based on numerical analysis, the experimental process can be discussed on the basis of some experimental works [12,22]. The photoplastic connector is fabricated as follows: (1) an oxide layer is produced on the Si wafer by thermal oxidation; (2) after deposition of a sacrificial layer, the aluminum screen is created using vacuum evaporation; (3) photoplastic material is deposited on the Al screen using a spin-coating procedure [38]; (4) the photoplastic part is then exposed to ultraviolet (UV) radiation and developed to create a tumbler for the optical fiber; (5) the optical fiber is then inserted into the tumbler and fixed using UV glue; (6) the optical fiber in the connector is separated from the wafer; (7) at the end, a PH of appropriate size is created in the Al screen by focused ion beam milling. Note that the technological requirements for manufacturing the connector can be reduced because the excitation efficiency coefficient ceff_2 does not show a sharp resonant peak at certain values of the connector parameters. In Ref. [12], the process of MIM waveguide fabrication is described in detail.

Note that reducing the fiber core diameter may lead to LP01 mode energy leakage from the fiber core. To prevent this in our design, it is possible to produce a short fiber core tip with a reduced diameter using laser-heated pulling [39] and chemical etching [40] techniques.

Moreover, via the existing nanotechnologies, it is possible to create a substrate-based structure with free access to the base end face of the MIM waveguide. In addition, it has been shown [41] that the excitation efficiency is not very sensitive to the width of the incident beam and the position of its center on the MIM end face. In other words, in a real implementation, one can just connect an optical fiber to the MIM waveguide without needing to perfectly match the PH plane to the end face of the MIM waveguide.

5. CONCLUSIONS

Plasmonic nanostructures allow for light waveguiding beyond the diffraction limit, making them potentially useful for applications such as super-resolution imaging, optical communications, and ultrahigh-density data storage. Owing to the high dissipative losses in most plasmonic devices, it is crucial to excite SPPs with high energy efficiency. For this purpose, the design of efficient end-fire coupling of SPPs in a MIM waveguide with an optical fiber as part of a photoplastic connector was proposed. Detailed numerical analysis and optimization of the connector parameters were conducted. The calculated excitation efficiency coefficient of the MIM waveguide using the proposed photoplastic connector is 83.7% (0.77dB). Use of this design enables simple connection of an optical fiber to a MIM waveguide. In addition, the design makes it possible to reduce the length of the metallic elements of the MIM waveguide and thus decrease the dissipative losses. In summary, the proposed design of an optical fiber connection to MIM waveguides can be of practical importance in plasmonic-type waveguide applications such as near-field investigation of the features of live cells and other objects with super-resolution.

Funding

National Natural Science Foundation of China (NSFC) (61571399); “The Belt and Road” International Cooperation of Zhejiang Province, China (2015C04005).

REFERENCES

1. S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3, 388–394 (2009). [CrossRef]  

2. J. Leuthold, C. Hoessbacher, S. Muehlbrandt, A. Melikyan, M. Kohl, C. Koos, W. Freude, V. Dolores-Calzadilla, M. Smit, I. Suarez, J. Martínez-Pastor, E. P. Fitrakis, and I. Tomkos, “Plasmonic communications: light on a wire,” Opt. Photon. News 24(5), 28–35 (2013). [CrossRef]  

3. M. Mansuripur, A. R. Zakharian, A. Lesuffleur, S.-H. Oh, R. J. Jones, N. C. Lindquist, H. Im, A. Kobyakov, and J. V. Moloney, “Plasmonic nano-structures for optical data storage,” Opt. Express 17, 14001–14014 (2009). [CrossRef]  

4. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010). [CrossRef]  

5. A. V. Zayats and I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J. Opt. A 5, S16–S50 (2003). [CrossRef]  

6. C. S. Kim, I. Vurgaftman, R. A. Flynn, M. Kim, J. R. Lindle, W. W. Bewley, K. Bussmann, J. R. Meyer, and J. P. Long, “An integrated surface-plasmon source,” Opt. Express 18, 10609–10615 (2010). [CrossRef]  

7. E. Kinzel and X. Xu, “High efficiency excitation of plasmonic waveguides with vertically integrated resonant bowtie apertures,” Opt. Express 18, 10609–10615 (2010). [CrossRef]  

8. K. Li, F. Xiao, F. Lu, K. Alameh, and A. Xu, “Unidirectional coupling of surface plasmons with ultra-broadband and wide-angle efficiency: potential applications in sensing,” New J. Phys. 15, 113040 (2013). [CrossRef]  

9. P. A. Thomas, G. H. Auton, D. Kundys, A. N. Grigorenko, and V. G. Kravets, “Strong coupling of diffraction coupled plasmons and optical waveguide modes in gold stripe-dielectric nanostructures at telecom wavelengths,” Sci. Rep. 7, 45196 (2017). [CrossRef]  

10. H. Kano, S. Mizuguchi, and S. Kawata, “Excitation of surface-plasmon polaritons by a focused laser beam,” J. Opt. Soc. Am. B 15, 1381–1386 (1998). [CrossRef]  

11. J. Renger, R. Quidant, N. van Hulst, S. Palomba, and L. Novotny, “Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave mixing,” Phys. Rev. Lett. 103, 266802 (2009). [CrossRef]  

12. H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6, 838–844 (2012). [CrossRef]  

13. D. M. Czajkowsky, J. Sun, and Z. Shao, “Illuminated up close: near-field optical microscopy of cell surfaces,” Nanomed-Nanotechnol. 11, 119–125 (2014). [CrossRef]  

14. H. A. Huckabay, K. P. Armendariz, W. H. Newhart, S. M. Wildgen, and R. C. Dunn, “Near-field scanning optical microscopy for high-resolution membrane studies,” Methods Mol. Biol. 950, 373–394 (2013). [CrossRef]  

15. C. P. Gonschior, K.-F. Klein, D. Heyse, S. Baumann, T. Sun, and K. T. V. Grattan, “High power 405 nm diode laser fiber-coupled single-mode system with high long-term stability,” Proc. SPIE 8605, 86050O (2013). [CrossRef]  

16. C. P. Gonschior, K.-F. Klein, M. Menzel, T. Sun, and K. T. V. Grattan, “Investigation of single-mode fiber degradation by 405-nm continuous-wave laser light,” Opt. Eng. 53, 122512 (2014). [CrossRef]  

17. W. Shi, Q. Fang, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Fiber lasers and their applications,” Appl. Opt. 53, 6554–6568 (2014). [CrossRef]  

18. J. Xu, L. Huang, M. Jiang, J. Ye, P. Ma, J. Leng, J. Wu, H. Zhang, and P. Zhou, “Near-diffraction-limited linearly polarized narrow-linewidth random fiber laser with record kilowatt output,” Photon. Res. 5, 350–354 (2017). [CrossRef]  

19. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

20. G. Patterson, M. Davidson, S. Manley, and J. Lippincott-Schwartz, “Superresolution imaging using single-molecule localization,” Annu. Rev. Chem. 61, 345–367 (2010). [CrossRef]  

21. A. Carpio, T. G. Dimiduk, M. L. Rapún, and V. Selgas, “Noninvasive imaging of three-dimensional micro and nanostructures by topological methods,” SIAM J. Imaging Sci. 9, 1324–1354 (2016). [CrossRef]  

22. G. Genolet, J. Brugger, M. Despont, U. Drechsler, P. Vettiger, N. F. de Rooij, and D. Anselmetti, “Soft, entirely photoplastic probes for scanning force microscopy,” Rev. Sci. Instrum. 70, 2398–2401 (1999). [CrossRef]  

23. J.-R. Qian and W.-P. Huang, “LP modes and ideal modes on optical fibers,” J. Lightwave Technol. 4, 626–630 (1986). [CrossRef]  

24. J. Zhu, W. Xu, Z. Xu, D. Fu, S. Song, and D. Wei, “Surface plasmon polariton mode in the metal-insulator-metal waveguide,” Optik 134, 187–193 (2017). [CrossRef]  

25. A. S. Lapchuk, D. Shin, H.-S. Jeong, C. S. Kyong, and D.-I. Shin, “Mode propagation in optical nanowaveguides with dielectric cores and surrounding metal layers,” Appl. Opt. 44, 7522–7531 (2005). [CrossRef]  

26. P. Ginzburg, D. Arbel, and M. Orenstein, “Gap plasmon polariton structure for very efficient microscale-to-nanoscale interfacing,” Opt. Lett. 31, 3288–3290 (2006). [CrossRef]  

27. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

28. O. P. Parida and N. Bhat, “Characterization of optical properties of SU-8 and fabrication of optical components,” in Proceedings of the International Conference on Optics and Photonics, Chandigarh, India, 30 October –1 November, 2009.

29. K. Y. Kim, ed., Plasmonics–Principles and Applications, 1st ed. (InTech, 2012).

30. S. H. Talisa, “Application of Davidenko’s method to the solution of dispersion relations in lossy waveguiding system,” IEEE Trans. Microwave Theory Tech. 33, 967–971 (1985). [CrossRef]  

31. K. Kurokawa, “Power waves and the scattering matrix,” IEEE Trans. Microwave Theory Tech. 13, 194–202 (1965). [CrossRef]  

32. Y. M. Morozov and A. S. Lapchuk, “Signal of microstrip scanning near-field optical microscope in far- and near-field zones,” Appl. Opt. 55, 3468–3477 (2016). [CrossRef]  

33. L. Yu, L. Liu, Z. Zhou, and X. Wang, “High efficiency binary blazed grating coupler for perfectly-vertical and near-vertical coupling in chip level optical interconnections,” Opt. Commun. 355, 161–166 (2015). [CrossRef]  

34. R. Gordon, “Light in a subwavelength slit in a metal: propagation and reflection,” Phys. Rev. B 73, 153405 (2006). [CrossRef]  

35. D. M. Pozar, Microwave Engineering, 4th ed. (Wiley, 2012).

36. A. S. Lapchuk, S. A. Shylo, and I. P. Nevirkovets, “Local plasmon resonance at metal wedge,” J. Opt. Soc. Am. A 25, 1535–1540 (2008). [CrossRef]  

37. M. R. Disfani, M. S. Abrishamian, and P. Berini, “Electromagnetic fields near plasmonic wedges,” Opt. Lett. 37, 1667–1669 (2012). [CrossRef]  

38. H. Lorenz, M. Despont, N. Fahrni, J. Brugger, P. Vettiger, and P. Renaud, “High-aspect-ratio, ultrathick, negative-tone near-UV photoresist and its applications for MEMS,” Sens. Actuators A 64, 33–39 (1998). [CrossRef]  

39. G. A. Valaskovic, M. Holton, and G. H. Morrison, “Parameter control, characterization, and optimization in the fabrication of optical fiber near-field probes,” Appl. Opt. 34, 1215–1228 (1995). [CrossRef]  

40. J. Luo, Y. Fan, H. Zhou, W. Gu, and W. Xu, “Fabrication of different fine fiber tips for near field scanning optical microscopy by a simple chemical etching technique,” Chin. Opt. Lett. 5, 232–234 (2007).

41. G. I. Stegeman, R. F. Wallis, and A. A. Maradudin, “Excitation of surface polaritons by end-fire coupling,” Opt. Lett. 8, 386–388 (1983). [CrossRef]  

References

  • View by:

  1. S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3, 388–394 (2009).
    [Crossref]
  2. J. Leuthold, C. Hoessbacher, S. Muehlbrandt, A. Melikyan, M. Kohl, C. Koos, W. Freude, V. Dolores-Calzadilla, M. Smit, I. Suarez, J. Martínez-Pastor, E. P. Fitrakis, and I. Tomkos, “Plasmonic communications: light on a wire,” Opt. Photon. News 24(5), 28–35 (2013).
    [Crossref]
  3. M. Mansuripur, A. R. Zakharian, A. Lesuffleur, S.-H. Oh, R. J. Jones, N. C. Lindquist, H. Im, A. Kobyakov, and J. V. Moloney, “Plasmonic nano-structures for optical data storage,” Opt. Express 17, 14001–14014 (2009).
    [Crossref]
  4. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
    [Crossref]
  5. A. V. Zayats and I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J. Opt. A 5, S16–S50 (2003).
    [Crossref]
  6. C. S. Kim, I. Vurgaftman, R. A. Flynn, M. Kim, J. R. Lindle, W. W. Bewley, K. Bussmann, J. R. Meyer, and J. P. Long, “An integrated surface-plasmon source,” Opt. Express 18, 10609–10615 (2010).
    [Crossref]
  7. E. Kinzel and X. Xu, “High efficiency excitation of plasmonic waveguides with vertically integrated resonant bowtie apertures,” Opt. Express 18, 10609–10615 (2010).
    [Crossref]
  8. K. Li, F. Xiao, F. Lu, K. Alameh, and A. Xu, “Unidirectional coupling of surface plasmons with ultra-broadband and wide-angle efficiency: potential applications in sensing,” New J. Phys. 15, 113040 (2013).
    [Crossref]
  9. P. A. Thomas, G. H. Auton, D. Kundys, A. N. Grigorenko, and V. G. Kravets, “Strong coupling of diffraction coupled plasmons and optical waveguide modes in gold stripe-dielectric nanostructures at telecom wavelengths,” Sci. Rep. 7, 45196 (2017).
    [Crossref]
  10. H. Kano, S. Mizuguchi, and S. Kawata, “Excitation of surface-plasmon polaritons by a focused laser beam,” J. Opt. Soc. Am. B 15, 1381–1386 (1998).
    [Crossref]
  11. J. Renger, R. Quidant, N. van Hulst, S. Palomba, and L. Novotny, “Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave mixing,” Phys. Rev. Lett. 103, 266802 (2009).
    [Crossref]
  12. H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6, 838–844 (2012).
    [Crossref]
  13. D. M. Czajkowsky, J. Sun, and Z. Shao, “Illuminated up close: near-field optical microscopy of cell surfaces,” Nanomed-Nanotechnol. 11, 119–125 (2014).
    [Crossref]
  14. H. A. Huckabay, K. P. Armendariz, W. H. Newhart, S. M. Wildgen, and R. C. Dunn, “Near-field scanning optical microscopy for high-resolution membrane studies,” Methods Mol. Biol. 950, 373–394 (2013).
    [Crossref]
  15. C. P. Gonschior, K.-F. Klein, D. Heyse, S. Baumann, T. Sun, and K. T. V. Grattan, “High power 405  nm diode laser fiber-coupled single-mode system with high long-term stability,” Proc. SPIE 8605, 86050O (2013).
    [Crossref]
  16. C. P. Gonschior, K.-F. Klein, M. Menzel, T. Sun, and K. T. V. Grattan, “Investigation of single-mode fiber degradation by 405-nm continuous-wave laser light,” Opt. Eng. 53, 122512 (2014).
    [Crossref]
  17. W. Shi, Q. Fang, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Fiber lasers and their applications,” Appl. Opt. 53, 6554–6568 (2014).
    [Crossref]
  18. J. Xu, L. Huang, M. Jiang, J. Ye, P. Ma, J. Leng, J. Wu, H. Zhang, and P. Zhou, “Near-diffraction-limited linearly polarized narrow-linewidth random fiber laser with record kilowatt output,” Photon. Res. 5, 350–354 (2017).
    [Crossref]
  19. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).
  20. G. Patterson, M. Davidson, S. Manley, and J. Lippincott-Schwartz, “Superresolution imaging using single-molecule localization,” Annu. Rev. Chem. 61, 345–367 (2010).
    [Crossref]
  21. A. Carpio, T. G. Dimiduk, M. L. Rapún, and V. Selgas, “Noninvasive imaging of three-dimensional micro and nanostructures by topological methods,” SIAM J. Imaging Sci. 9, 1324–1354 (2016).
    [Crossref]
  22. G. Genolet, J. Brugger, M. Despont, U. Drechsler, P. Vettiger, N. F. de Rooij, and D. Anselmetti, “Soft, entirely photoplastic probes for scanning force microscopy,” Rev. Sci. Instrum. 70, 2398–2401 (1999).
    [Crossref]
  23. J.-R. Qian and W.-P. Huang, “LP modes and ideal modes on optical fibers,” J. Lightwave Technol. 4, 626–630 (1986).
    [Crossref]
  24. J. Zhu, W. Xu, Z. Xu, D. Fu, S. Song, and D. Wei, “Surface plasmon polariton mode in the metal-insulator-metal waveguide,” Optik 134, 187–193 (2017).
    [Crossref]
  25. A. S. Lapchuk, D. Shin, H.-S. Jeong, C. S. Kyong, and D.-I. Shin, “Mode propagation in optical nanowaveguides with dielectric cores and surrounding metal layers,” Appl. Opt. 44, 7522–7531 (2005).
    [Crossref]
  26. P. Ginzburg, D. Arbel, and M. Orenstein, “Gap plasmon polariton structure for very efficient microscale-to-nanoscale interfacing,” Opt. Lett. 31, 3288–3290 (2006).
    [Crossref]
  27. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  28. O. P. Parida and N. Bhat, “Characterization of optical properties of SU-8 and fabrication of optical components,” in Proceedings of the International Conference on Optics and Photonics, Chandigarh, India, 30October–1 November, 2009.
  29. K. Y. Kim, ed., Plasmonics–Principles and Applications, 1st ed. (InTech, 2012).
  30. S. H. Talisa, “Application of Davidenko’s method to the solution of dispersion relations in lossy waveguiding system,” IEEE Trans. Microwave Theory Tech. 33, 967–971 (1985).
    [Crossref]
  31. K. Kurokawa, “Power waves and the scattering matrix,” IEEE Trans. Microwave Theory Tech. 13, 194–202 (1965).
    [Crossref]
  32. Y. M. Morozov and A. S. Lapchuk, “Signal of microstrip scanning near-field optical microscope in far- and near-field zones,” Appl. Opt. 55, 3468–3477 (2016).
    [Crossref]
  33. L. Yu, L. Liu, Z. Zhou, and X. Wang, “High efficiency binary blazed grating coupler for perfectly-vertical and near-vertical coupling in chip level optical interconnections,” Opt. Commun. 355, 161–166 (2015).
    [Crossref]
  34. R. Gordon, “Light in a subwavelength slit in a metal: propagation and reflection,” Phys. Rev. B 73, 153405 (2006).
    [Crossref]
  35. D. M. Pozar, Microwave Engineering, 4th ed. (Wiley, 2012).
  36. A. S. Lapchuk, S. A. Shylo, and I. P. Nevirkovets, “Local plasmon resonance at metal wedge,” J. Opt. Soc. Am. A 25, 1535–1540 (2008).
    [Crossref]
  37. M. R. Disfani, M. S. Abrishamian, and P. Berini, “Electromagnetic fields near plasmonic wedges,” Opt. Lett. 37, 1667–1669 (2012).
    [Crossref]
  38. H. Lorenz, M. Despont, N. Fahrni, J. Brugger, P. Vettiger, and P. Renaud, “High-aspect-ratio, ultrathick, negative-tone near-UV photoresist and its applications for MEMS,” Sens. Actuators A 64, 33–39 (1998).
    [Crossref]
  39. G. A. Valaskovic, M. Holton, and G. H. Morrison, “Parameter control, characterization, and optimization in the fabrication of optical fiber near-field probes,” Appl. Opt. 34, 1215–1228 (1995).
    [Crossref]
  40. J. Luo, Y. Fan, H. Zhou, W. Gu, and W. Xu, “Fabrication of different fine fiber tips for near field scanning optical microscopy by a simple chemical etching technique,” Chin. Opt. Lett. 5, 232–234 (2007).
  41. G. I. Stegeman, R. F. Wallis, and A. A. Maradudin, “Excitation of surface polaritons by end-fire coupling,” Opt. Lett. 8, 386–388 (1983).
    [Crossref]

2017 (3)

P. A. Thomas, G. H. Auton, D. Kundys, A. N. Grigorenko, and V. G. Kravets, “Strong coupling of diffraction coupled plasmons and optical waveguide modes in gold stripe-dielectric nanostructures at telecom wavelengths,” Sci. Rep. 7, 45196 (2017).
[Crossref]

J. Xu, L. Huang, M. Jiang, J. Ye, P. Ma, J. Leng, J. Wu, H. Zhang, and P. Zhou, “Near-diffraction-limited linearly polarized narrow-linewidth random fiber laser with record kilowatt output,” Photon. Res. 5, 350–354 (2017).
[Crossref]

J. Zhu, W. Xu, Z. Xu, D. Fu, S. Song, and D. Wei, “Surface plasmon polariton mode in the metal-insulator-metal waveguide,” Optik 134, 187–193 (2017).
[Crossref]

2016 (2)

A. Carpio, T. G. Dimiduk, M. L. Rapún, and V. Selgas, “Noninvasive imaging of three-dimensional micro and nanostructures by topological methods,” SIAM J. Imaging Sci. 9, 1324–1354 (2016).
[Crossref]

Y. M. Morozov and A. S. Lapchuk, “Signal of microstrip scanning near-field optical microscope in far- and near-field zones,” Appl. Opt. 55, 3468–3477 (2016).
[Crossref]

2015 (1)

L. Yu, L. Liu, Z. Zhou, and X. Wang, “High efficiency binary blazed grating coupler for perfectly-vertical and near-vertical coupling in chip level optical interconnections,” Opt. Commun. 355, 161–166 (2015).
[Crossref]

2014 (3)

D. M. Czajkowsky, J. Sun, and Z. Shao, “Illuminated up close: near-field optical microscopy of cell surfaces,” Nanomed-Nanotechnol. 11, 119–125 (2014).
[Crossref]

C. P. Gonschior, K.-F. Klein, M. Menzel, T. Sun, and K. T. V. Grattan, “Investigation of single-mode fiber degradation by 405-nm continuous-wave laser light,” Opt. Eng. 53, 122512 (2014).
[Crossref]

W. Shi, Q. Fang, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Fiber lasers and their applications,” Appl. Opt. 53, 6554–6568 (2014).
[Crossref]

2013 (4)

H. A. Huckabay, K. P. Armendariz, W. H. Newhart, S. M. Wildgen, and R. C. Dunn, “Near-field scanning optical microscopy for high-resolution membrane studies,” Methods Mol. Biol. 950, 373–394 (2013).
[Crossref]

C. P. Gonschior, K.-F. Klein, D. Heyse, S. Baumann, T. Sun, and K. T. V. Grattan, “High power 405  nm diode laser fiber-coupled single-mode system with high long-term stability,” Proc. SPIE 8605, 86050O (2013).
[Crossref]

J. Leuthold, C. Hoessbacher, S. Muehlbrandt, A. Melikyan, M. Kohl, C. Koos, W. Freude, V. Dolores-Calzadilla, M. Smit, I. Suarez, J. Martínez-Pastor, E. P. Fitrakis, and I. Tomkos, “Plasmonic communications: light on a wire,” Opt. Photon. News 24(5), 28–35 (2013).
[Crossref]

K. Li, F. Xiao, F. Lu, K. Alameh, and A. Xu, “Unidirectional coupling of surface plasmons with ultra-broadband and wide-angle efficiency: potential applications in sensing,” New J. Phys. 15, 113040 (2013).
[Crossref]

2012 (2)

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6, 838–844 (2012).
[Crossref]

M. R. Disfani, M. S. Abrishamian, and P. Berini, “Electromagnetic fields near plasmonic wedges,” Opt. Lett. 37, 1667–1669 (2012).
[Crossref]

2010 (4)

G. Patterson, M. Davidson, S. Manley, and J. Lippincott-Schwartz, “Superresolution imaging using single-molecule localization,” Annu. Rev. Chem. 61, 345–367 (2010).
[Crossref]

C. S. Kim, I. Vurgaftman, R. A. Flynn, M. Kim, J. R. Lindle, W. W. Bewley, K. Bussmann, J. R. Meyer, and J. P. Long, “An integrated surface-plasmon source,” Opt. Express 18, 10609–10615 (2010).
[Crossref]

E. Kinzel and X. Xu, “High efficiency excitation of plasmonic waveguides with vertically integrated resonant bowtie apertures,” Opt. Express 18, 10609–10615 (2010).
[Crossref]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[Crossref]

2009 (3)

M. Mansuripur, A. R. Zakharian, A. Lesuffleur, S.-H. Oh, R. J. Jones, N. C. Lindquist, H. Im, A. Kobyakov, and J. V. Moloney, “Plasmonic nano-structures for optical data storage,” Opt. Express 17, 14001–14014 (2009).
[Crossref]

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3, 388–394 (2009).
[Crossref]

J. Renger, R. Quidant, N. van Hulst, S. Palomba, and L. Novotny, “Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave mixing,” Phys. Rev. Lett. 103, 266802 (2009).
[Crossref]

2008 (1)

2007 (1)

2006 (2)

2005 (1)

2003 (1)

A. V. Zayats and I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J. Opt. A 5, S16–S50 (2003).
[Crossref]

1999 (1)

G. Genolet, J. Brugger, M. Despont, U. Drechsler, P. Vettiger, N. F. de Rooij, and D. Anselmetti, “Soft, entirely photoplastic probes for scanning force microscopy,” Rev. Sci. Instrum. 70, 2398–2401 (1999).
[Crossref]

1998 (2)

H. Lorenz, M. Despont, N. Fahrni, J. Brugger, P. Vettiger, and P. Renaud, “High-aspect-ratio, ultrathick, negative-tone near-UV photoresist and its applications for MEMS,” Sens. Actuators A 64, 33–39 (1998).
[Crossref]

H. Kano, S. Mizuguchi, and S. Kawata, “Excitation of surface-plasmon polaritons by a focused laser beam,” J. Opt. Soc. Am. B 15, 1381–1386 (1998).
[Crossref]

1995 (1)

1986 (1)

J.-R. Qian and W.-P. Huang, “LP modes and ideal modes on optical fibers,” J. Lightwave Technol. 4, 626–630 (1986).
[Crossref]

1985 (1)

S. H. Talisa, “Application of Davidenko’s method to the solution of dispersion relations in lossy waveguiding system,” IEEE Trans. Microwave Theory Tech. 33, 967–971 (1985).
[Crossref]

1983 (1)

1965 (1)

K. Kurokawa, “Power waves and the scattering matrix,” IEEE Trans. Microwave Theory Tech. 13, 194–202 (1965).
[Crossref]

Abrishamian, M. S.

Alameh, K.

K. Li, F. Xiao, F. Lu, K. Alameh, and A. Xu, “Unidirectional coupling of surface plasmons with ultra-broadband and wide-angle efficiency: potential applications in sensing,” New J. Phys. 15, 113040 (2013).
[Crossref]

Anselmetti, D.

G. Genolet, J. Brugger, M. Despont, U. Drechsler, P. Vettiger, N. F. de Rooij, and D. Anselmetti, “Soft, entirely photoplastic probes for scanning force microscopy,” Rev. Sci. Instrum. 70, 2398–2401 (1999).
[Crossref]

Arbel, D.

Armendariz, K. P.

H. A. Huckabay, K. P. Armendariz, W. H. Newhart, S. M. Wildgen, and R. C. Dunn, “Near-field scanning optical microscopy for high-resolution membrane studies,” Methods Mol. Biol. 950, 373–394 (2013).
[Crossref]

Auton, G. H.

P. A. Thomas, G. H. Auton, D. Kundys, A. N. Grigorenko, and V. G. Kravets, “Strong coupling of diffraction coupled plasmons and optical waveguide modes in gold stripe-dielectric nanostructures at telecom wavelengths,” Sci. Rep. 7, 45196 (2017).
[Crossref]

Baumann, S.

C. P. Gonschior, K.-F. Klein, D. Heyse, S. Baumann, T. Sun, and K. T. V. Grattan, “High power 405  nm diode laser fiber-coupled single-mode system with high long-term stability,” Proc. SPIE 8605, 86050O (2013).
[Crossref]

Berini, P.

Bewley, W. W.

Bhat, N.

O. P. Parida and N. Bhat, “Characterization of optical properties of SU-8 and fabrication of optical components,” in Proceedings of the International Conference on Optics and Photonics, Chandigarh, India, 30October–1 November, 2009.

Bokor, J.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6, 838–844 (2012).
[Crossref]

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[Crossref]

Brugger, J.

G. Genolet, J. Brugger, M. Despont, U. Drechsler, P. Vettiger, N. F. de Rooij, and D. Anselmetti, “Soft, entirely photoplastic probes for scanning force microscopy,” Rev. Sci. Instrum. 70, 2398–2401 (1999).
[Crossref]

H. Lorenz, M. Despont, N. Fahrni, J. Brugger, P. Vettiger, and P. Renaud, “High-aspect-ratio, ultrathick, negative-tone near-UV photoresist and its applications for MEMS,” Sens. Actuators A 64, 33–39 (1998).
[Crossref]

Bussmann, K.

Cabrini, S.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6, 838–844 (2012).
[Crossref]

Carpio, A.

A. Carpio, T. G. Dimiduk, M. L. Rapún, and V. Selgas, “Noninvasive imaging of three-dimensional micro and nanostructures by topological methods,” SIAM J. Imaging Sci. 9, 1324–1354 (2016).
[Crossref]

Choo, H.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6, 838–844 (2012).
[Crossref]

Czajkowsky, D. M.

D. M. Czajkowsky, J. Sun, and Z. Shao, “Illuminated up close: near-field optical microscopy of cell surfaces,” Nanomed-Nanotechnol. 11, 119–125 (2014).
[Crossref]

Davidson, M.

G. Patterson, M. Davidson, S. Manley, and J. Lippincott-Schwartz, “Superresolution imaging using single-molecule localization,” Annu. Rev. Chem. 61, 345–367 (2010).
[Crossref]

de Rooij, N. F.

G. Genolet, J. Brugger, M. Despont, U. Drechsler, P. Vettiger, N. F. de Rooij, and D. Anselmetti, “Soft, entirely photoplastic probes for scanning force microscopy,” Rev. Sci. Instrum. 70, 2398–2401 (1999).
[Crossref]

Despont, M.

G. Genolet, J. Brugger, M. Despont, U. Drechsler, P. Vettiger, N. F. de Rooij, and D. Anselmetti, “Soft, entirely photoplastic probes for scanning force microscopy,” Rev. Sci. Instrum. 70, 2398–2401 (1999).
[Crossref]

H. Lorenz, M. Despont, N. Fahrni, J. Brugger, P. Vettiger, and P. Renaud, “High-aspect-ratio, ultrathick, negative-tone near-UV photoresist and its applications for MEMS,” Sens. Actuators A 64, 33–39 (1998).
[Crossref]

Dimiduk, T. G.

A. Carpio, T. G. Dimiduk, M. L. Rapún, and V. Selgas, “Noninvasive imaging of three-dimensional micro and nanostructures by topological methods,” SIAM J. Imaging Sci. 9, 1324–1354 (2016).
[Crossref]

Disfani, M. R.

Dolores-Calzadilla, V.

J. Leuthold, C. Hoessbacher, S. Muehlbrandt, A. Melikyan, M. Kohl, C. Koos, W. Freude, V. Dolores-Calzadilla, M. Smit, I. Suarez, J. Martínez-Pastor, E. P. Fitrakis, and I. Tomkos, “Plasmonic communications: light on a wire,” Opt. Photon. News 24(5), 28–35 (2013).
[Crossref]

Drechsler, U.

G. Genolet, J. Brugger, M. Despont, U. Drechsler, P. Vettiger, N. F. de Rooij, and D. Anselmetti, “Soft, entirely photoplastic probes for scanning force microscopy,” Rev. Sci. Instrum. 70, 2398–2401 (1999).
[Crossref]

Dunn, R. C.

H. A. Huckabay, K. P. Armendariz, W. H. Newhart, S. M. Wildgen, and R. C. Dunn, “Near-field scanning optical microscopy for high-resolution membrane studies,” Methods Mol. Biol. 950, 373–394 (2013).
[Crossref]

Fahrni, N.

H. Lorenz, M. Despont, N. Fahrni, J. Brugger, P. Vettiger, and P. Renaud, “High-aspect-ratio, ultrathick, negative-tone near-UV photoresist and its applications for MEMS,” Sens. Actuators A 64, 33–39 (1998).
[Crossref]

Fan, Y.

Fang, Q.

Fitrakis, E. P.

J. Leuthold, C. Hoessbacher, S. Muehlbrandt, A. Melikyan, M. Kohl, C. Koos, W. Freude, V. Dolores-Calzadilla, M. Smit, I. Suarez, J. Martínez-Pastor, E. P. Fitrakis, and I. Tomkos, “Plasmonic communications: light on a wire,” Opt. Photon. News 24(5), 28–35 (2013).
[Crossref]

Flynn, R. A.

Freude, W.

J. Leuthold, C. Hoessbacher, S. Muehlbrandt, A. Melikyan, M. Kohl, C. Koos, W. Freude, V. Dolores-Calzadilla, M. Smit, I. Suarez, J. Martínez-Pastor, E. P. Fitrakis, and I. Tomkos, “Plasmonic communications: light on a wire,” Opt. Photon. News 24(5), 28–35 (2013).
[Crossref]

Fu, D.

J. Zhu, W. Xu, Z. Xu, D. Fu, S. Song, and D. Wei, “Surface plasmon polariton mode in the metal-insulator-metal waveguide,” Optik 134, 187–193 (2017).
[Crossref]

Genolet, G.

G. Genolet, J. Brugger, M. Despont, U. Drechsler, P. Vettiger, N. F. de Rooij, and D. Anselmetti, “Soft, entirely photoplastic probes for scanning force microscopy,” Rev. Sci. Instrum. 70, 2398–2401 (1999).
[Crossref]

Ginzburg, P.

Gonschior, C. P.

C. P. Gonschior, K.-F. Klein, M. Menzel, T. Sun, and K. T. V. Grattan, “Investigation of single-mode fiber degradation by 405-nm continuous-wave laser light,” Opt. Eng. 53, 122512 (2014).
[Crossref]

C. P. Gonschior, K.-F. Klein, D. Heyse, S. Baumann, T. Sun, and K. T. V. Grattan, “High power 405  nm diode laser fiber-coupled single-mode system with high long-term stability,” Proc. SPIE 8605, 86050O (2013).
[Crossref]

Gordon, R.

R. Gordon, “Light in a subwavelength slit in a metal: propagation and reflection,” Phys. Rev. B 73, 153405 (2006).
[Crossref]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[Crossref]

Grattan, K. T. V.

C. P. Gonschior, K.-F. Klein, M. Menzel, T. Sun, and K. T. V. Grattan, “Investigation of single-mode fiber degradation by 405-nm continuous-wave laser light,” Opt. Eng. 53, 122512 (2014).
[Crossref]

C. P. Gonschior, K.-F. Klein, D. Heyse, S. Baumann, T. Sun, and K. T. V. Grattan, “High power 405  nm diode laser fiber-coupled single-mode system with high long-term stability,” Proc. SPIE 8605, 86050O (2013).
[Crossref]

Grigorenko, A. N.

P. A. Thomas, G. H. Auton, D. Kundys, A. N. Grigorenko, and V. G. Kravets, “Strong coupling of diffraction coupled plasmons and optical waveguide modes in gold stripe-dielectric nanostructures at telecom wavelengths,” Sci. Rep. 7, 45196 (2017).
[Crossref]

Gu, W.

Heyse, D.

C. P. Gonschior, K.-F. Klein, D. Heyse, S. Baumann, T. Sun, and K. T. V. Grattan, “High power 405  nm diode laser fiber-coupled single-mode system with high long-term stability,” Proc. SPIE 8605, 86050O (2013).
[Crossref]

Hoessbacher, C.

J. Leuthold, C. Hoessbacher, S. Muehlbrandt, A. Melikyan, M. Kohl, C. Koos, W. Freude, V. Dolores-Calzadilla, M. Smit, I. Suarez, J. Martínez-Pastor, E. P. Fitrakis, and I. Tomkos, “Plasmonic communications: light on a wire,” Opt. Photon. News 24(5), 28–35 (2013).
[Crossref]

Holton, M.

Huang, L.

Huang, W.-P.

J.-R. Qian and W.-P. Huang, “LP modes and ideal modes on optical fibers,” J. Lightwave Technol. 4, 626–630 (1986).
[Crossref]

Huckabay, H. A.

H. A. Huckabay, K. P. Armendariz, W. H. Newhart, S. M. Wildgen, and R. C. Dunn, “Near-field scanning optical microscopy for high-resolution membrane studies,” Methods Mol. Biol. 950, 373–394 (2013).
[Crossref]

Im, H.

Inouye, Y.

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3, 388–394 (2009).
[Crossref]

Jeong, H.-S.

Jiang, M.

Jones, R. J.

Kano, H.

Kawata, S.

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3, 388–394 (2009).
[Crossref]

H. Kano, S. Mizuguchi, and S. Kawata, “Excitation of surface-plasmon polaritons by a focused laser beam,” J. Opt. Soc. Am. B 15, 1381–1386 (1998).
[Crossref]

Kim, C. S.

Kim, M.

Kim, M.-K.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6, 838–844 (2012).
[Crossref]

Kinzel, E.

Klein, K.-F.

C. P. Gonschior, K.-F. Klein, M. Menzel, T. Sun, and K. T. V. Grattan, “Investigation of single-mode fiber degradation by 405-nm continuous-wave laser light,” Opt. Eng. 53, 122512 (2014).
[Crossref]

C. P. Gonschior, K.-F. Klein, D. Heyse, S. Baumann, T. Sun, and K. T. V. Grattan, “High power 405  nm diode laser fiber-coupled single-mode system with high long-term stability,” Proc. SPIE 8605, 86050O (2013).
[Crossref]

Kobyakov, A.

Kohl, M.

J. Leuthold, C. Hoessbacher, S. Muehlbrandt, A. Melikyan, M. Kohl, C. Koos, W. Freude, V. Dolores-Calzadilla, M. Smit, I. Suarez, J. Martínez-Pastor, E. P. Fitrakis, and I. Tomkos, “Plasmonic communications: light on a wire,” Opt. Photon. News 24(5), 28–35 (2013).
[Crossref]

Koos, C.

J. Leuthold, C. Hoessbacher, S. Muehlbrandt, A. Melikyan, M. Kohl, C. Koos, W. Freude, V. Dolores-Calzadilla, M. Smit, I. Suarez, J. Martínez-Pastor, E. P. Fitrakis, and I. Tomkos, “Plasmonic communications: light on a wire,” Opt. Photon. News 24(5), 28–35 (2013).
[Crossref]

Kravets, V. G.

P. A. Thomas, G. H. Auton, D. Kundys, A. N. Grigorenko, and V. G. Kravets, “Strong coupling of diffraction coupled plasmons and optical waveguide modes in gold stripe-dielectric nanostructures at telecom wavelengths,” Sci. Rep. 7, 45196 (2017).
[Crossref]

Kundys, D.

P. A. Thomas, G. H. Auton, D. Kundys, A. N. Grigorenko, and V. G. Kravets, “Strong coupling of diffraction coupled plasmons and optical waveguide modes in gold stripe-dielectric nanostructures at telecom wavelengths,” Sci. Rep. 7, 45196 (2017).
[Crossref]

Kurokawa, K.

K. Kurokawa, “Power waves and the scattering matrix,” IEEE Trans. Microwave Theory Tech. 13, 194–202 (1965).
[Crossref]

Kyong, C. S.

Lapchuk, A. S.

Leng, J.

Lesuffleur, A.

Leuthold, J.

J. Leuthold, C. Hoessbacher, S. Muehlbrandt, A. Melikyan, M. Kohl, C. Koos, W. Freude, V. Dolores-Calzadilla, M. Smit, I. Suarez, J. Martínez-Pastor, E. P. Fitrakis, and I. Tomkos, “Plasmonic communications: light on a wire,” Opt. Photon. News 24(5), 28–35 (2013).
[Crossref]

Li, K.

K. Li, F. Xiao, F. Lu, K. Alameh, and A. Xu, “Unidirectional coupling of surface plasmons with ultra-broadband and wide-angle efficiency: potential applications in sensing,” New J. Phys. 15, 113040 (2013).
[Crossref]

Lindle, J. R.

Lindquist, N. C.

Lippincott-Schwartz, J.

G. Patterson, M. Davidson, S. Manley, and J. Lippincott-Schwartz, “Superresolution imaging using single-molecule localization,” Annu. Rev. Chem. 61, 345–367 (2010).
[Crossref]

Liu, L.

L. Yu, L. Liu, Z. Zhou, and X. Wang, “High efficiency binary blazed grating coupler for perfectly-vertical and near-vertical coupling in chip level optical interconnections,” Opt. Commun. 355, 161–166 (2015).
[Crossref]

Long, J. P.

Lorenz, H.

H. Lorenz, M. Despont, N. Fahrni, J. Brugger, P. Vettiger, and P. Renaud, “High-aspect-ratio, ultrathick, negative-tone near-UV photoresist and its applications for MEMS,” Sens. Actuators A 64, 33–39 (1998).
[Crossref]

Lu, F.

K. Li, F. Xiao, F. Lu, K. Alameh, and A. Xu, “Unidirectional coupling of surface plasmons with ultra-broadband and wide-angle efficiency: potential applications in sensing,” New J. Phys. 15, 113040 (2013).
[Crossref]

Luo, J.

Ma, P.

Manley, S.

G. Patterson, M. Davidson, S. Manley, and J. Lippincott-Schwartz, “Superresolution imaging using single-molecule localization,” Annu. Rev. Chem. 61, 345–367 (2010).
[Crossref]

Mansuripur, M.

Maradudin, A. A.

Martínez-Pastor, J.

J. Leuthold, C. Hoessbacher, S. Muehlbrandt, A. Melikyan, M. Kohl, C. Koos, W. Freude, V. Dolores-Calzadilla, M. Smit, I. Suarez, J. Martínez-Pastor, E. P. Fitrakis, and I. Tomkos, “Plasmonic communications: light on a wire,” Opt. Photon. News 24(5), 28–35 (2013).
[Crossref]

Melikyan, A.

J. Leuthold, C. Hoessbacher, S. Muehlbrandt, A. Melikyan, M. Kohl, C. Koos, W. Freude, V. Dolores-Calzadilla, M. Smit, I. Suarez, J. Martínez-Pastor, E. P. Fitrakis, and I. Tomkos, “Plasmonic communications: light on a wire,” Opt. Photon. News 24(5), 28–35 (2013).
[Crossref]

Menzel, M.

C. P. Gonschior, K.-F. Klein, M. Menzel, T. Sun, and K. T. V. Grattan, “Investigation of single-mode fiber degradation by 405-nm continuous-wave laser light,” Opt. Eng. 53, 122512 (2014).
[Crossref]

Meyer, J. R.

Mizuguchi, S.

Moloney, J. V.

Morozov, Y. M.

Morrison, G. H.

Muehlbrandt, S.

J. Leuthold, C. Hoessbacher, S. Muehlbrandt, A. Melikyan, M. Kohl, C. Koos, W. Freude, V. Dolores-Calzadilla, M. Smit, I. Suarez, J. Martínez-Pastor, E. P. Fitrakis, and I. Tomkos, “Plasmonic communications: light on a wire,” Opt. Photon. News 24(5), 28–35 (2013).
[Crossref]

Nevirkovets, I. P.

Newhart, W. H.

H. A. Huckabay, K. P. Armendariz, W. H. Newhart, S. M. Wildgen, and R. C. Dunn, “Near-field scanning optical microscopy for high-resolution membrane studies,” Methods Mol. Biol. 950, 373–394 (2013).
[Crossref]

Norwood, R. A.

Novotny, L.

J. Renger, R. Quidant, N. van Hulst, S. Palomba, and L. Novotny, “Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave mixing,” Phys. Rev. Lett. 103, 266802 (2009).
[Crossref]

Oh, S.-H.

Orenstein, M.

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Palomba, S.

J. Renger, R. Quidant, N. van Hulst, S. Palomba, and L. Novotny, “Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave mixing,” Phys. Rev. Lett. 103, 266802 (2009).
[Crossref]

Parida, O. P.

O. P. Parida and N. Bhat, “Characterization of optical properties of SU-8 and fabrication of optical components,” in Proceedings of the International Conference on Optics and Photonics, Chandigarh, India, 30October–1 November, 2009.

Patterson, G.

G. Patterson, M. Davidson, S. Manley, and J. Lippincott-Schwartz, “Superresolution imaging using single-molecule localization,” Annu. Rev. Chem. 61, 345–367 (2010).
[Crossref]

Peyghambarian, N.

Pozar, D. M.

D. M. Pozar, Microwave Engineering, 4th ed. (Wiley, 2012).

Qian, J.-R.

J.-R. Qian and W.-P. Huang, “LP modes and ideal modes on optical fibers,” J. Lightwave Technol. 4, 626–630 (1986).
[Crossref]

Quidant, R.

J. Renger, R. Quidant, N. van Hulst, S. Palomba, and L. Novotny, “Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave mixing,” Phys. Rev. Lett. 103, 266802 (2009).
[Crossref]

Rapún, M. L.

A. Carpio, T. G. Dimiduk, M. L. Rapún, and V. Selgas, “Noninvasive imaging of three-dimensional micro and nanostructures by topological methods,” SIAM J. Imaging Sci. 9, 1324–1354 (2016).
[Crossref]

Renaud, P.

H. Lorenz, M. Despont, N. Fahrni, J. Brugger, P. Vettiger, and P. Renaud, “High-aspect-ratio, ultrathick, negative-tone near-UV photoresist and its applications for MEMS,” Sens. Actuators A 64, 33–39 (1998).
[Crossref]

Renger, J.

J. Renger, R. Quidant, N. van Hulst, S. Palomba, and L. Novotny, “Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave mixing,” Phys. Rev. Lett. 103, 266802 (2009).
[Crossref]

Schuck, P. J.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6, 838–844 (2012).
[Crossref]

Selgas, V.

A. Carpio, T. G. Dimiduk, M. L. Rapún, and V. Selgas, “Noninvasive imaging of three-dimensional micro and nanostructures by topological methods,” SIAM J. Imaging Sci. 9, 1324–1354 (2016).
[Crossref]

Seok, T. J.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6, 838–844 (2012).
[Crossref]

Shao, Z.

D. M. Czajkowsky, J. Sun, and Z. Shao, “Illuminated up close: near-field optical microscopy of cell surfaces,” Nanomed-Nanotechnol. 11, 119–125 (2014).
[Crossref]

Shi, W.

Shin, D.

Shin, D.-I.

Shylo, S. A.

Smit, M.

J. Leuthold, C. Hoessbacher, S. Muehlbrandt, A. Melikyan, M. Kohl, C. Koos, W. Freude, V. Dolores-Calzadilla, M. Smit, I. Suarez, J. Martínez-Pastor, E. P. Fitrakis, and I. Tomkos, “Plasmonic communications: light on a wire,” Opt. Photon. News 24(5), 28–35 (2013).
[Crossref]

Smolyaninov, I.

A. V. Zayats and I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J. Opt. A 5, S16–S50 (2003).
[Crossref]

Song, S.

J. Zhu, W. Xu, Z. Xu, D. Fu, S. Song, and D. Wei, “Surface plasmon polariton mode in the metal-insulator-metal waveguide,” Optik 134, 187–193 (2017).
[Crossref]

Staffaroni, M.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6, 838–844 (2012).
[Crossref]

Stegeman, G. I.

Suarez, I.

J. Leuthold, C. Hoessbacher, S. Muehlbrandt, A. Melikyan, M. Kohl, C. Koos, W. Freude, V. Dolores-Calzadilla, M. Smit, I. Suarez, J. Martínez-Pastor, E. P. Fitrakis, and I. Tomkos, “Plasmonic communications: light on a wire,” Opt. Photon. News 24(5), 28–35 (2013).
[Crossref]

Sun, J.

D. M. Czajkowsky, J. Sun, and Z. Shao, “Illuminated up close: near-field optical microscopy of cell surfaces,” Nanomed-Nanotechnol. 11, 119–125 (2014).
[Crossref]

Sun, T.

C. P. Gonschior, K.-F. Klein, M. Menzel, T. Sun, and K. T. V. Grattan, “Investigation of single-mode fiber degradation by 405-nm continuous-wave laser light,” Opt. Eng. 53, 122512 (2014).
[Crossref]

C. P. Gonschior, K.-F. Klein, D. Heyse, S. Baumann, T. Sun, and K. T. V. Grattan, “High power 405  nm diode laser fiber-coupled single-mode system with high long-term stability,” Proc. SPIE 8605, 86050O (2013).
[Crossref]

Taflove, A.

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

Talisa, S. H.

S. H. Talisa, “Application of Davidenko’s method to the solution of dispersion relations in lossy waveguiding system,” IEEE Trans. Microwave Theory Tech. 33, 967–971 (1985).
[Crossref]

Thomas, P. A.

P. A. Thomas, G. H. Auton, D. Kundys, A. N. Grigorenko, and V. G. Kravets, “Strong coupling of diffraction coupled plasmons and optical waveguide modes in gold stripe-dielectric nanostructures at telecom wavelengths,” Sci. Rep. 7, 45196 (2017).
[Crossref]

Tomkos, I.

J. Leuthold, C. Hoessbacher, S. Muehlbrandt, A. Melikyan, M. Kohl, C. Koos, W. Freude, V. Dolores-Calzadilla, M. Smit, I. Suarez, J. Martínez-Pastor, E. P. Fitrakis, and I. Tomkos, “Plasmonic communications: light on a wire,” Opt. Photon. News 24(5), 28–35 (2013).
[Crossref]

Valaskovic, G. A.

van Hulst, N.

J. Renger, R. Quidant, N. van Hulst, S. Palomba, and L. Novotny, “Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave mixing,” Phys. Rev. Lett. 103, 266802 (2009).
[Crossref]

Verma, P.

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3, 388–394 (2009).
[Crossref]

Vettiger, P.

G. Genolet, J. Brugger, M. Despont, U. Drechsler, P. Vettiger, N. F. de Rooij, and D. Anselmetti, “Soft, entirely photoplastic probes for scanning force microscopy,” Rev. Sci. Instrum. 70, 2398–2401 (1999).
[Crossref]

H. Lorenz, M. Despont, N. Fahrni, J. Brugger, P. Vettiger, and P. Renaud, “High-aspect-ratio, ultrathick, negative-tone near-UV photoresist and its applications for MEMS,” Sens. Actuators A 64, 33–39 (1998).
[Crossref]

Vurgaftman, I.

Wallis, R. F.

Wang, X.

L. Yu, L. Liu, Z. Zhou, and X. Wang, “High efficiency binary blazed grating coupler for perfectly-vertical and near-vertical coupling in chip level optical interconnections,” Opt. Commun. 355, 161–166 (2015).
[Crossref]

Wei, D.

J. Zhu, W. Xu, Z. Xu, D. Fu, S. Song, and D. Wei, “Surface plasmon polariton mode in the metal-insulator-metal waveguide,” Optik 134, 187–193 (2017).
[Crossref]

Wildgen, S. M.

H. A. Huckabay, K. P. Armendariz, W. H. Newhart, S. M. Wildgen, and R. C. Dunn, “Near-field scanning optical microscopy for high-resolution membrane studies,” Methods Mol. Biol. 950, 373–394 (2013).
[Crossref]

Wu, J.

Wu, M. C.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6, 838–844 (2012).
[Crossref]

Xiao, F.

K. Li, F. Xiao, F. Lu, K. Alameh, and A. Xu, “Unidirectional coupling of surface plasmons with ultra-broadband and wide-angle efficiency: potential applications in sensing,” New J. Phys. 15, 113040 (2013).
[Crossref]

Xu, A.

K. Li, F. Xiao, F. Lu, K. Alameh, and A. Xu, “Unidirectional coupling of surface plasmons with ultra-broadband and wide-angle efficiency: potential applications in sensing,” New J. Phys. 15, 113040 (2013).
[Crossref]

Xu, J.

Xu, W.

J. Zhu, W. Xu, Z. Xu, D. Fu, S. Song, and D. Wei, “Surface plasmon polariton mode in the metal-insulator-metal waveguide,” Optik 134, 187–193 (2017).
[Crossref]

J. Luo, Y. Fan, H. Zhou, W. Gu, and W. Xu, “Fabrication of different fine fiber tips for near field scanning optical microscopy by a simple chemical etching technique,” Chin. Opt. Lett. 5, 232–234 (2007).

Xu, X.

Xu, Z.

J. Zhu, W. Xu, Z. Xu, D. Fu, S. Song, and D. Wei, “Surface plasmon polariton mode in the metal-insulator-metal waveguide,” Optik 134, 187–193 (2017).
[Crossref]

Yablonovitch, E.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6, 838–844 (2012).
[Crossref]

Ye, J.

Yu, L.

L. Yu, L. Liu, Z. Zhou, and X. Wang, “High efficiency binary blazed grating coupler for perfectly-vertical and near-vertical coupling in chip level optical interconnections,” Opt. Commun. 355, 161–166 (2015).
[Crossref]

Zakharian, A. R.

Zayats, A. V.

A. V. Zayats and I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J. Opt. A 5, S16–S50 (2003).
[Crossref]

Zhang, H.

Zhou, H.

Zhou, P.

Zhou, Z.

L. Yu, L. Liu, Z. Zhou, and X. Wang, “High efficiency binary blazed grating coupler for perfectly-vertical and near-vertical coupling in chip level optical interconnections,” Opt. Commun. 355, 161–166 (2015).
[Crossref]

Zhu, J.

J. Zhu, W. Xu, Z. Xu, D. Fu, S. Song, and D. Wei, “Surface plasmon polariton mode in the metal-insulator-metal waveguide,” Optik 134, 187–193 (2017).
[Crossref]

Zhu, X.

Annu. Rev. Chem. (1)

G. Patterson, M. Davidson, S. Manley, and J. Lippincott-Schwartz, “Superresolution imaging using single-molecule localization,” Annu. Rev. Chem. 61, 345–367 (2010).
[Crossref]

Appl. Opt. (4)

Chin. Opt. Lett. (1)

IEEE Trans. Microwave Theory Tech. (2)

S. H. Talisa, “Application of Davidenko’s method to the solution of dispersion relations in lossy waveguiding system,” IEEE Trans. Microwave Theory Tech. 33, 967–971 (1985).
[Crossref]

K. Kurokawa, “Power waves and the scattering matrix,” IEEE Trans. Microwave Theory Tech. 13, 194–202 (1965).
[Crossref]

J. Lightwave Technol. (1)

J.-R. Qian and W.-P. Huang, “LP modes and ideal modes on optical fibers,” J. Lightwave Technol. 4, 626–630 (1986).
[Crossref]

J. Opt. A (1)

A. V. Zayats and I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J. Opt. A 5, S16–S50 (2003).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Methods Mol. Biol. (1)

H. A. Huckabay, K. P. Armendariz, W. H. Newhart, S. M. Wildgen, and R. C. Dunn, “Near-field scanning optical microscopy for high-resolution membrane studies,” Methods Mol. Biol. 950, 373–394 (2013).
[Crossref]

Nanomed-Nanotechnol. (1)

D. M. Czajkowsky, J. Sun, and Z. Shao, “Illuminated up close: near-field optical microscopy of cell surfaces,” Nanomed-Nanotechnol. 11, 119–125 (2014).
[Crossref]

Nat. Photonics (3)

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6, 838–844 (2012).
[Crossref]

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3, 388–394 (2009).
[Crossref]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[Crossref]

New J. Phys. (1)

K. Li, F. Xiao, F. Lu, K. Alameh, and A. Xu, “Unidirectional coupling of surface plasmons with ultra-broadband and wide-angle efficiency: potential applications in sensing,” New J. Phys. 15, 113040 (2013).
[Crossref]

Opt. Commun. (1)

L. Yu, L. Liu, Z. Zhou, and X. Wang, “High efficiency binary blazed grating coupler for perfectly-vertical and near-vertical coupling in chip level optical interconnections,” Opt. Commun. 355, 161–166 (2015).
[Crossref]

Opt. Eng. (1)

C. P. Gonschior, K.-F. Klein, M. Menzel, T. Sun, and K. T. V. Grattan, “Investigation of single-mode fiber degradation by 405-nm continuous-wave laser light,” Opt. Eng. 53, 122512 (2014).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Opt. Photon. News (1)

J. Leuthold, C. Hoessbacher, S. Muehlbrandt, A. Melikyan, M. Kohl, C. Koos, W. Freude, V. Dolores-Calzadilla, M. Smit, I. Suarez, J. Martínez-Pastor, E. P. Fitrakis, and I. Tomkos, “Plasmonic communications: light on a wire,” Opt. Photon. News 24(5), 28–35 (2013).
[Crossref]

Optik (1)

J. Zhu, W. Xu, Z. Xu, D. Fu, S. Song, and D. Wei, “Surface plasmon polariton mode in the metal-insulator-metal waveguide,” Optik 134, 187–193 (2017).
[Crossref]

Photon. Res. (1)

Phys. Rev. B (1)

R. Gordon, “Light in a subwavelength slit in a metal: propagation and reflection,” Phys. Rev. B 73, 153405 (2006).
[Crossref]

Phys. Rev. Lett. (1)

J. Renger, R. Quidant, N. van Hulst, S. Palomba, and L. Novotny, “Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave mixing,” Phys. Rev. Lett. 103, 266802 (2009).
[Crossref]

Proc. SPIE (1)

C. P. Gonschior, K.-F. Klein, D. Heyse, S. Baumann, T. Sun, and K. T. V. Grattan, “High power 405  nm diode laser fiber-coupled single-mode system with high long-term stability,” Proc. SPIE 8605, 86050O (2013).
[Crossref]

Rev. Sci. Instrum. (1)

G. Genolet, J. Brugger, M. Despont, U. Drechsler, P. Vettiger, N. F. de Rooij, and D. Anselmetti, “Soft, entirely photoplastic probes for scanning force microscopy,” Rev. Sci. Instrum. 70, 2398–2401 (1999).
[Crossref]

Sci. Rep. (1)

P. A. Thomas, G. H. Auton, D. Kundys, A. N. Grigorenko, and V. G. Kravets, “Strong coupling of diffraction coupled plasmons and optical waveguide modes in gold stripe-dielectric nanostructures at telecom wavelengths,” Sci. Rep. 7, 45196 (2017).
[Crossref]

Sens. Actuators A (1)

H. Lorenz, M. Despont, N. Fahrni, J. Brugger, P. Vettiger, and P. Renaud, “High-aspect-ratio, ultrathick, negative-tone near-UV photoresist and its applications for MEMS,” Sens. Actuators A 64, 33–39 (1998).
[Crossref]

SIAM J. Imaging Sci. (1)

A. Carpio, T. G. Dimiduk, M. L. Rapún, and V. Selgas, “Noninvasive imaging of three-dimensional micro and nanostructures by topological methods,” SIAM J. Imaging Sci. 9, 1324–1354 (2016).
[Crossref]

Other (5)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

O. P. Parida and N. Bhat, “Characterization of optical properties of SU-8 and fabrication of optical components,” in Proceedings of the International Conference on Optics and Photonics, Chandigarh, India, 30October–1 November, 2009.

K. Y. Kim, ed., Plasmonics–Principles and Applications, 1st ed. (InTech, 2012).

D. M. Pozar, Microwave Engineering, 4th ed. (Wiley, 2012).

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Spatial geometry of the photoplastic connector: (a) view from the PH; (b) view from the excitation area.
Fig. 2.
Fig. 2. Schematic representation of the connector design: (a) view from the excitation area, (b) view from the PH, and (c) longitudinal view. d1 is a diameter of the optical fiber, and thus the inner diameter of the tumbler; d2 is the external diameter of the tumbler, and thus the diameter of the Al screen; a and u are the width and height of the PH, respectively; L1 is the length of the optical fiber; L2 is the length of the tumbler; L3 is the thickness of the Al screen; L4 is the distance between the optical fiber and Al screen, that is, the thickness of the tumbler bottom; L5 is the length of the MIM waveguide; b is the thickness of the MIM waveguide dielectric layer; t is the thickness of the MIM waveguide’s metallic coatings.
Fig. 3.
Fig. 3. Contour plot and profiles of the absolute value of the electric field of the fundamental propagation LP01 (HE11) mode of a circular dielectric waveguide; white dashed circle corresponds to outer edge of the optical fiber core; red dashed lines correspond to the PH dimension along the x axis; a.u., arbitrary units.
Fig. 4.
Fig. 4. Electric field amplitude (Ex) profile of the fundamental symmetric plasmon quasi-TM00 mode; b=200nm, t=50nm; red dashed lines correspond to the PH dimension along the x axis; black dashed line corresponds to the |E| profile of the fundamental propagation LP01 (HE11) mode of a circular dielectric waveguide along the x axis from Fig. 3.
Fig. 5.
Fig. 5. Dependence of ceff_1 and power reflection coefficient |R1|2 on the Al screen thickness L3; d1=1000nm, d2=1200nm, L1=500nm, L2=400nm, L4=100nm, a=500nm, u=200nm.
Fig. 6.
Fig. 6. Dependence of ceff_1 and |R1|2 on the tumbler bottom thickness L4; d1=1000nm, d2=1200nm, L1=500nm, L2=400nm, L3=50nm, a=500nm, u=200nm.
Fig. 7.
Fig. 7. Cross-sectional view of the electric field and energy flux in the structure: (a) x component of the electric field; (b) absolute value of the electric field; (c) z component of the Poynting vector. d1=1000nm, d2=1200nm, L1=500nm, L2=400nm, L3=50nm, L4=100nm, a=500nm, u=200nm; a.u., arbitrary units.
Fig. 8.
Fig. 8. Dependence of ceff_2 on the Al screen thickness L3; d1=1000nm, d2=1200nm, L1=500nm, L2=400nm, L3=50nm, L4=100nm, L5=1000nm, a=500nm, u=200nm, b=200nm, t=50nm.
Fig. 9.
Fig. 9. Cross-sectional view of the electric field and energy flux in the structure with the MIM waveguide: (a) x component of the electric field; (b) absolute value of the electric field; (c) z component of the Poynting vector. d1=1000nm, d2=1200nm, L1=500nm, L2=400nm, L3=50nm, L4=100nm, L5=1000nm, a=500nm, u=200nm, b=200nm, t=50nm; a.u., arbitrary units.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

kdϵdth(kdw)={kmϵmth[km(uw)]+kaϵa}·{1+kaϵaϵmkmth[km(uw)]}1,
ceff_1=PP0,
|Γl|=|ZlZ0Zl+Z0|.

Metrics