Abstract

A novel type of mid-IR microresonator, the chalcogenide glass (ChG) microfiber knot resonator (MKR), is demonstrated, showing easy fabrication, fiber-compatible features, resonance tunability, and high robustness. ChG microfibers with typical diameters around 3 μm are taper-drawn from As2S3 glass fibers and assembled into MKRs in liquid without surface damage. The measured Q factor of a typical 824 μm diameter ChG MKR is about 2.84×104 at the wavelength of 4469.14 nm. The free spectral range (FSR) of the MKR can be tuned from 2.0 nm (28.4 GHz) to 9.6 nm (135.9 GHz) by tightening the knot structure in liquid. Benefitting from the high thermal expansion coefficient of As2S3 glass, the MKR exhibits a thermal tuning rate of 110  pm·°C1 at the resonance peak. When embedded in polymethyl methacrylate (PMMA) film, a 551 μm diameter MKR retains a Q factor of 1.1×104. The ChG MKRs demonstrated here are highly promising for resonator-based optical technologies and applications in the mid-IR spectral range.

© 2020 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Resonance-assisted light–control–light characteristics of SnS2 on a microfiber knot resonator with fast response

Huihui Lu, Zhongmin Wang, Zhijin Huang, Jun Tao, Hanqing Xiong, Wentao Qiu, Heyuan Guan, Huazhuo Dong, Jiangli Dong, Wenguo Zhu, Jianhui Yu, Yongchun Zhong, Yunhan Luo, Jun Zhang, and Zhe Chen
Photon. Res. 6(12) 1137-1143 (2018)

Resonance condition of a microfiber knot resonator immersed in liquids

Kok Sing Lim, Ali A. Jasim, Siti S. A. Damanhuri, Sulaiman W. Harun, B. M. Azizur Rahman, and Harith Ahmad
Appl. Opt. 50(30) 5912-5916 (2011)

Demonstration of a reef knot microfiber resonator

Guillaume Vienne, Aurélien Coillet, Philippe Grelu, Mohammed El Amraoui, Jean-Charles Jules, Frédéric Smektala, and Limin Tong
Opt. Express 17(8) 6224-6229 (2009)

References

  • View by:
  • |
  • |
  • |

  1. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
    [Crossref]
  2. A. Schliesser, N. Picque, and T. W. Haensch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
    [Crossref]
  3. V. Singh, P. T. Lin, N. Patel, H. T. Lin, L. Li, Y. Zou, F. Deng, C. Y. Ni, J. J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
    [Crossref]
  4. R. Shankar, I. Bulu, and M. Lončar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102, 051108 (2013).
    [Crossref]
  5. A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. J. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
    [Crossref]
  6. M. J. Yu, Y. Okawachi, A. G. Griffith, N. Picque, M. Lipson, and A. L. Gaeta, “Silicon-chip-based mid-infrared dual-comb spectroscopy,” Nat. Commun. 9, 1869 (2018).
    [Crossref]
  7. P. Ma, D. Y. Choi, Y. Yu, Z. Y. Yang, K. Vu, T. Nguyen, A. Mitchell, B. Luther-Davies, and S. Madden, “High Q factor chalcogenide ring resonators for cavity-enhanced MIR spectroscopic sensing,” Opt. Express 23, 19969–19979 (2015).
    [Crossref]
  8. Y. Chen, H. T. Lin, J. J. Hu, and M. Li, “Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing,” ACS Nano 8, 6955–6961 (2014).
    [Crossref]
  9. C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hansch, N. Picque, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
    [Crossref]
  10. C. Lecaplain, C. Javerzac-Galy, M. L. Gorodetsky, and T. J. Kippenberg, “Mid-infrared ultra-high-Q resonators based on fluoride crystalline materials,” Nat. Commun. 7, 13383 (2016).
    [Crossref]
  11. A. A. Savchenkov, V. S. Ilchenko, F. Di Teodoro, P. M. Belden, W. T. Lotshaw, A. B. Matsko, and L. Maleki, “Generation of Kerr combs centered at 4.5 μm in crystalline microresonators pumped with quantum-cascade lasers,” Opt. Lett. 40, 3468–3471 (2015).
    [Crossref]
  12. T. Schwarzl, W. Heiß, and G. Springholz, “Ultra-high-finesse IV-VI microcavities for the midinfrared,” Appl. Phys. Lett. 75, 1246–1248 (1999).
    [Crossref]
  13. C. G. Xin, H. Wu, Y. Xie, S. L. Yu, N. Zhou, Z. X. Shi, X. Guo, and L. M. Tong, “CdTe microwires as mid-infrared optical waveguides,” Opt. Express 26, 10944–10952 (2018).
    [Crossref]
  14. R. Shankar, R. Leijssen, I. Bulu, and M. Loncar, “Mid-infrared photonic crystal cavities in silicon,” Opt. Express 19, 5579–5586 (2011).
    [Crossref]
  15. Y. H. Guo, J. Wang, Z. H. Han, K. Wada, L. C. Kimerling, A. M. Agarwal, J. Michel, Z. Zheng, G. F. Li, and L. Zhang, “Power-efficient generation of two-octave mid-IR frequency combs in a germanium microresonator,” Nanophotonics 7, 1461–1467 (2018).
    [Crossref]
  16. M. Siciliani de Cumis, S. Borri, G. Insero, I. Galli, A. Savchenkov, D. Eliyahu, V. Ilchenko, N. Akikusa, A. Matsko, L. Maleki, and P. De Natale, “Microcavity-stabilized quantum cascade laser,” Laser Photon. Rev. 10, 153–157 (2016).
    [Crossref]
  17. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
    [Crossref]
  18. X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88, 223501 (2006).
    [Crossref]
  19. R. Ismaeel, T. Lee, M. Ding, M. Belal, and G. Brambilla, “Optical microfiber passive components,” Laser Photon. Rev. 7, 350–384 (2013).
    [Crossref]
  20. X. Q. Wu and L. M. Tong, “Optical microfibers and nanofibers,” Nanophotonics 2, 407–428 (2013).
    [Crossref]
  21. L. M. Tong, “Micro/nanofibre optical sensors: challenges and prospects,” Sensors 18, 903 (2018).
    [Crossref]
  22. L. M. Tong, J. Y. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12, 1025–1035 (2004).
    [Crossref]
  23. Y. Yu, T. H. Xiao, H. L. Guo, and Z. Y. Li, “Sensing of microparticles based on a broadband ultrasmall microcavity in a freely suspended microfiber,” Photon. Res. 5, 143–150 (2017).
    [Crossref]
  24. X. L. Li and H. Ding, “All-fiber magnetic-field sensor based on microfiber knot resonator and magnetic fluid,” Opt. Lett. 37, 5187–5189 (2012).
    [Crossref]
  25. Z. L. Xu, Q. Z. Sun, B. R. Li, Y. Y. Luo, W. G. Lu, D. M. Liu, P. P. Shum, and L. Zhang, “Highly sensitive refractive index sensor based on cascaded microfiber knots with Vernier effect,” Opt. Express 23, 6662–6672 (2015).
    [Crossref]
  26. X. S. Jiang, Q. Yang, G. Vienne, Y. H. Li, L. M. Tong, J. J. Zhang, and L. L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89, 143513 (2006).
    [Crossref]
  27. X. S. Jiang, Q. H. Song, L. Xu, J. Fu, and L. M. Tong, “Microfiber knot dye laser based on the evanescent-wave-coupled gain,” Appl. Phys. Lett. 90, 233501 (2007).
    [Crossref]
  28. M. Liu, R. Tang, A. P. Luo, W. C. Xu, and Z. C. Luo, “Graphene-decorated microfiber knot as a broadband resonator for ultrahigh repetition-rate pulse fiber lasers,” Photon. Res. 6, C1–C7 (2018).
    [Crossref]
  29. X. S. Jiang, Y. Chen, G. Vienne, and L. M. Tong, “All-fiber add–drop filters based on microfiber knot resonators,” Opt. Lett. 32, 1710–1712 (2007).
    [Crossref]
  30. A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non·Cryst. Solids 330, 1–12 (2003).
    [Crossref]
  31. S. Gao and X. Y. Bao, “Chalcogenide taper and its nonlinear effects and sensing applications,” iScience 23, 100802 (2020).
    [Crossref]
  32. F. Vanier, Y. A. Peter, and M. Rochette, “Cascaded Raman lasing in packaged high quality As2S3 microspheres,” Opt. Express 22, 28731–28739 (2014).
    [Crossref]
  33. O. Aktas, E. Ozgur, O. Tobail, M. Kanik, E. Huseyinoglu, and M. Bayindir, “A new route for fabricating on-chip chalcogenide microcavity resonator arrays,” Adv. Opt. Mater. 2, 618–625 (2014).
    [Crossref]
  34. O. Aktas, “Chalcogenide microresonators tailored to distinct morphologies by the shaping of glasses on silica tapers,” Opt. Lett. 42, 907–910 (2017).
    [Crossref]
  35. H. T. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett. 38, 1470–1472 (2013).
    [Crossref]
  36. N. Singh, D. D. Hudson, R. Wang, E. C. Magi, D. Y. Choi, C. Grillet, B. Luther-Davies, S. Madden, and B. J. Eggleton, “Positive and negative phototunability of chalcogenide (AMTIR-1) microdisk resonator,” Opt. Express 23, 8681–8686 (2015).
    [Crossref]
  37. S. Levy, M. Klebanov, and A. Zadok, “High-Q ring resonators directly written in As2S3 chalcogenide glass films,” Photon. Res. 3, 63 (2015).
    [Crossref]
  38. O. Aktas and M. Bayindir, “Tapered nanoscale chalcogenide fibers directly drawn from bulk glasses as optical couplers for high-index resonators,” Appl. Opt. 56, 385–390 (2017).
    [Crossref]
  39. S. Hocde, C. Boussard-Pledel, G. Fonteneau, D. Lecoq, H. L. Ma, and J. Lucas, “Recent developments in chemical sensing using infrared glass fibers,” J. Non-Cryst. Solids 274, 17–22 (2000).
    [Crossref]
  40. J. Keirsse, C. Boussard-Pledel, O. Loreal, O. Sire, B. Bureau, P. Leroyer, B. Turlin, and J. Lucas, “IR optical fiber sensor for biomedical applications,” Vib. Spectrosc. 32, 23–32 (2003).
    [Crossref]
  41. D.-I. Yeom, E. C. Maegi, M. R. E. Lamont, M. A. F. Roelens, L. B. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33, 660–662 (2008).
    [Crossref]
  42. C. W. Rudy, A. Marandi, K. L. Vodopyanov, and R. L. Byer, “Octave-spanning supercontinuum generation in in situ tapered As2S3 fiber pumped by a thulium-doped fiber laser,” Opt. Lett. 38, 2865–2868 (2013).
    [Crossref]
  43. Q. M. Zhang, M. Li, Q. A. Hao, D. H. Deng, H. Zhou, H. P. Zeng, L. Zhan, X. A. Wu, L. Y. Liu, and L. Xu, “Fabrication and characterization of on-chip optical nonlinear chalcogenide nanofiber devices,” Opt. Lett. 35, 3829–3831 (2010).
    [Crossref]
  44. M. J. Weber, Handbook of Optical Materials, 1st ed. (CRC Press, 2003).
  45. S. T. Chu, W. Pan, S. Suzuki, B. E. Little, S. Sato, and T. Kokuban, “Temperature insensitive vertically coupled microring resonator add/drop filters by means of a polymer overlay,” IEEE Photon. Technol. Lett. 11, 1138–1140 (1999).
    [Crossref]
  46. J. M. Ward, D. G. O’Shea, B. J. Shortt, M. J. Morrissey, K. Deasy, and S. G. N. Chormaic, “Heat-and-pull rig for fiber taper fabrication,” Rev. Sci. Instrum. 77, 083105 (2006).
    [Crossref]
  47. E. M. Dianov, V. M. Krasteva, V. G. Plotnichenko, S. K. Semenov, M. F. Churbanov, and I. Scripachev, “Mechanical properties of chalcogenide glass optical fibers,” Proc. SPIE 0683, 92–100 (1990).
    [Crossref]
  48. J. Wang, T. R. Zhan, G. S. Huang, P. K. Chu, and Y. F. Mei, “Optical microcavities with tubular geometry: properties and applications,” Laser Photon. Rev. 8, 521–547 (2014).
    [Crossref]
  49. Y. Chen, F. Xu, and Y. Q. Lu, “Teflon-coated microfiber resonator with weak temperature dependence,” Opt. Express 19, 22923–22928 (2011).
    [Crossref]
  50. C. Baker and M. Rochette, “Highly nonlinear hybrid AsSe-PMMA microtapers,” Opt. Express 18, 12391–12398 (2010).
    [Crossref]
  51. S. Sain, D. Ray, A. Mukhopadhyay, S. Sengupta, T. Kar, C. J. Ennis, and P. K. S. M. Rahman, “Synthesis and characterization of PMMA-cellulose nanocomposites by in situ polymerization technique,” J. Appl. Polym. Sci. 126, E127–E134 (2012).
    [Crossref]
  52. S. Tsuda, S. Yamaguchi, Y. Kanamori, and H. Yugami, “Spectral and angular shaping of infrared radiation in a polymer resonator with molecular vibrational modes,” Opt. Express 26, 6899–6915 (2018).
    [Crossref]
  53. P. T. Lin, J. Giammarco, N. Borodinov, M. Savchak, V. Singh, L. C. Kimerling, D. T. Tan, K. A. Richardson, I. Luzinov, and A. Agarwal, “Label-free water sensors using hybrid polymer-dielectric mid-infrared optical waveguides,” ACS Appl. Mater. Interfaces 7, 11189–11194 (2015).
    [Crossref]

2020 (1)

S. Gao and X. Y. Bao, “Chalcogenide taper and its nonlinear effects and sensing applications,” iScience 23, 100802 (2020).
[Crossref]

2018 (6)

M. Liu, R. Tang, A. P. Luo, W. C. Xu, and Z. C. Luo, “Graphene-decorated microfiber knot as a broadband resonator for ultrahigh repetition-rate pulse fiber lasers,” Photon. Res. 6, C1–C7 (2018).
[Crossref]

L. M. Tong, “Micro/nanofibre optical sensors: challenges and prospects,” Sensors 18, 903 (2018).
[Crossref]

M. J. Yu, Y. Okawachi, A. G. Griffith, N. Picque, M. Lipson, and A. L. Gaeta, “Silicon-chip-based mid-infrared dual-comb spectroscopy,” Nat. Commun. 9, 1869 (2018).
[Crossref]

C. G. Xin, H. Wu, Y. Xie, S. L. Yu, N. Zhou, Z. X. Shi, X. Guo, and L. M. Tong, “CdTe microwires as mid-infrared optical waveguides,” Opt. Express 26, 10944–10952 (2018).
[Crossref]

Y. H. Guo, J. Wang, Z. H. Han, K. Wada, L. C. Kimerling, A. M. Agarwal, J. Michel, Z. Zheng, G. F. Li, and L. Zhang, “Power-efficient generation of two-octave mid-IR frequency combs in a germanium microresonator,” Nanophotonics 7, 1461–1467 (2018).
[Crossref]

S. Tsuda, S. Yamaguchi, Y. Kanamori, and H. Yugami, “Spectral and angular shaping of infrared radiation in a polymer resonator with molecular vibrational modes,” Opt. Express 26, 6899–6915 (2018).
[Crossref]

2017 (3)

2016 (2)

M. Siciliani de Cumis, S. Borri, G. Insero, I. Galli, A. Savchenkov, D. Eliyahu, V. Ilchenko, N. Akikusa, A. Matsko, L. Maleki, and P. De Natale, “Microcavity-stabilized quantum cascade laser,” Laser Photon. Rev. 10, 153–157 (2016).
[Crossref]

C. Lecaplain, C. Javerzac-Galy, M. L. Gorodetsky, and T. J. Kippenberg, “Mid-infrared ultra-high-Q resonators based on fluoride crystalline materials,” Nat. Commun. 7, 13383 (2016).
[Crossref]

2015 (7)

A. A. Savchenkov, V. S. Ilchenko, F. Di Teodoro, P. M. Belden, W. T. Lotshaw, A. B. Matsko, and L. Maleki, “Generation of Kerr combs centered at 4.5 μm in crystalline microresonators pumped with quantum-cascade lasers,” Opt. Lett. 40, 3468–3471 (2015).
[Crossref]

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. J. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

P. Ma, D. Y. Choi, Y. Yu, Z. Y. Yang, K. Vu, T. Nguyen, A. Mitchell, B. Luther-Davies, and S. Madden, “High Q factor chalcogenide ring resonators for cavity-enhanced MIR spectroscopic sensing,” Opt. Express 23, 19969–19979 (2015).
[Crossref]

N. Singh, D. D. Hudson, R. Wang, E. C. Magi, D. Y. Choi, C. Grillet, B. Luther-Davies, S. Madden, and B. J. Eggleton, “Positive and negative phototunability of chalcogenide (AMTIR-1) microdisk resonator,” Opt. Express 23, 8681–8686 (2015).
[Crossref]

S. Levy, M. Klebanov, and A. Zadok, “High-Q ring resonators directly written in As2S3 chalcogenide glass films,” Photon. Res. 3, 63 (2015).
[Crossref]

Z. L. Xu, Q. Z. Sun, B. R. Li, Y. Y. Luo, W. G. Lu, D. M. Liu, P. P. Shum, and L. Zhang, “Highly sensitive refractive index sensor based on cascaded microfiber knots with Vernier effect,” Opt. Express 23, 6662–6672 (2015).
[Crossref]

P. T. Lin, J. Giammarco, N. Borodinov, M. Savchak, V. Singh, L. C. Kimerling, D. T. Tan, K. A. Richardson, I. Luzinov, and A. Agarwal, “Label-free water sensors using hybrid polymer-dielectric mid-infrared optical waveguides,” ACS Appl. Mater. Interfaces 7, 11189–11194 (2015).
[Crossref]

2014 (5)

J. Wang, T. R. Zhan, G. S. Huang, P. K. Chu, and Y. F. Mei, “Optical microcavities with tubular geometry: properties and applications,” Laser Photon. Rev. 8, 521–547 (2014).
[Crossref]

F. Vanier, Y. A. Peter, and M. Rochette, “Cascaded Raman lasing in packaged high quality As2S3 microspheres,” Opt. Express 22, 28731–28739 (2014).
[Crossref]

O. Aktas, E. Ozgur, O. Tobail, M. Kanik, E. Huseyinoglu, and M. Bayindir, “A new route for fabricating on-chip chalcogenide microcavity resonator arrays,” Adv. Opt. Mater. 2, 618–625 (2014).
[Crossref]

Y. Chen, H. T. Lin, J. J. Hu, and M. Li, “Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing,” ACS Nano 8, 6955–6961 (2014).
[Crossref]

V. Singh, P. T. Lin, N. Patel, H. T. Lin, L. Li, Y. Zou, F. Deng, C. Y. Ni, J. J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

2013 (6)

R. Shankar, I. Bulu, and M. Lončar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102, 051108 (2013).
[Crossref]

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hansch, N. Picque, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref]

H. T. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett. 38, 1470–1472 (2013).
[Crossref]

R. Ismaeel, T. Lee, M. Ding, M. Belal, and G. Brambilla, “Optical microfiber passive components,” Laser Photon. Rev. 7, 350–384 (2013).
[Crossref]

X. Q. Wu and L. M. Tong, “Optical microfibers and nanofibers,” Nanophotonics 2, 407–428 (2013).
[Crossref]

C. W. Rudy, A. Marandi, K. L. Vodopyanov, and R. L. Byer, “Octave-spanning supercontinuum generation in in situ tapered As2S3 fiber pumped by a thulium-doped fiber laser,” Opt. Lett. 38, 2865–2868 (2013).
[Crossref]

2012 (3)

S. Sain, D. Ray, A. Mukhopadhyay, S. Sengupta, T. Kar, C. J. Ennis, and P. K. S. M. Rahman, “Synthesis and characterization of PMMA-cellulose nanocomposites by in situ polymerization technique,” J. Appl. Polym. Sci. 126, E127–E134 (2012).
[Crossref]

X. L. Li and H. Ding, “All-fiber magnetic-field sensor based on microfiber knot resonator and magnetic fluid,” Opt. Lett. 37, 5187–5189 (2012).
[Crossref]

A. Schliesser, N. Picque, and T. W. Haensch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

2011 (3)

2010 (2)

2008 (1)

2007 (2)

X. S. Jiang, Q. H. Song, L. Xu, J. Fu, and L. M. Tong, “Microfiber knot dye laser based on the evanescent-wave-coupled gain,” Appl. Phys. Lett. 90, 233501 (2007).
[Crossref]

X. S. Jiang, Y. Chen, G. Vienne, and L. M. Tong, “All-fiber add–drop filters based on microfiber knot resonators,” Opt. Lett. 32, 1710–1712 (2007).
[Crossref]

2006 (3)

X. S. Jiang, Q. Yang, G. Vienne, Y. H. Li, L. M. Tong, J. J. Zhang, and L. L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89, 143513 (2006).
[Crossref]

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88, 223501 (2006).
[Crossref]

J. M. Ward, D. G. O’Shea, B. J. Shortt, M. J. Morrissey, K. Deasy, and S. G. N. Chormaic, “Heat-and-pull rig for fiber taper fabrication,” Rev. Sci. Instrum. 77, 083105 (2006).
[Crossref]

2004 (1)

2003 (3)

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non·Cryst. Solids 330, 1–12 (2003).
[Crossref]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[Crossref]

J. Keirsse, C. Boussard-Pledel, O. Loreal, O. Sire, B. Bureau, P. Leroyer, B. Turlin, and J. Lucas, “IR optical fiber sensor for biomedical applications,” Vib. Spectrosc. 32, 23–32 (2003).
[Crossref]

2000 (1)

S. Hocde, C. Boussard-Pledel, G. Fonteneau, D. Lecoq, H. L. Ma, and J. Lucas, “Recent developments in chemical sensing using infrared glass fibers,” J. Non-Cryst. Solids 274, 17–22 (2000).
[Crossref]

1999 (2)

S. T. Chu, W. Pan, S. Suzuki, B. E. Little, S. Sato, and T. Kokuban, “Temperature insensitive vertically coupled microring resonator add/drop filters by means of a polymer overlay,” IEEE Photon. Technol. Lett. 11, 1138–1140 (1999).
[Crossref]

T. Schwarzl, W. Heiß, and G. Springholz, “Ultra-high-finesse IV-VI microcavities for the midinfrared,” Appl. Phys. Lett. 75, 1246–1248 (1999).
[Crossref]

1990 (1)

E. M. Dianov, V. M. Krasteva, V. G. Plotnichenko, S. K. Semenov, M. F. Churbanov, and I. Scripachev, “Mechanical properties of chalcogenide glass optical fibers,” Proc. SPIE 0683, 92–100 (1990).
[Crossref]

Agarwal, A.

P. T. Lin, J. Giammarco, N. Borodinov, M. Savchak, V. Singh, L. C. Kimerling, D. T. Tan, K. A. Richardson, I. Luzinov, and A. Agarwal, “Label-free water sensors using hybrid polymer-dielectric mid-infrared optical waveguides,” ACS Appl. Mater. Interfaces 7, 11189–11194 (2015).
[Crossref]

H. T. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett. 38, 1470–1472 (2013).
[Crossref]

Agarwal, A. M.

Y. H. Guo, J. Wang, Z. H. Han, K. Wada, L. C. Kimerling, A. M. Agarwal, J. Michel, Z. Zheng, G. F. Li, and L. Zhang, “Power-efficient generation of two-octave mid-IR frequency combs in a germanium microresonator,” Nanophotonics 7, 1461–1467 (2018).
[Crossref]

V. Singh, P. T. Lin, N. Patel, H. T. Lin, L. Li, Y. Zou, F. Deng, C. Y. Ni, J. J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

Akikusa, N.

M. Siciliani de Cumis, S. Borri, G. Insero, I. Galli, A. Savchenkov, D. Eliyahu, V. Ilchenko, N. Akikusa, A. Matsko, L. Maleki, and P. De Natale, “Microcavity-stabilized quantum cascade laser,” Laser Photon. Rev. 10, 153–157 (2016).
[Crossref]

Aktas, O.

Ashcom, J. B.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[Crossref]

Baker, C.

Bao, X. Y.

S. Gao and X. Y. Bao, “Chalcogenide taper and its nonlinear effects and sensing applications,” iScience 23, 100802 (2020).
[Crossref]

Bayindir, M.

O. Aktas and M. Bayindir, “Tapered nanoscale chalcogenide fibers directly drawn from bulk glasses as optical couplers for high-index resonators,” Appl. Opt. 56, 385–390 (2017).
[Crossref]

O. Aktas, E. Ozgur, O. Tobail, M. Kanik, E. Huseyinoglu, and M. Bayindir, “A new route for fabricating on-chip chalcogenide microcavity resonator arrays,” Adv. Opt. Mater. 2, 618–625 (2014).
[Crossref]

Belal, M.

R. Ismaeel, T. Lee, M. Ding, M. Belal, and G. Brambilla, “Optical microfiber passive components,” Laser Photon. Rev. 7, 350–384 (2013).
[Crossref]

Belden, P. M.

Borodinov, N.

P. T. Lin, J. Giammarco, N. Borodinov, M. Savchak, V. Singh, L. C. Kimerling, D. T. Tan, K. A. Richardson, I. Luzinov, and A. Agarwal, “Label-free water sensors using hybrid polymer-dielectric mid-infrared optical waveguides,” ACS Appl. Mater. Interfaces 7, 11189–11194 (2015).
[Crossref]

Borri, S.

M. Siciliani de Cumis, S. Borri, G. Insero, I. Galli, A. Savchenkov, D. Eliyahu, V. Ilchenko, N. Akikusa, A. Matsko, L. Maleki, and P. De Natale, “Microcavity-stabilized quantum cascade laser,” Laser Photon. Rev. 10, 153–157 (2016).
[Crossref]

Boussard-Pledel, C.

J. Keirsse, C. Boussard-Pledel, O. Loreal, O. Sire, B. Bureau, P. Leroyer, B. Turlin, and J. Lucas, “IR optical fiber sensor for biomedical applications,” Vib. Spectrosc. 32, 23–32 (2003).
[Crossref]

S. Hocde, C. Boussard-Pledel, G. Fonteneau, D. Lecoq, H. L. Ma, and J. Lucas, “Recent developments in chemical sensing using infrared glass fibers,” J. Non-Cryst. Solids 274, 17–22 (2000).
[Crossref]

Brambilla, G.

R. Ismaeel, T. Lee, M. Ding, M. Belal, and G. Brambilla, “Optical microfiber passive components,” Laser Photon. Rev. 7, 350–384 (2013).
[Crossref]

Bulu, I.

R. Shankar, I. Bulu, and M. Lončar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102, 051108 (2013).
[Crossref]

R. Shankar, R. Leijssen, I. Bulu, and M. Loncar, “Mid-infrared photonic crystal cavities in silicon,” Opt. Express 19, 5579–5586 (2011).
[Crossref]

Bureau, B.

J. Keirsse, C. Boussard-Pledel, O. Loreal, O. Sire, B. Bureau, P. Leroyer, B. Turlin, and J. Lucas, “IR optical fiber sensor for biomedical applications,” Vib. Spectrosc. 32, 23–32 (2003).
[Crossref]

Byer, R. L.

Cardenas, J.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. J. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Chen, Y.

Choi, D. Y.

Chormaic, S. G. N.

J. M. Ward, D. G. O’Shea, B. J. Shortt, M. J. Morrissey, K. Deasy, and S. G. N. Chormaic, “Heat-and-pull rig for fiber taper fabrication,” Rev. Sci. Instrum. 77, 083105 (2006).
[Crossref]

Chu, P. K.

J. Wang, T. R. Zhan, G. S. Huang, P. K. Chu, and Y. F. Mei, “Optical microcavities with tubular geometry: properties and applications,” Laser Photon. Rev. 8, 521–547 (2014).
[Crossref]

Chu, S. T.

S. T. Chu, W. Pan, S. Suzuki, B. E. Little, S. Sato, and T. Kokuban, “Temperature insensitive vertically coupled microring resonator add/drop filters by means of a polymer overlay,” IEEE Photon. Technol. Lett. 11, 1138–1140 (1999).
[Crossref]

Churbanov, M. F.

E. M. Dianov, V. M. Krasteva, V. G. Plotnichenko, S. K. Semenov, M. F. Churbanov, and I. Scripachev, “Mechanical properties of chalcogenide glass optical fibers,” Proc. SPIE 0683, 92–100 (1990).
[Crossref]

Danto, S.

V. Singh, P. T. Lin, N. Patel, H. T. Lin, L. Li, Y. Zou, F. Deng, C. Y. Ni, J. J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

H. T. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett. 38, 1470–1472 (2013).
[Crossref]

De Natale, P.

M. Siciliani de Cumis, S. Borri, G. Insero, I. Galli, A. Savchenkov, D. Eliyahu, V. Ilchenko, N. Akikusa, A. Matsko, L. Maleki, and P. De Natale, “Microcavity-stabilized quantum cascade laser,” Laser Photon. Rev. 10, 153–157 (2016).
[Crossref]

Deasy, K.

J. M. Ward, D. G. O’Shea, B. J. Shortt, M. J. Morrissey, K. Deasy, and S. G. N. Chormaic, “Heat-and-pull rig for fiber taper fabrication,” Rev. Sci. Instrum. 77, 083105 (2006).
[Crossref]

Del’Haye, P.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hansch, N. Picque, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref]

Deng, D. H.

Deng, F.

V. Singh, P. T. Lin, N. Patel, H. T. Lin, L. Li, Y. Zou, F. Deng, C. Y. Ni, J. J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

Di Teodoro, F.

Dianov, E. M.

E. M. Dianov, V. M. Krasteva, V. G. Plotnichenko, S. K. Semenov, M. F. Churbanov, and I. Scripachev, “Mechanical properties of chalcogenide glass optical fibers,” Proc. SPIE 0683, 92–100 (1990).
[Crossref]

Ding, H.

Ding, M.

R. Ismaeel, T. Lee, M. Ding, M. Belal, and G. Brambilla, “Optical microfiber passive components,” Laser Photon. Rev. 7, 350–384 (2013).
[Crossref]

Eggleton, B. J.

Eliyahu, D.

M. Siciliani de Cumis, S. Borri, G. Insero, I. Galli, A. Savchenkov, D. Eliyahu, V. Ilchenko, N. Akikusa, A. Matsko, L. Maleki, and P. De Natale, “Microcavity-stabilized quantum cascade laser,” Laser Photon. Rev. 10, 153–157 (2016).
[Crossref]

Elliott, S. R.

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non·Cryst. Solids 330, 1–12 (2003).
[Crossref]

Ennis, C. J.

S. Sain, D. Ray, A. Mukhopadhyay, S. Sengupta, T. Kar, C. J. Ennis, and P. K. S. M. Rahman, “Synthesis and characterization of PMMA-cellulose nanocomposites by in situ polymerization technique,” J. Appl. Polym. Sci. 126, E127–E134 (2012).
[Crossref]

Fain, R.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. J. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Fonteneau, G.

S. Hocde, C. Boussard-Pledel, G. Fonteneau, D. Lecoq, H. L. Ma, and J. Lucas, “Recent developments in chemical sensing using infrared glass fibers,” J. Non-Cryst. Solids 274, 17–22 (2000).
[Crossref]

Fu, J.

X. S. Jiang, Q. H. Song, L. Xu, J. Fu, and L. M. Tong, “Microfiber knot dye laser based on the evanescent-wave-coupled gain,” Appl. Phys. Lett. 90, 233501 (2007).
[Crossref]

Fu, L. B.

Gaeta, A. L.

M. J. Yu, Y. Okawachi, A. G. Griffith, N. Picque, M. Lipson, and A. L. Gaeta, “Silicon-chip-based mid-infrared dual-comb spectroscopy,” Nat. Commun. 9, 1869 (2018).
[Crossref]

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. J. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Galli, I.

M. Siciliani de Cumis, S. Borri, G. Insero, I. Galli, A. Savchenkov, D. Eliyahu, V. Ilchenko, N. Akikusa, A. Matsko, L. Maleki, and P. De Natale, “Microcavity-stabilized quantum cascade laser,” Laser Photon. Rev. 10, 153–157 (2016).
[Crossref]

Gao, S.

S. Gao and X. Y. Bao, “Chalcogenide taper and its nonlinear effects and sensing applications,” iScience 23, 100802 (2020).
[Crossref]

Gattass, R. R.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[Crossref]

Giammarco, J.

P. T. Lin, J. Giammarco, N. Borodinov, M. Savchak, V. Singh, L. C. Kimerling, D. T. Tan, K. A. Richardson, I. Luzinov, and A. Agarwal, “Label-free water sensors using hybrid polymer-dielectric mid-infrared optical waveguides,” ACS Appl. Mater. Interfaces 7, 11189–11194 (2015).
[Crossref]

V. Singh, P. T. Lin, N. Patel, H. T. Lin, L. Li, Y. Zou, F. Deng, C. Y. Ni, J. J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

Gorodetsky, M. L.

C. Lecaplain, C. Javerzac-Galy, M. L. Gorodetsky, and T. J. Kippenberg, “Mid-infrared ultra-high-Q resonators based on fluoride crystalline materials,” Nat. Commun. 7, 13383 (2016).
[Crossref]

Griffith, A. G.

M. J. Yu, Y. Okawachi, A. G. Griffith, N. Picque, M. Lipson, and A. L. Gaeta, “Silicon-chip-based mid-infrared dual-comb spectroscopy,” Nat. Commun. 9, 1869 (2018).
[Crossref]

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. J. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Grillet, C.

Guo, H. L.

Guo, X.

C. G. Xin, H. Wu, Y. Xie, S. L. Yu, N. Zhou, Z. X. Shi, X. Guo, and L. M. Tong, “CdTe microwires as mid-infrared optical waveguides,” Opt. Express 26, 10944–10952 (2018).
[Crossref]

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88, 223501 (2006).
[Crossref]

Guo, Y. H.

Y. H. Guo, J. Wang, Z. H. Han, K. Wada, L. C. Kimerling, A. M. Agarwal, J. Michel, Z. Zheng, G. F. Li, and L. Zhang, “Power-efficient generation of two-octave mid-IR frequency combs in a germanium microresonator,” Nanophotonics 7, 1461–1467 (2018).
[Crossref]

Haensch, T. W.

A. Schliesser, N. Picque, and T. W. Haensch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

Han, Z. H.

Y. H. Guo, J. Wang, Z. H. Han, K. Wada, L. C. Kimerling, A. M. Agarwal, J. Michel, Z. Zheng, G. F. Li, and L. Zhang, “Power-efficient generation of two-octave mid-IR frequency combs in a germanium microresonator,” Nanophotonics 7, 1461–1467 (2018).
[Crossref]

Hansch, T. W.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hansch, N. Picque, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref]

Hao, Q. A.

He, S. L.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[Crossref]

Heiß, W.

T. Schwarzl, W. Heiß, and G. Springholz, “Ultra-high-finesse IV-VI microcavities for the midinfrared,” Appl. Phys. Lett. 75, 1246–1248 (1999).
[Crossref]

Herr, T.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hansch, N. Picque, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref]

Hocde, S.

S. Hocde, C. Boussard-Pledel, G. Fonteneau, D. Lecoq, H. L. Ma, and J. Lucas, “Recent developments in chemical sensing using infrared glass fibers,” J. Non-Cryst. Solids 274, 17–22 (2000).
[Crossref]

Hofer, J.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hansch, N. Picque, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref]

Holzwarth, R.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hansch, N. Picque, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref]

Hu, J. J.

V. Singh, P. T. Lin, N. Patel, H. T. Lin, L. Li, Y. Zou, F. Deng, C. Y. Ni, J. J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

Y. Chen, H. T. Lin, J. J. Hu, and M. Li, “Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing,” ACS Nano 8, 6955–6961 (2014).
[Crossref]

H. T. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett. 38, 1470–1472 (2013).
[Crossref]

Hu, L. L.

X. S. Jiang, Q. Yang, G. Vienne, Y. H. Li, L. M. Tong, J. J. Zhang, and L. L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89, 143513 (2006).
[Crossref]

Huang, G. S.

J. Wang, T. R. Zhan, G. S. Huang, P. K. Chu, and Y. F. Mei, “Optical microcavities with tubular geometry: properties and applications,” Laser Photon. Rev. 8, 521–547 (2014).
[Crossref]

Hudson, D. D.

Huseyinoglu, E.

O. Aktas, E. Ozgur, O. Tobail, M. Kanik, E. Huseyinoglu, and M. Bayindir, “A new route for fabricating on-chip chalcogenide microcavity resonator arrays,” Adv. Opt. Mater. 2, 618–625 (2014).
[Crossref]

Ilchenko, V.

M. Siciliani de Cumis, S. Borri, G. Insero, I. Galli, A. Savchenkov, D. Eliyahu, V. Ilchenko, N. Akikusa, A. Matsko, L. Maleki, and P. De Natale, “Microcavity-stabilized quantum cascade laser,” Laser Photon. Rev. 10, 153–157 (2016).
[Crossref]

Ilchenko, V. S.

Insero, G.

M. Siciliani de Cumis, S. Borri, G. Insero, I. Galli, A. Savchenkov, D. Eliyahu, V. Ilchenko, N. Akikusa, A. Matsko, L. Maleki, and P. De Natale, “Microcavity-stabilized quantum cascade laser,” Laser Photon. Rev. 10, 153–157 (2016).
[Crossref]

Ismaeel, R.

R. Ismaeel, T. Lee, M. Ding, M. Belal, and G. Brambilla, “Optical microfiber passive components,” Laser Photon. Rev. 7, 350–384 (2013).
[Crossref]

Javerzac-Galy, C.

C. Lecaplain, C. Javerzac-Galy, M. L. Gorodetsky, and T. J. Kippenberg, “Mid-infrared ultra-high-Q resonators based on fluoride crystalline materials,” Nat. Commun. 7, 13383 (2016).
[Crossref]

Jiang, X. S.

X. S. Jiang, Q. H. Song, L. Xu, J. Fu, and L. M. Tong, “Microfiber knot dye laser based on the evanescent-wave-coupled gain,” Appl. Phys. Lett. 90, 233501 (2007).
[Crossref]

X. S. Jiang, Y. Chen, G. Vienne, and L. M. Tong, “All-fiber add–drop filters based on microfiber knot resonators,” Opt. Lett. 32, 1710–1712 (2007).
[Crossref]

X. S. Jiang, Q. Yang, G. Vienne, Y. H. Li, L. M. Tong, J. J. Zhang, and L. L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89, 143513 (2006).
[Crossref]

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88, 223501 (2006).
[Crossref]

Kanamori, Y.

Kanik, M.

O. Aktas, E. Ozgur, O. Tobail, M. Kanik, E. Huseyinoglu, and M. Bayindir, “A new route for fabricating on-chip chalcogenide microcavity resonator arrays,” Adv. Opt. Mater. 2, 618–625 (2014).
[Crossref]

Kar, T.

S. Sain, D. Ray, A. Mukhopadhyay, S. Sengupta, T. Kar, C. J. Ennis, and P. K. S. M. Rahman, “Synthesis and characterization of PMMA-cellulose nanocomposites by in situ polymerization technique,” J. Appl. Polym. Sci. 126, E127–E134 (2012).
[Crossref]

Keirsse, J.

J. Keirsse, C. Boussard-Pledel, O. Loreal, O. Sire, B. Bureau, P. Leroyer, B. Turlin, and J. Lucas, “IR optical fiber sensor for biomedical applications,” Vib. Spectrosc. 32, 23–32 (2003).
[Crossref]

Kimerling, L. C.

Y. H. Guo, J. Wang, Z. H. Han, K. Wada, L. C. Kimerling, A. M. Agarwal, J. Michel, Z. Zheng, G. F. Li, and L. Zhang, “Power-efficient generation of two-octave mid-IR frequency combs in a germanium microresonator,” Nanophotonics 7, 1461–1467 (2018).
[Crossref]

P. T. Lin, J. Giammarco, N. Borodinov, M. Savchak, V. Singh, L. C. Kimerling, D. T. Tan, K. A. Richardson, I. Luzinov, and A. Agarwal, “Label-free water sensors using hybrid polymer-dielectric mid-infrared optical waveguides,” ACS Appl. Mater. Interfaces 7, 11189–11194 (2015).
[Crossref]

V. Singh, P. T. Lin, N. Patel, H. T. Lin, L. Li, Y. Zou, F. Deng, C. Y. Ni, J. J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

H. T. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett. 38, 1470–1472 (2013).
[Crossref]

Kippenberg, T. J.

C. Lecaplain, C. Javerzac-Galy, M. L. Gorodetsky, and T. J. Kippenberg, “Mid-infrared ultra-high-Q resonators based on fluoride crystalline materials,” Nat. Commun. 7, 13383 (2016).
[Crossref]

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hansch, N. Picque, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref]

Klebanov, M.

Kokuban, T.

S. T. Chu, W. Pan, S. Suzuki, B. E. Little, S. Sato, and T. Kokuban, “Temperature insensitive vertically coupled microring resonator add/drop filters by means of a polymer overlay,” IEEE Photon. Technol. Lett. 11, 1138–1140 (1999).
[Crossref]

Kozacik, S.

Krasteva, V. M.

E. M. Dianov, V. M. Krasteva, V. G. Plotnichenko, S. K. Semenov, M. F. Churbanov, and I. Scripachev, “Mechanical properties of chalcogenide glass optical fibers,” Proc. SPIE 0683, 92–100 (1990).
[Crossref]

Lamont, M. R. E.

Lau, R. K. W.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. J. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Lecaplain, C.

C. Lecaplain, C. Javerzac-Galy, M. L. Gorodetsky, and T. J. Kippenberg, “Mid-infrared ultra-high-Q resonators based on fluoride crystalline materials,” Nat. Commun. 7, 13383 (2016).
[Crossref]

Lecoq, D.

S. Hocde, C. Boussard-Pledel, G. Fonteneau, D. Lecoq, H. L. Ma, and J. Lucas, “Recent developments in chemical sensing using infrared glass fibers,” J. Non-Cryst. Solids 274, 17–22 (2000).
[Crossref]

Lee, T.

R. Ismaeel, T. Lee, M. Ding, M. Belal, and G. Brambilla, “Optical microfiber passive components,” Laser Photon. Rev. 7, 350–384 (2013).
[Crossref]

Lee, Y. H. D.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. J. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Leijssen, R.

Leroyer, P.

J. Keirsse, C. Boussard-Pledel, O. Loreal, O. Sire, B. Bureau, P. Leroyer, B. Turlin, and J. Lucas, “IR optical fiber sensor for biomedical applications,” Vib. Spectrosc. 32, 23–32 (2003).
[Crossref]

Levy, S.

Li, B. R.

Li, G. F.

Y. H. Guo, J. Wang, Z. H. Han, K. Wada, L. C. Kimerling, A. M. Agarwal, J. Michel, Z. Zheng, G. F. Li, and L. Zhang, “Power-efficient generation of two-octave mid-IR frequency combs in a germanium microresonator,” Nanophotonics 7, 1461–1467 (2018).
[Crossref]

Li, L.

V. Singh, P. T. Lin, N. Patel, H. T. Lin, L. Li, Y. Zou, F. Deng, C. Y. Ni, J. J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

H. T. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett. 38, 1470–1472 (2013).
[Crossref]

Li, M.

Y. Chen, H. T. Lin, J. J. Hu, and M. Li, “Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing,” ACS Nano 8, 6955–6961 (2014).
[Crossref]

Q. M. Zhang, M. Li, Q. A. Hao, D. H. Deng, H. Zhou, H. P. Zeng, L. Zhan, X. A. Wu, L. Y. Liu, and L. Xu, “Fabrication and characterization of on-chip optical nonlinear chalcogenide nanofiber devices,” Opt. Lett. 35, 3829–3831 (2010).
[Crossref]

Li, X. L.

Li, Y. H.

X. S. Jiang, Q. Yang, G. Vienne, Y. H. Li, L. M. Tong, J. J. Zhang, and L. L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89, 143513 (2006).
[Crossref]

Li, Z. Y.

Lin, H. T.

Y. Chen, H. T. Lin, J. J. Hu, and M. Li, “Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing,” ACS Nano 8, 6955–6961 (2014).
[Crossref]

V. Singh, P. T. Lin, N. Patel, H. T. Lin, L. Li, Y. Zou, F. Deng, C. Y. Ni, J. J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

H. T. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett. 38, 1470–1472 (2013).
[Crossref]

Lin, P. T.

P. T. Lin, J. Giammarco, N. Borodinov, M. Savchak, V. Singh, L. C. Kimerling, D. T. Tan, K. A. Richardson, I. Luzinov, and A. Agarwal, “Label-free water sensors using hybrid polymer-dielectric mid-infrared optical waveguides,” ACS Appl. Mater. Interfaces 7, 11189–11194 (2015).
[Crossref]

V. Singh, P. T. Lin, N. Patel, H. T. Lin, L. Li, Y. Zou, F. Deng, C. Y. Ni, J. J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

H. T. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett. 38, 1470–1472 (2013).
[Crossref]

Lipson, M.

M. J. Yu, Y. Okawachi, A. G. Griffith, N. Picque, M. Lipson, and A. L. Gaeta, “Silicon-chip-based mid-infrared dual-comb spectroscopy,” Nat. Commun. 9, 1869 (2018).
[Crossref]

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. J. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Little, B. E.

S. T. Chu, W. Pan, S. Suzuki, B. E. Little, S. Sato, and T. Kokuban, “Temperature insensitive vertically coupled microring resonator add/drop filters by means of a polymer overlay,” IEEE Photon. Technol. Lett. 11, 1138–1140 (1999).
[Crossref]

Liu, D. M.

Liu, L. Y.

Liu, M.

Loncar, M.

R. Shankar, I. Bulu, and M. Lončar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102, 051108 (2013).
[Crossref]

R. Shankar, R. Leijssen, I. Bulu, and M. Loncar, “Mid-infrared photonic crystal cavities in silicon,” Opt. Express 19, 5579–5586 (2011).
[Crossref]

Loreal, O.

J. Keirsse, C. Boussard-Pledel, O. Loreal, O. Sire, B. Bureau, P. Leroyer, B. Turlin, and J. Lucas, “IR optical fiber sensor for biomedical applications,” Vib. Spectrosc. 32, 23–32 (2003).
[Crossref]

Lotshaw, W. T.

Lou, J. Y.

L. M. Tong, J. Y. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12, 1025–1035 (2004).
[Crossref]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[Crossref]

Lu, W. G.

Lu, Y. Q.

Lucas, J.

J. Keirsse, C. Boussard-Pledel, O. Loreal, O. Sire, B. Bureau, P. Leroyer, B. Turlin, and J. Lucas, “IR optical fiber sensor for biomedical applications,” Vib. Spectrosc. 32, 23–32 (2003).
[Crossref]

S. Hocde, C. Boussard-Pledel, G. Fonteneau, D. Lecoq, H. L. Ma, and J. Lucas, “Recent developments in chemical sensing using infrared glass fibers,” J. Non-Cryst. Solids 274, 17–22 (2000).
[Crossref]

Luo, A. P.

Luo, Y. Y.

Luo, Z. C.

Luther-Davies, B.

Luzinov, I.

P. T. Lin, J. Giammarco, N. Borodinov, M. Savchak, V. Singh, L. C. Kimerling, D. T. Tan, K. A. Richardson, I. Luzinov, and A. Agarwal, “Label-free water sensors using hybrid polymer-dielectric mid-infrared optical waveguides,” ACS Appl. Mater. Interfaces 7, 11189–11194 (2015).
[Crossref]

V. Singh, P. T. Lin, N. Patel, H. T. Lin, L. Li, Y. Zou, F. Deng, C. Y. Ni, J. J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

Ma, H. L.

S. Hocde, C. Boussard-Pledel, G. Fonteneau, D. Lecoq, H. L. Ma, and J. Lucas, “Recent developments in chemical sensing using infrared glass fibers,” J. Non-Cryst. Solids 274, 17–22 (2000).
[Crossref]

Ma, P.

Madden, S.

Maegi, E. C.

Magi, E. C.

Maleki, L.

M. Siciliani de Cumis, S. Borri, G. Insero, I. Galli, A. Savchenkov, D. Eliyahu, V. Ilchenko, N. Akikusa, A. Matsko, L. Maleki, and P. De Natale, “Microcavity-stabilized quantum cascade laser,” Laser Photon. Rev. 10, 153–157 (2016).
[Crossref]

A. A. Savchenkov, V. S. Ilchenko, F. Di Teodoro, P. M. Belden, W. T. Lotshaw, A. B. Matsko, and L. Maleki, “Generation of Kerr combs centered at 4.5 μm in crystalline microresonators pumped with quantum-cascade lasers,” Opt. Lett. 40, 3468–3471 (2015).
[Crossref]

Marandi, A.

Matsko, A.

M. Siciliani de Cumis, S. Borri, G. Insero, I. Galli, A. Savchenkov, D. Eliyahu, V. Ilchenko, N. Akikusa, A. Matsko, L. Maleki, and P. De Natale, “Microcavity-stabilized quantum cascade laser,” Laser Photon. Rev. 10, 153–157 (2016).
[Crossref]

Matsko, A. B.

Maxwell, I.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[Crossref]

Mazur, E.

L. M. Tong, J. Y. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12, 1025–1035 (2004).
[Crossref]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[Crossref]

Mei, Y. F.

J. Wang, T. R. Zhan, G. S. Huang, P. K. Chu, and Y. F. Mei, “Optical microcavities with tubular geometry: properties and applications,” Laser Photon. Rev. 8, 521–547 (2014).
[Crossref]

Michel, J.

Y. H. Guo, J. Wang, Z. H. Han, K. Wada, L. C. Kimerling, A. M. Agarwal, J. Michel, Z. Zheng, G. F. Li, and L. Zhang, “Power-efficient generation of two-octave mid-IR frequency combs in a germanium microresonator,” Nanophotonics 7, 1461–1467 (2018).
[Crossref]

Mitchell, A.

Mohanty, A.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. J. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Morrissey, M. J.

J. M. Ward, D. G. O’Shea, B. J. Shortt, M. J. Morrissey, K. Deasy, and S. G. N. Chormaic, “Heat-and-pull rig for fiber taper fabrication,” Rev. Sci. Instrum. 77, 083105 (2006).
[Crossref]

Mukhopadhyay, A.

S. Sain, D. Ray, A. Mukhopadhyay, S. Sengupta, T. Kar, C. J. Ennis, and P. K. S. M. Rahman, “Synthesis and characterization of PMMA-cellulose nanocomposites by in situ polymerization technique,” J. Appl. Polym. Sci. 126, E127–E134 (2012).
[Crossref]

Murakowski, M.

Musgraves, J. D.

V. Singh, P. T. Lin, N. Patel, H. T. Lin, L. Li, Y. Zou, F. Deng, C. Y. Ni, J. J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

H. T. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett. 38, 1470–1472 (2013).
[Crossref]

Nguyen, T.

Ni, C. Y.

V. Singh, P. T. Lin, N. Patel, H. T. Lin, L. Li, Y. Zou, F. Deng, C. Y. Ni, J. J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

Novak, J.

V. Singh, P. T. Lin, N. Patel, H. T. Lin, L. Li, Y. Zou, F. Deng, C. Y. Ni, J. J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

Novak, S.

V. Singh, P. T. Lin, N. Patel, H. T. Lin, L. Li, Y. Zou, F. Deng, C. Y. Ni, J. J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

O’Shea, D. G.

J. M. Ward, D. G. O’Shea, B. J. Shortt, M. J. Morrissey, K. Deasy, and S. G. N. Chormaic, “Heat-and-pull rig for fiber taper fabrication,” Rev. Sci. Instrum. 77, 083105 (2006).
[Crossref]

Okawachi, Y.

M. J. Yu, Y. Okawachi, A. G. Griffith, N. Picque, M. Lipson, and A. L. Gaeta, “Silicon-chip-based mid-infrared dual-comb spectroscopy,” Nat. Commun. 9, 1869 (2018).
[Crossref]

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. J. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Ozgur, E.

O. Aktas, E. Ozgur, O. Tobail, M. Kanik, E. Huseyinoglu, and M. Bayindir, “A new route for fabricating on-chip chalcogenide microcavity resonator arrays,” Adv. Opt. Mater. 2, 618–625 (2014).
[Crossref]

Pan, W.

S. T. Chu, W. Pan, S. Suzuki, B. E. Little, S. Sato, and T. Kokuban, “Temperature insensitive vertically coupled microring resonator add/drop filters by means of a polymer overlay,” IEEE Photon. Technol. Lett. 11, 1138–1140 (1999).
[Crossref]

Patel, N.

V. Singh, P. T. Lin, N. Patel, H. T. Lin, L. Li, Y. Zou, F. Deng, C. Y. Ni, J. J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

Peter, Y. A.

Phare, C. T.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. J. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Picque, N.

M. J. Yu, Y. Okawachi, A. G. Griffith, N. Picque, M. Lipson, and A. L. Gaeta, “Silicon-chip-based mid-infrared dual-comb spectroscopy,” Nat. Commun. 9, 1869 (2018).
[Crossref]

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hansch, N. Picque, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref]

A. Schliesser, N. Picque, and T. W. Haensch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

Plotnichenko, V. G.

E. M. Dianov, V. M. Krasteva, V. G. Plotnichenko, S. K. Semenov, M. F. Churbanov, and I. Scripachev, “Mechanical properties of chalcogenide glass optical fibers,” Proc. SPIE 0683, 92–100 (1990).
[Crossref]

Poitras, C. B.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. J. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Prather, D.

Rahman, P. K. S. M.

S. Sain, D. Ray, A. Mukhopadhyay, S. Sengupta, T. Kar, C. J. Ennis, and P. K. S. M. Rahman, “Synthesis and characterization of PMMA-cellulose nanocomposites by in situ polymerization technique,” J. Appl. Polym. Sci. 126, E127–E134 (2012).
[Crossref]

Ray, D.

S. Sain, D. Ray, A. Mukhopadhyay, S. Sengupta, T. Kar, C. J. Ennis, and P. K. S. M. Rahman, “Synthesis and characterization of PMMA-cellulose nanocomposites by in situ polymerization technique,” J. Appl. Polym. Sci. 126, E127–E134 (2012).
[Crossref]

Richardson, K.

V. Singh, P. T. Lin, N. Patel, H. T. Lin, L. Li, Y. Zou, F. Deng, C. Y. Ni, J. J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

H. T. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett. 38, 1470–1472 (2013).
[Crossref]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
[Crossref]

Richardson, K. A.

P. T. Lin, J. Giammarco, N. Borodinov, M. Savchak, V. Singh, L. C. Kimerling, D. T. Tan, K. A. Richardson, I. Luzinov, and A. Agarwal, “Label-free water sensors using hybrid polymer-dielectric mid-infrared optical waveguides,” ACS Appl. Mater. Interfaces 7, 11189–11194 (2015).
[Crossref]

Rochette, M.

Roelens, M. A. F.

Rudy, C. W.

Sain, S.

S. Sain, D. Ray, A. Mukhopadhyay, S. Sengupta, T. Kar, C. J. Ennis, and P. K. S. M. Rahman, “Synthesis and characterization of PMMA-cellulose nanocomposites by in situ polymerization technique,” J. Appl. Polym. Sci. 126, E127–E134 (2012).
[Crossref]

Sato, S.

S. T. Chu, W. Pan, S. Suzuki, B. E. Little, S. Sato, and T. Kokuban, “Temperature insensitive vertically coupled microring resonator add/drop filters by means of a polymer overlay,” IEEE Photon. Technol. Lett. 11, 1138–1140 (1999).
[Crossref]

Savchak, M.

P. T. Lin, J. Giammarco, N. Borodinov, M. Savchak, V. Singh, L. C. Kimerling, D. T. Tan, K. A. Richardson, I. Luzinov, and A. Agarwal, “Label-free water sensors using hybrid polymer-dielectric mid-infrared optical waveguides,” ACS Appl. Mater. Interfaces 7, 11189–11194 (2015).
[Crossref]

Savchenkov, A.

M. Siciliani de Cumis, S. Borri, G. Insero, I. Galli, A. Savchenkov, D. Eliyahu, V. Ilchenko, N. Akikusa, A. Matsko, L. Maleki, and P. De Natale, “Microcavity-stabilized quantum cascade laser,” Laser Photon. Rev. 10, 153–157 (2016).
[Crossref]

Savchenkov, A. A.

Schliesser, A.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hansch, N. Picque, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref]

A. Schliesser, N. Picque, and T. W. Haensch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

Schwarzl, T.

T. Schwarzl, W. Heiß, and G. Springholz, “Ultra-high-finesse IV-VI microcavities for the midinfrared,” Appl. Phys. Lett. 75, 1246–1248 (1999).
[Crossref]

Scripachev, I.

E. M. Dianov, V. M. Krasteva, V. G. Plotnichenko, S. K. Semenov, M. F. Churbanov, and I. Scripachev, “Mechanical properties of chalcogenide glass optical fibers,” Proc. SPIE 0683, 92–100 (1990).
[Crossref]

Semenov, S. K.

E. M. Dianov, V. M. Krasteva, V. G. Plotnichenko, S. K. Semenov, M. F. Churbanov, and I. Scripachev, “Mechanical properties of chalcogenide glass optical fibers,” Proc. SPIE 0683, 92–100 (1990).
[Crossref]

Sengupta, S.

S. Sain, D. Ray, A. Mukhopadhyay, S. Sengupta, T. Kar, C. J. Ennis, and P. K. S. M. Rahman, “Synthesis and characterization of PMMA-cellulose nanocomposites by in situ polymerization technique,” J. Appl. Polym. Sci. 126, E127–E134 (2012).
[Crossref]

Shankar, R.

R. Shankar, I. Bulu, and M. Lončar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102, 051108 (2013).
[Crossref]

R. Shankar, R. Leijssen, I. Bulu, and M. Loncar, “Mid-infrared photonic crystal cavities in silicon,” Opt. Express 19, 5579–5586 (2011).
[Crossref]

Shen, M. Y.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[Crossref]

Shi, Z. X.

Shortt, B. J.

J. M. Ward, D. G. O’Shea, B. J. Shortt, M. J. Morrissey, K. Deasy, and S. G. N. Chormaic, “Heat-and-pull rig for fiber taper fabrication,” Rev. Sci. Instrum. 77, 083105 (2006).
[Crossref]

Shum, P. P.

Siciliani de Cumis, M.

M. Siciliani de Cumis, S. Borri, G. Insero, I. Galli, A. Savchenkov, D. Eliyahu, V. Ilchenko, N. Akikusa, A. Matsko, L. Maleki, and P. De Natale, “Microcavity-stabilized quantum cascade laser,” Laser Photon. Rev. 10, 153–157 (2016).
[Crossref]

Singh, N.

Singh, V.

P. T. Lin, J. Giammarco, N. Borodinov, M. Savchak, V. Singh, L. C. Kimerling, D. T. Tan, K. A. Richardson, I. Luzinov, and A. Agarwal, “Label-free water sensors using hybrid polymer-dielectric mid-infrared optical waveguides,” ACS Appl. Mater. Interfaces 7, 11189–11194 (2015).
[Crossref]

V. Singh, P. T. Lin, N. Patel, H. T. Lin, L. Li, Y. Zou, F. Deng, C. Y. Ni, J. J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

H. T. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett. 38, 1470–1472 (2013).
[Crossref]

Sire, O.

J. Keirsse, C. Boussard-Pledel, O. Loreal, O. Sire, B. Bureau, P. Leroyer, B. Turlin, and J. Lucas, “IR optical fiber sensor for biomedical applications,” Vib. Spectrosc. 32, 23–32 (2003).
[Crossref]

Soliani, A. P.

V. Singh, P. T. Lin, N. Patel, H. T. Lin, L. Li, Y. Zou, F. Deng, C. Y. Ni, J. J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

Song, Q. H.

X. S. Jiang, Q. H. Song, L. Xu, J. Fu, and L. M. Tong, “Microfiber knot dye laser based on the evanescent-wave-coupled gain,” Appl. Phys. Lett. 90, 233501 (2007).
[Crossref]

Springholz, G.

T. Schwarzl, W. Heiß, and G. Springholz, “Ultra-high-finesse IV-VI microcavities for the midinfrared,” Appl. Phys. Lett. 75, 1246–1248 (1999).
[Crossref]

Sun, Q. Z.

Suzuki, S.

S. T. Chu, W. Pan, S. Suzuki, B. E. Little, S. Sato, and T. Kokuban, “Temperature insensitive vertically coupled microring resonator add/drop filters by means of a polymer overlay,” IEEE Photon. Technol. Lett. 11, 1138–1140 (1999).
[Crossref]

Tan, D. T.

P. T. Lin, J. Giammarco, N. Borodinov, M. Savchak, V. Singh, L. C. Kimerling, D. T. Tan, K. A. Richardson, I. Luzinov, and A. Agarwal, “Label-free water sensors using hybrid polymer-dielectric mid-infrared optical waveguides,” ACS Appl. Mater. Interfaces 7, 11189–11194 (2015).
[Crossref]

Tang, R.

Tobail, O.

O. Aktas, E. Ozgur, O. Tobail, M. Kanik, E. Huseyinoglu, and M. Bayindir, “A new route for fabricating on-chip chalcogenide microcavity resonator arrays,” Adv. Opt. Mater. 2, 618–625 (2014).
[Crossref]

Tong, L. M.

C. G. Xin, H. Wu, Y. Xie, S. L. Yu, N. Zhou, Z. X. Shi, X. Guo, and L. M. Tong, “CdTe microwires as mid-infrared optical waveguides,” Opt. Express 26, 10944–10952 (2018).
[Crossref]

L. M. Tong, “Micro/nanofibre optical sensors: challenges and prospects,” Sensors 18, 903 (2018).
[Crossref]

X. Q. Wu and L. M. Tong, “Optical microfibers and nanofibers,” Nanophotonics 2, 407–428 (2013).
[Crossref]

X. S. Jiang, Q. H. Song, L. Xu, J. Fu, and L. M. Tong, “Microfiber knot dye laser based on the evanescent-wave-coupled gain,” Appl. Phys. Lett. 90, 233501 (2007).
[Crossref]

X. S. Jiang, Y. Chen, G. Vienne, and L. M. Tong, “All-fiber add–drop filters based on microfiber knot resonators,” Opt. Lett. 32, 1710–1712 (2007).
[Crossref]

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88, 223501 (2006).
[Crossref]

X. S. Jiang, Q. Yang, G. Vienne, Y. H. Li, L. M. Tong, J. J. Zhang, and L. L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89, 143513 (2006).
[Crossref]

L. M. Tong, J. Y. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12, 1025–1035 (2004).
[Crossref]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[Crossref]

Tsao, A.

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88, 223501 (2006).
[Crossref]

Tsuda, S.

Turlin, B.

J. Keirsse, C. Boussard-Pledel, O. Loreal, O. Sire, B. Bureau, P. Leroyer, B. Turlin, and J. Lucas, “IR optical fiber sensor for biomedical applications,” Vib. Spectrosc. 32, 23–32 (2003).
[Crossref]

Vanier, F.

Vienne, G.

X. S. Jiang, Y. Chen, G. Vienne, and L. M. Tong, “All-fiber add–drop filters based on microfiber knot resonators,” Opt. Lett. 32, 1710–1712 (2007).
[Crossref]

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88, 223501 (2006).
[Crossref]

X. S. Jiang, Q. Yang, G. Vienne, Y. H. Li, L. M. Tong, J. J. Zhang, and L. L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89, 143513 (2006).
[Crossref]

Vodopyanov, K. L.

Vu, K.

Wachtel, P.

V. Singh, P. T. Lin, N. Patel, H. T. Lin, L. Li, Y. Zou, F. Deng, C. Y. Ni, J. J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

Wada, K.

Y. H. Guo, J. Wang, Z. H. Han, K. Wada, L. C. Kimerling, A. M. Agarwal, J. Michel, Z. Zheng, G. F. Li, and L. Zhang, “Power-efficient generation of two-octave mid-IR frequency combs in a germanium microresonator,” Nanophotonics 7, 1461–1467 (2018).
[Crossref]

Wang, C. Y.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hansch, N. Picque, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref]

Wang, J.

Y. H. Guo, J. Wang, Z. H. Han, K. Wada, L. C. Kimerling, A. M. Agarwal, J. Michel, Z. Zheng, G. F. Li, and L. Zhang, “Power-efficient generation of two-octave mid-IR frequency combs in a germanium microresonator,” Nanophotonics 7, 1461–1467 (2018).
[Crossref]

J. Wang, T. R. Zhan, G. S. Huang, P. K. Chu, and Y. F. Mei, “Optical microcavities with tubular geometry: properties and applications,” Laser Photon. Rev. 8, 521–547 (2014).
[Crossref]

Wang, R.

Ward, J. M.

J. M. Ward, D. G. O’Shea, B. J. Shortt, M. J. Morrissey, K. Deasy, and S. G. N. Chormaic, “Heat-and-pull rig for fiber taper fabrication,” Rev. Sci. Instrum. 77, 083105 (2006).
[Crossref]

Weber, M. J.

M. J. Weber, Handbook of Optical Materials, 1st ed. (CRC Press, 2003).

Wu, H.

Wu, X. A.

Wu, X. Q.

X. Q. Wu and L. M. Tong, “Optical microfibers and nanofibers,” Nanophotonics 2, 407–428 (2013).
[Crossref]

Xiao, T. H.

Xie, Y.

Xin, C. G.

Xu, F.

Xu, L.

Xu, W. C.

Xu, Z. L.

Yamaguchi, S.

Yang, D. R.

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88, 223501 (2006).
[Crossref]

Yang, Q.

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88, 223501 (2006).
[Crossref]

X. S. Jiang, Q. Yang, G. Vienne, Y. H. Li, L. M. Tong, J. J. Zhang, and L. L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89, 143513 (2006).
[Crossref]

Yang, Z. Y.

Yeom, D.-I.

Yu, M. J.

M. J. Yu, Y. Okawachi, A. G. Griffith, N. Picque, M. Lipson, and A. L. Gaeta, “Silicon-chip-based mid-infrared dual-comb spectroscopy,” Nat. Commun. 9, 1869 (2018).
[Crossref]

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. J. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Yu, S. L.

Yu, Y.

Yugami, H.

Zadok, A.

Zakery, A.

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non·Cryst. Solids 330, 1–12 (2003).
[Crossref]

Zdyrko, B.

V. Singh, P. T. Lin, N. Patel, H. T. Lin, L. Li, Y. Zou, F. Deng, C. Y. Ni, J. J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

Zeng, H. P.

Zhan, L.

Zhan, T. R.

J. Wang, T. R. Zhan, G. S. Huang, P. K. Chu, and Y. F. Mei, “Optical microcavities with tubular geometry: properties and applications,” Laser Photon. Rev. 8, 521–547 (2014).
[Crossref]

Zhang, J. J.

X. S. Jiang, Q. Yang, G. Vienne, Y. H. Li, L. M. Tong, J. J. Zhang, and L. L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89, 143513 (2006).
[Crossref]

Zhang, L.

Y. H. Guo, J. Wang, Z. H. Han, K. Wada, L. C. Kimerling, A. M. Agarwal, J. Michel, Z. Zheng, G. F. Li, and L. Zhang, “Power-efficient generation of two-octave mid-IR frequency combs in a germanium microresonator,” Nanophotonics 7, 1461–1467 (2018).
[Crossref]

Z. L. Xu, Q. Z. Sun, B. R. Li, Y. Y. Luo, W. G. Lu, D. M. Liu, P. P. Shum, and L. Zhang, “Highly sensitive refractive index sensor based on cascaded microfiber knots with Vernier effect,” Opt. Express 23, 6662–6672 (2015).
[Crossref]

Zhang, Q. M.

Zheng, Z.

Y. H. Guo, J. Wang, Z. H. Han, K. Wada, L. C. Kimerling, A. M. Agarwal, J. Michel, Z. Zheng, G. F. Li, and L. Zhang, “Power-efficient generation of two-octave mid-IR frequency combs in a germanium microresonator,” Nanophotonics 7, 1461–1467 (2018).
[Crossref]

Zhou, H.

Zhou, N.

Zou, Y.

V. Singh, P. T. Lin, N. Patel, H. T. Lin, L. Li, Y. Zou, F. Deng, C. Y. Ni, J. J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

H. T. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett. 38, 1470–1472 (2013).
[Crossref]

ACS Appl. Mater. Interfaces (1)

P. T. Lin, J. Giammarco, N. Borodinov, M. Savchak, V. Singh, L. C. Kimerling, D. T. Tan, K. A. Richardson, I. Luzinov, and A. Agarwal, “Label-free water sensors using hybrid polymer-dielectric mid-infrared optical waveguides,” ACS Appl. Mater. Interfaces 7, 11189–11194 (2015).
[Crossref]

ACS Nano (1)

Y. Chen, H. T. Lin, J. J. Hu, and M. Li, “Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing,” ACS Nano 8, 6955–6961 (2014).
[Crossref]

Adv. Opt. Mater. (1)

O. Aktas, E. Ozgur, O. Tobail, M. Kanik, E. Huseyinoglu, and M. Bayindir, “A new route for fabricating on-chip chalcogenide microcavity resonator arrays,” Adv. Opt. Mater. 2, 618–625 (2014).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (5)

R. Shankar, I. Bulu, and M. Lončar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102, 051108 (2013).
[Crossref]

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88, 223501 (2006).
[Crossref]

T. Schwarzl, W. Heiß, and G. Springholz, “Ultra-high-finesse IV-VI microcavities for the midinfrared,” Appl. Phys. Lett. 75, 1246–1248 (1999).
[Crossref]

X. S. Jiang, Q. Yang, G. Vienne, Y. H. Li, L. M. Tong, J. J. Zhang, and L. L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89, 143513 (2006).
[Crossref]

X. S. Jiang, Q. H. Song, L. Xu, J. Fu, and L. M. Tong, “Microfiber knot dye laser based on the evanescent-wave-coupled gain,” Appl. Phys. Lett. 90, 233501 (2007).
[Crossref]

IEEE Photon. Technol. Lett. (1)

S. T. Chu, W. Pan, S. Suzuki, B. E. Little, S. Sato, and T. Kokuban, “Temperature insensitive vertically coupled microring resonator add/drop filters by means of a polymer overlay,” IEEE Photon. Technol. Lett. 11, 1138–1140 (1999).
[Crossref]

iScience (1)

S. Gao and X. Y. Bao, “Chalcogenide taper and its nonlinear effects and sensing applications,” iScience 23, 100802 (2020).
[Crossref]

J. Appl. Polym. Sci. (1)

S. Sain, D. Ray, A. Mukhopadhyay, S. Sengupta, T. Kar, C. J. Ennis, and P. K. S. M. Rahman, “Synthesis and characterization of PMMA-cellulose nanocomposites by in situ polymerization technique,” J. Appl. Polym. Sci. 126, E127–E134 (2012).
[Crossref]

J. Non-Cryst. Solids (1)

S. Hocde, C. Boussard-Pledel, G. Fonteneau, D. Lecoq, H. L. Ma, and J. Lucas, “Recent developments in chemical sensing using infrared glass fibers,” J. Non-Cryst. Solids 274, 17–22 (2000).
[Crossref]

J. Non·Cryst. Solids (1)

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non·Cryst. Solids 330, 1–12 (2003).
[Crossref]

Laser Photon. Rev. (3)

R. Ismaeel, T. Lee, M. Ding, M. Belal, and G. Brambilla, “Optical microfiber passive components,” Laser Photon. Rev. 7, 350–384 (2013).
[Crossref]

M. Siciliani de Cumis, S. Borri, G. Insero, I. Galli, A. Savchenkov, D. Eliyahu, V. Ilchenko, N. Akikusa, A. Matsko, L. Maleki, and P. De Natale, “Microcavity-stabilized quantum cascade laser,” Laser Photon. Rev. 10, 153–157 (2016).
[Crossref]

J. Wang, T. R. Zhan, G. S. Huang, P. K. Chu, and Y. F. Mei, “Optical microcavities with tubular geometry: properties and applications,” Laser Photon. Rev. 8, 521–547 (2014).
[Crossref]

Nanophotonics (2)

Y. H. Guo, J. Wang, Z. H. Han, K. Wada, L. C. Kimerling, A. M. Agarwal, J. Michel, Z. Zheng, G. F. Li, and L. Zhang, “Power-efficient generation of two-octave mid-IR frequency combs in a germanium microresonator,” Nanophotonics 7, 1461–1467 (2018).
[Crossref]

X. Q. Wu and L. M. Tong, “Optical microfibers and nanofibers,” Nanophotonics 2, 407–428 (2013).
[Crossref]

Nat. Commun. (4)

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hansch, N. Picque, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref]

C. Lecaplain, C. Javerzac-Galy, M. L. Gorodetsky, and T. J. Kippenberg, “Mid-infrared ultra-high-Q resonators based on fluoride crystalline materials,” Nat. Commun. 7, 13383 (2016).
[Crossref]

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. J. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

M. J. Yu, Y. Okawachi, A. G. Griffith, N. Picque, M. Lipson, and A. L. Gaeta, “Silicon-chip-based mid-infrared dual-comb spectroscopy,” Nat. Commun. 9, 1869 (2018).
[Crossref]

Nat. Photonics (2)

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
[Crossref]

A. Schliesser, N. Picque, and T. W. Haensch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

Nature (1)

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[Crossref]

Opt. Express (10)

C. Baker and M. Rochette, “Highly nonlinear hybrid AsSe-PMMA microtapers,” Opt. Express 18, 12391–12398 (2010).
[Crossref]

L. M. Tong, J. Y. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12, 1025–1035 (2004).
[Crossref]

S. Tsuda, S. Yamaguchi, Y. Kanamori, and H. Yugami, “Spectral and angular shaping of infrared radiation in a polymer resonator with molecular vibrational modes,” Opt. Express 26, 6899–6915 (2018).
[Crossref]

C. G. Xin, H. Wu, Y. Xie, S. L. Yu, N. Zhou, Z. X. Shi, X. Guo, and L. M. Tong, “CdTe microwires as mid-infrared optical waveguides,” Opt. Express 26, 10944–10952 (2018).
[Crossref]

P. Ma, D. Y. Choi, Y. Yu, Z. Y. Yang, K. Vu, T. Nguyen, A. Mitchell, B. Luther-Davies, and S. Madden, “High Q factor chalcogenide ring resonators for cavity-enhanced MIR spectroscopic sensing,” Opt. Express 23, 19969–19979 (2015).
[Crossref]

R. Shankar, R. Leijssen, I. Bulu, and M. Loncar, “Mid-infrared photonic crystal cavities in silicon,” Opt. Express 19, 5579–5586 (2011).
[Crossref]

Y. Chen, F. Xu, and Y. Q. Lu, “Teflon-coated microfiber resonator with weak temperature dependence,” Opt. Express 19, 22923–22928 (2011).
[Crossref]

F. Vanier, Y. A. Peter, and M. Rochette, “Cascaded Raman lasing in packaged high quality As2S3 microspheres,” Opt. Express 22, 28731–28739 (2014).
[Crossref]

Z. L. Xu, Q. Z. Sun, B. R. Li, Y. Y. Luo, W. G. Lu, D. M. Liu, P. P. Shum, and L. Zhang, “Highly sensitive refractive index sensor based on cascaded microfiber knots with Vernier effect,” Opt. Express 23, 6662–6672 (2015).
[Crossref]

N. Singh, D. D. Hudson, R. Wang, E. C. Magi, D. Y. Choi, C. Grillet, B. Luther-Davies, S. Madden, and B. J. Eggleton, “Positive and negative phototunability of chalcogenide (AMTIR-1) microdisk resonator,” Opt. Express 23, 8681–8686 (2015).
[Crossref]

Opt. Lett. (8)

X. L. Li and H. Ding, “All-fiber magnetic-field sensor based on microfiber knot resonator and magnetic fluid,” Opt. Lett. 37, 5187–5189 (2012).
[Crossref]

H. T. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett. 38, 1470–1472 (2013).
[Crossref]

C. W. Rudy, A. Marandi, K. L. Vodopyanov, and R. L. Byer, “Octave-spanning supercontinuum generation in in situ tapered As2S3 fiber pumped by a thulium-doped fiber laser,” Opt. Lett. 38, 2865–2868 (2013).
[Crossref]

A. A. Savchenkov, V. S. Ilchenko, F. Di Teodoro, P. M. Belden, W. T. Lotshaw, A. B. Matsko, and L. Maleki, “Generation of Kerr combs centered at 4.5 μm in crystalline microresonators pumped with quantum-cascade lasers,” Opt. Lett. 40, 3468–3471 (2015).
[Crossref]

O. Aktas, “Chalcogenide microresonators tailored to distinct morphologies by the shaping of glasses on silica tapers,” Opt. Lett. 42, 907–910 (2017).
[Crossref]

X. S. Jiang, Y. Chen, G. Vienne, and L. M. Tong, “All-fiber add–drop filters based on microfiber knot resonators,” Opt. Lett. 32, 1710–1712 (2007).
[Crossref]

D.-I. Yeom, E. C. Maegi, M. R. E. Lamont, M. A. F. Roelens, L. B. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33, 660–662 (2008).
[Crossref]

Q. M. Zhang, M. Li, Q. A. Hao, D. H. Deng, H. Zhou, H. P. Zeng, L. Zhan, X. A. Wu, L. Y. Liu, and L. Xu, “Fabrication and characterization of on-chip optical nonlinear chalcogenide nanofiber devices,” Opt. Lett. 35, 3829–3831 (2010).
[Crossref]

Photon. Res. (3)

Proc. SPIE (1)

E. M. Dianov, V. M. Krasteva, V. G. Plotnichenko, S. K. Semenov, M. F. Churbanov, and I. Scripachev, “Mechanical properties of chalcogenide glass optical fibers,” Proc. SPIE 0683, 92–100 (1990).
[Crossref]

Rev. Sci. Instrum. (1)

J. M. Ward, D. G. O’Shea, B. J. Shortt, M. J. Morrissey, K. Deasy, and S. G. N. Chormaic, “Heat-and-pull rig for fiber taper fabrication,” Rev. Sci. Instrum. 77, 083105 (2006).
[Crossref]

Sci. Technol. Adv. Mater. (1)

V. Singh, P. T. Lin, N. Patel, H. T. Lin, L. Li, Y. Zou, F. Deng, C. Y. Ni, J. J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

Sensors (1)

L. M. Tong, “Micro/nanofibre optical sensors: challenges and prospects,” Sensors 18, 903 (2018).
[Crossref]

Vib. Spectrosc. (1)

J. Keirsse, C. Boussard-Pledel, O. Loreal, O. Sire, B. Bureau, P. Leroyer, B. Turlin, and J. Lucas, “IR optical fiber sensor for biomedical applications,” Vib. Spectrosc. 32, 23–32 (2003).
[Crossref]

Other (1)

M. J. Weber, Handbook of Optical Materials, 1st ed. (CRC Press, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Fabrications of ChG microfibers and ChG MKRs. (a) and (b) Schematic illustrations of fabrication of a ChG microfiber with controllable waist length and diameter. (c) Optical micrograph of a biconically tapered ChG fiber consisting of a 5.6 μm diameter, 5 mm length ChG microfiber at the central area, and 14 mm length taper area connected to 250 μm diameter initial fiber at both ends. Scale bar, 2 mm. (d) Scanning electron microscope (SEM) image of the microfiber showing the high diameter uniformity. Scale bar, 10 μm. Inset: close-up SEM image of the microfiber, showing excellent sidewall smoothness of the microfiber. Scale bar, 2 μm. (e)–(h) Schematic illustrations of assembly of a ChG MKR in liquid. (i) Optical micrograph of an as-assembled 824 μm diameter ChG MKR using a 3.2 μm diameter ChG microfiber. Inset: close-up optical micrograph of the intertwisted overlap area with an effective coupling length of about 200 μm. (j) Optical micrograph of a 62 μm diameter ChG MKR assembled from a 3.5 μm diameter ChG microfiber.
Fig. 2.
Fig. 2. Mid-IR characterization of a ChG MKR. (a) Schematic illustration of the experimental setup. QCL, quantum cascade laser; CO, free space control optics including polarization controllers (Edmund Optics, 62-770) and homemade silica glass optical attenuators; L1 (L2), ZnSe lens. (b) Typical transmission spectrum of an 824 μm diameter MKR [the one shown in Fig. 1(i)]. (c) Close-up view of the transmission spectrum from 4605 to 4620 nm wavelength, with a measured FSR of about 3.1 nm. (d) Lorentzian fitting (red curve) to a resonance mode (black dots) centered at 4469.14 nm wavelength.
Fig. 3.
Fig. 3. Spectral tunability of the mid-IR ChG MKRs. (a) Typical transmission spectra of a ChG MKR with diameter decreased successively from (1) 1336 μm to (2) 749 μm and (3) 281 μm by tightening the knot structure in liquid, resulting in the FSR increasing from 2.0 to 3.3 and 9.6 nm, correspondingly. (b) Resonance peak wavelength shift of an 824 μm diameter MKR [the one shown in Fig. 1(i)] with the temperature rising from 31.4°C to 59.8°C, leading to a temperature tuning ratio of 110  pm·°C1 within a spectral range of 3.1 nm. Inset: transmission spectra of resonance modes corresponding to 31.4°C (blue line) and 40.6°C (red line).
Fig. 4.
Fig. 4. Mid-IR characterization of a PMMA-embedded on-chip ChG MKR. (a) Schematic illustration of a PMMA-embedded on-chip ChG MKR. (b) Optical micrograph of a PMMA-embedded 551 μm diameter ChG MKR assembled from a 3.4 μm diameter microfiber. (c) Transmission spectrum of the embedded MKR shown in (b), with a measured FSR of 4.2 nm and a Q factor of about 1.1×104 around 4.5 μm wavelength. Inset: Lorentzian fitting (red curve) to a resonance mode (black dots) centered at 4509.54 nm wavelength.

Metrics