Abstract

Perovskite quantum dots (QDs) are of great interest due to their outstanding optoelectronic properties and tremendous application potential. Improving photoluminescence (PL) spectra in all-inorganic perovskite QDs is of great importance for performance enhancement. In this work, the PL quantum yield of the CsPbBr3 perovskite QDs is enhanced from 70% to 95% with increasing radiation pressure. Such enhancement is attributed to the increased binding energy of self-trapped excitons (STEs) upon radiation pressure, which is consistent with its blue-shifted PL and other characterization results. Furthermore, we study ultrafast absorption spectroscopy and find that the dynamics of relaxation from free excitons to STEs in radiation pressure CsPbBr3 QDs is ascribed to stronger electron–phonon coupling in the contracted octahedral structure. It is further demonstrated that radiation pressure can boost the PL efficiency and explore effectively the relationship between the structure and optical properties.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Giant photoluminescence enhancement in monolayer WS2 by energy transfer from CsPbBr3 quantum dots

Yu Liu, Han Li, Xin Zheng, Xiangai Cheng, and Tian Jiang
Opt. Mater. Express 7(4) 1327-1334 (2017)

Ultrafast carrier dynamics in all-inorganic CsPbBr3 perovskite across the pressure-induced phase transition

Xiaochun Liu, Jianhui Han, You Li, Bifa Cao, Chaofan Sun, Hang Yin, Ying Shi, Mingxing Jin, Cailong Liu, Mengtao Sun, and Dajun Ding
Opt. Express 27(16) A995-A1003 (2019)

Temperature-dependent excitonic photoluminescence excited by two-photon absorption in perovskite CsPbBr3 quantum dots

Ke Wei, Zhongjie Xu, Runze Chen, Xin Zheng, Xiangai Cheng, and Tian Jiang
Opt. Lett. 41(16) 3821-3824 (2016)

References

  • View by:
  • |
  • |
  • |

  1. D. Mihalas, ed., Stellar Atmospheres, 2nd ed. (W. H. Freeman & Co., 1978).
  2. A. S. Eddington and A. S. Eddington, The Internal Constitution of the Stars (Cambridge University, 1988).
  3. S. Chandrasekhar, Radiative Transfer (Courier Corporation, 2013).
  4. O. Arcizet, P.-F. Cohadon, and T. Briant, “Radiation-pressure cooling and optomechanical instability of a micromirror,” Nature 444, 71–74 (2006).
    [Crossref]
  5. S. Gigan, H. R. Boehm, and M. Paternostro, “Self-cooling of a micromirror by radiation pressure,” Nature 444, 67–70 (2006).
    [Crossref]
  6. A. Henig, S. Steinke, and M. Schnuerer, “Radiation-pressure acceleration of ion beams driven by circularly polarized laser pulses,” Phys. Rev. Lett. 103, 245003 (2009).
    [Crossref]
  7. B.-W. Max and K. J. Chau, “Simulations of radiation pressure experiments narrow down the energy and momentum of light in matter,” Rep. Prog. Phys. 78, 122401 (2015).
    [Crossref]
  8. A. Schliesser, P. Del’Haye, and N. Nooshi, “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 97, 243905 (2006).
    [Crossref]
  9. A. S. Mancini, V. Giovannetti, and D. Vitali, “Entangling macroscopic oscillators exploiting radiation pressure,” Phys. Rev. Lett. 88, 120401 (2002).
    [Crossref]
  10. T. J. Kippenberg, H. Rokhsari, and T. Carmon, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95, 033901 (2005).
    [Crossref]
  11. A. Ashkin, “Applications of laser-radiation pressure,” Science 210, 1081–1088 (1980).
    [Crossref]
  12. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131, 6050–6051 (2009).
    [Crossref]
  13. J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, and N.-G. Park, “6.5% efficient perovskite quantum-dot-sensitized solar cell,” Nanoscale 3, 4088–4093 (2011).
    [Crossref]
  14. I. Chung, B. Lee, J. He, R. P. H. Chang, and M. G. Kanatzidis, “All-solid-state dye-sensitized solar cells with high efficiency,” Nature 485, 486–489 (2012).
    [Crossref]
  15. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science 338, 643–647 (2012).
    [Crossref]
  16. O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Graetzel, M. K. Nazeeruddin, and H. J. Bolink, “Perovskite solar cells employing organic charge-transport layers,” Nat. Photonics 8, 128–132 (2014).
    [Crossref]
  17. M. Liu, M. B. Johnston, and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature 501, 395–398 (2013).
    [Crossref]
  18. J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. S. Grätzel, “Deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499, 316–319 (2013).
    [Crossref]
  19. D. Liu and T. L. Kelly, “Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques,” Nat. Photonics 8, 133–138 (2014).
    [Crossref]
  20. J.-W. Lee, D.-J. Seol, A.-N. Cho, and N.-G. Park, “High-efficiency perovskite solar cells based on the black polymorph of Hc(NH2)2PbI3,” Adv. Mater. 26, 4991–4998 (2014).
    [Crossref]
  21. H. Zhou, Q. Chen, G. Li, S. Luo, T. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, “Photovoltaics interface engineering of highly efficient perovskite solar cells,” Science 345, 542–546 (2014).
    [Crossref]
  22. R. E. Beal, D. J. Slotcavage, T. Leijtens, A. R. Bowring, R. A. Belisle, W. H. Nguyen, G. F. Burkhard, E. T. Hoke, and M. D. McGehee, “Cesium lead halide perovskites with improved stability for tandem solar cells,” J. Phys. Chem. Lett. 7, 746–751 (2016).
    [Crossref]
  23. M. Kulbak, S. Gupta, N. Kedem, I. Levine, T. Bendikov, G. Hodes, and D. Cahen, “Cesium enhances long-term stability of lead bromide perovskite-based solar cells,” J. Phys. Chem. Lett. 7, 167–172 (2016).
    [Crossref]
  24. J. Song, J. Li, X. Li, L. Xu, Y. Dong, and H. Zeng, “Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3),” Adv. Mater. 27, 7162–7167 (2015).
    [Crossref]
  25. N. Yantara, S. Bhaumik, F. Yan, D. Sabba, H. A. Dewi, N. Mathews, P. P. Boix, H. V. Demir, and S. Mhaisalkar, “Inorganic halide perovskites for efficient light-emitting diodes,” J. Phys. Chem. Lett. 6, 4360–4364 (2015).
    [Crossref]
  26. C. L. Li, Z. G. Zang, W. Chen, Z. P. Hu, X. S. Tang, W. Hu, K. Sun, X. M. Liu, and W. M. Chen, “Highly pure green light emission of perovskite CsPbBr3 quantum dots and their application for green light-emitting diodes,” Opt. Express 24, 15071–15078 (2016).
    [Crossref]
  27. C. C. Stoumpos, C. D. Malliakas, J. A. Peters, Z. Liu, M. Sebastian, J. Im, T. C. Chasapis, A. C. Wibowo, D. Y. Chung, A. J. Freeman, and B. W. Wessels, “Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection,” Cryst. Growth Des. 13, 2722–2727 (2013).
    [Crossref]
  28. C. L. Lia, C. Hana, Y. B. Zhangb, Z. G. Zanga, M. Wanga, X. S. Tanga, and J. Dub, “Enhanced photoresponse of self-powered perovskite photodetector based on ZnO nanoparticles decorated CsPbBr3 films,” Sol. Energy Mater. Sol. Cells 172, 341–346 (2017).
    [Crossref]
  29. C. Han, C. L. Li, Z. G. Zang, M. Wang, K. Sun, X. S. Tanga, and J. Dub, “Tunable luminescent CsPb2Br5 nanoplatelets: applications in light-emitting diodes and photodetectors,” Photon. Res. 5, 473–480 (2017).
    [Crossref]
  30. P. Ramasamy, D. H. Lim, B. Kim, S. H. Lee, M. S. Lee, and J. S. Lee, “All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications,” Chem. Commun. 52, 2067–2070 (2016).
    [Crossref]
  31. X. He, P. Liu, H. Zhang, Q. Liao, J. Yao, and H. Fu, “Patterning multicolored microdisk laser arrays of cesium lead halide perovskite,” Adv. Mater. 29, 1604510 (2017).
    [Crossref]
  32. Y. Wang, X. Li, J. Song, L. Xiao, H. Zeng, and H. Sun, “AllInorganic colloidal perovskite quantum dots: a new class of lasing materials with favorable characteristics,” Adv. Mater. 27, 7101–7108 (2015).
    [Crossref]
  33. C. L. Lia, Z. G. Zanga, C. Hana, Z. P. Hua, X. S. Tanga, J. Dub, Y. Lengb, and K. Sunc, “Highly compact CsPbBr3 perovskite thin films decorated by ZnO nanoparticles for enhanced random lasing,” Nano Energy 40, 195–202 (2017).
    [Crossref]
  34. Q. Zhang, R. Su, W. Du, X. Liu, L. Zhao, S.-T. Ha, and Q.-H. Xiong, “Advances in small perovskite-based lasers,” Small Methods 1, 1700163 (2017).
    [Crossref]
  35. X. Chen, H. Hu, Z. Xia, W. Gao, W. Gou, Y. Qu, and Y. Ma, “CsPbBr3 perovskite nanocrystals as highly selective and sensitive spectrochemical probes for gaseous Hcl detection,” J. Mater. Chem. C 5, 309–313 (2017).
    [Crossref]
  36. A. H. Ip, A. Kiani, I. J. Kramer, O. Voznyy, H. F. Movahed, L. Levina, M. M. Adachi, S. Hoogland, and E. H. Sargent, “Infrared colloidal quantum dot photovoltaics via coupling enhancement and agglomeration suppression,” ACS Nano 9, 8833–8842 (2015).
    [Crossref]
  37. G. H. Carey, A. L. Abdelhady, Z. J. Ning, S. M. Thon, O. M. Bakr, and E. H. Sargent, “Colloidal quantum dot solar cells,” Chem. Rev. 115, 12732–12763 (2015).
    [Crossref]
  38. D. Rossi, D. Parobek, Y. Dong, and D.-H. Son, “Dynamics of exciton-Mn energy transfer in Mn-doped CsPbCl3 perovskite nanocrystals,” J. Phys. Chem. C 121, 17143–17149 (2017).
    [Crossref]
  39. W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H.-L. Wang, and A. D. Mohite, “High-efficiency solution-processed perovskite solar cells with millimeter-scale grains,” Science 347, 522–525 (2017).
    [Crossref]
  40. D. Bi, C. Yi, J. Luo, J.-D. DÉCoppet, F. Zhang, S. M. Zakeeruddin, X. Li, A. Hagfeldt, and M. Grätzel, “Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%,” Nat. Energy 1, 16142 (2016).
    [Crossref]
  41. Y. Zhou, J. Chen, O. M. Bakr, and H. Sun, “Metal-doped lead halide perovskites: synthesis, properties, and optoelectronic applications,” Chem. Mater. 30, 6589–6613 (2018).
    [Crossref]
  42. Z. Yong, S. Guo, J. Ma, J. Zhang, Z. Li, Y. Chen, B. Zhang, Y. Zhou, J. Shu, J. Gu, L. Zheng, O. M. Bakr, and H. Sun, “Doping-enhanced short-range order of perovskite nanocrystals for near-unity violet luminescence quantum yield,” J. Am. Chem. Soc. 140, 9942–9951 (2018).
    [Crossref]
  43. Y. Wu, C. Wei, X. Li, Y. Li, S. Qiu, W. Shen, B. Cai, Z. Sun, D. Yang, Z. Deng, and H. Zeng, “In situ passivation of PbBr64− octahedra toward blue luminescent CsPbBr3 nanoplatelets with near 100% absolute quantum yield,” ACS Energy Lett. 3, 2030–2037 (2018).
    [Crossref]
  44. Z. Ma, Z. Liu, S. Lu, L. Wang, X. Feng, D. Yang, K. Wang, G. Xiao, L. Zhang, S. Redfern, and B. Zou, “Pressure-induced emission of cesium lead halide perovskite nanocrystals,” Nat. Commun. 9, 4506 (2018).
    [Crossref]
  45. N. Yasutaka, K. Kimball, R. Tan, R. Li, Z. Wang, and O. Chen, “Nanocube superlattices of cesium lead bromide perovskites and pressure-induced phase transformations at atomic and mesoscale levels,” Adv. Mater. 29, 1606666 (2017).
    [Crossref]
  46. G. Xiao, Y. Cao, G. Qi, L. Wang, C. Liu, Z. Ma, X. Yang, Y. Sui, W. Zheng, and B. Zou, “Pressure effects on structure and optical properties in cesium lead bromide perovskite nanocrystals,” J. Am. Chem. Soc. 139, 10087–10094 (2017).
    [Crossref]
  47. L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, “Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut,” Nano Lett. 15, 3692–3696 (2015).
    [Crossref]
  48. K. Tanimura and N. Itoh, “Relaxation of excitons perturbed by self-trapped excitons in RbI: evidence for exciton fusion in inorganic solids with strong electron-phonon coupling,” Phys. Rev. Lett. 64, 1429–1432 (1990).
    [Crossref]
  49. M. Yoshizawa, Y. Hattori, and T. Kobayashi, “Nonlinear optical susceptibilities of epitaxially grown polydiacetylene measured by femtosecond time-resolved spectroscopy,” Phys. Rev. B 47, 3882–3889 (1993).
    [Crossref]
  50. M. Yoshizawa, K. Nishiyama, M. Fujihira, and T. Kobayashi, “Exciton transition energy and temperature dependence of ultrafast relaxation of self-trapped excitons in polydiacetylenes,” Chem. Phys. Lett. 207, 461–467 (1993).
    [Crossref]
  51. M. P. Prange, R. M. Van Ginhoven, N. Govind, and F. Gao, “Formation, stability, and mobility of self-trapped excitations in NaI and NaI1–xTlx from first principles,” Phys. Rev. B 87, 115101 (2013).
    [Crossref]
  52. Y. Liu, P. Chen, Z. H. Wang, F. Bian, L. Lin, S. J. Chang, and G. G. Mu, “Efficient two-photon absorption of CdSe-CdS/Zns core-multishell quantum dots under the excitation of near-infrared femtosecond pulsed laser,” Laser Phys. 19, 1886–1890 (2009).
    [Crossref]
  53. H. Cho, S.-H. Jeong, M. H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, and T.-W. Lee, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350, 1222–1225 (2015).
    [Crossref]
  54. J. Xing, X. F. Liu, Q. Zhang, S. T. Ha, Y. W. Yuan, C. Shen, T. C. Sum, and Q. H. Xiong, “Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers,” Nano Lett. 15, 4571–4577 (2015).
    [Crossref]
  55. A. Yasuda, M. Yoshizawaand, and T. Kobayashi, “Fluorescence spectrum of a blue-phase polydiacetylene obtained by probe saturation spectroscopy,” Chem. Phys. Lett. 209, 281–286 (1993).
    [Crossref]
  56. N. Mondal and A. Samanta, “Complete ultrafast charge carrier dynamics in photo-excited all-inorganic perovskite nanocrystals (CsPbX3),” Nanoscale 9, 1878–1885 (2017).
    [Crossref]
  57. M. Yoshizawa, A. Yasuda, and T. Kobayashi, “Ultrafast optical response in polydiacetylenes and polythiophenes,” Appl. Phys. B 53, 296–307 (1991).
    [Crossref]
  58. T. Kobayashi and M. Yoshizawa, “Femtosecond nonlinear response of polydiacetylenes and polythiophenes,” Synth. Metals 43, 3129–3134 (1991).
    [Crossref]
  59. T. Kobayashi, “Ultrafast relaxation in conjugated polymers,” J. Lumin. 53, 159–164 (1992).
    [Crossref]
  60. J. Yao, J. Ge, B. Han, K. Wang, H. Yao, H. Yu, J. Li, B. Zhu, J. Song, C. Chen, Q. Zhang, H. Zeng, Y. Luo, and S. Yu, “Ce3+-doping to modulate photoluminescence kinetics for efficient CsPbBr3 nanocrystals based light-emitting diodes,” J. Am. Chem. Soc. 140, 3626–3634 (2018).
    [Crossref]
  61. T. Kobayashi and H. Ikeda, “Dependence of the spectrum and decay of transient photoinduced reflectance change on excitation wavelength and intensity in polydiacetylene single crystals,” Chem. Phys. Lett. 133, 54–58 (1987).
    [Crossref]
  62. T. Kobayashi and H. Ikeda, “Dependence of excitation wavelength and intensity on the spectrum and decay of the time-resolved reflectance change of polydiacetylene single crystals,” Synth. Metals 18, 441–446 (1987).
    [Crossref]
  63. T. Kobayashi, H. Ikeda, S. Tstmeyuki, and T. Kotaka, “Tn ← T1 absorption spectra of urethane substituted polydiacetylene in solutions at several pH values,” Chem. Phys. Lett. 116, 515–520 (1985).
    [Crossref]
  64. P. Uprety, B. Macco, M. M. Junda, C. R. Grice, W. M. M. Kessels, and N. J. Podraza, “Optical and electrical properties of H2 plasma-treated ZnO films prepared by atomic layer deposition using supercycles,” Mater. Sci. Semi. Proc. 84, 91–100 (2018).
    [Crossref]
  65. B. Macco, H. C. M. Knoops, M. A. Verheijen, W. Beyer, M. Creatore, and W. M. M. Kessels, “Atomic layer deposition of high-mobility hydrogen-doped zinc oxide,” Sol. Energ. Mater. Sol. Cells 173, 111–119 (2017).
    [Crossref]
  66. F. Zhang, H. Zhong, C. Chen, X.-G. Wu, X. Hu, H. Huang, J. Han, B. Zou, and Y. Dong, “Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: potential alternatives for dsplay technology,” ACS Nano 9, 4533–4542 (2015).
    [Crossref]
  67. Z. Bai and H. Zhong, “Halide perovskite quantum dots: potential candidates for display technology,” Sci. Bull. 60, 1622–1624 (2015).
    [Crossref]
  68. T. C. Sum, N. Mathews, G. C. Xing, S. S. Lim, W. K. Chong, D. Giovanni, and H. A. Dewi, “Spectral features and charge dynamics of lead halide perovskites: origins and interpretations,” Acc. Chem. Res. 49, 294–302 (2016).
    [Crossref]
  69. H. Polaert, G. Grehan, and G. Gouesbet, “Forces and torques exerted on a multilayered spherical particle by a focused Gaussian bean,” Opt. Commun. 155, 169–179 (1998).
    [Crossref]
  70. J. P. Barton, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused light beam,” J. Appl. Phys. 64, 1632–1639 (1998).
    [Crossref]
  71. J. P. Barton and D. R. Alexander, “Fifth-order corrected electromagnetic field components for a fundamental Gaussian beam,” J. Appl. Phys. 66, 2800–2802 (1989).
    [Crossref]
  72. E. F. Nichols and G. F. Hull, “The pressure due to radiation,” Astrophys. J. 17, 315–351 (1903).
    [Crossref]

2018 (6)

Y. Zhou, J. Chen, O. M. Bakr, and H. Sun, “Metal-doped lead halide perovskites: synthesis, properties, and optoelectronic applications,” Chem. Mater. 30, 6589–6613 (2018).
[Crossref]

Z. Yong, S. Guo, J. Ma, J. Zhang, Z. Li, Y. Chen, B. Zhang, Y. Zhou, J. Shu, J. Gu, L. Zheng, O. M. Bakr, and H. Sun, “Doping-enhanced short-range order of perovskite nanocrystals for near-unity violet luminescence quantum yield,” J. Am. Chem. Soc. 140, 9942–9951 (2018).
[Crossref]

Y. Wu, C. Wei, X. Li, Y. Li, S. Qiu, W. Shen, B. Cai, Z. Sun, D. Yang, Z. Deng, and H. Zeng, “In situ passivation of PbBr64− octahedra toward blue luminescent CsPbBr3 nanoplatelets with near 100% absolute quantum yield,” ACS Energy Lett. 3, 2030–2037 (2018).
[Crossref]

Z. Ma, Z. Liu, S. Lu, L. Wang, X. Feng, D. Yang, K. Wang, G. Xiao, L. Zhang, S. Redfern, and B. Zou, “Pressure-induced emission of cesium lead halide perovskite nanocrystals,” Nat. Commun. 9, 4506 (2018).
[Crossref]

J. Yao, J. Ge, B. Han, K. Wang, H. Yao, H. Yu, J. Li, B. Zhu, J. Song, C. Chen, Q. Zhang, H. Zeng, Y. Luo, and S. Yu, “Ce3+-doping to modulate photoluminescence kinetics for efficient CsPbBr3 nanocrystals based light-emitting diodes,” J. Am. Chem. Soc. 140, 3626–3634 (2018).
[Crossref]

P. Uprety, B. Macco, M. M. Junda, C. R. Grice, W. M. M. Kessels, and N. J. Podraza, “Optical and electrical properties of H2 plasma-treated ZnO films prepared by atomic layer deposition using supercycles,” Mater. Sci. Semi. Proc. 84, 91–100 (2018).
[Crossref]

2017 (12)

B. Macco, H. C. M. Knoops, M. A. Verheijen, W. Beyer, M. Creatore, and W. M. M. Kessels, “Atomic layer deposition of high-mobility hydrogen-doped zinc oxide,” Sol. Energ. Mater. Sol. Cells 173, 111–119 (2017).
[Crossref]

N. Mondal and A. Samanta, “Complete ultrafast charge carrier dynamics in photo-excited all-inorganic perovskite nanocrystals (CsPbX3),” Nanoscale 9, 1878–1885 (2017).
[Crossref]

N. Yasutaka, K. Kimball, R. Tan, R. Li, Z. Wang, and O. Chen, “Nanocube superlattices of cesium lead bromide perovskites and pressure-induced phase transformations at atomic and mesoscale levels,” Adv. Mater. 29, 1606666 (2017).
[Crossref]

G. Xiao, Y. Cao, G. Qi, L. Wang, C. Liu, Z. Ma, X. Yang, Y. Sui, W. Zheng, and B. Zou, “Pressure effects on structure and optical properties in cesium lead bromide perovskite nanocrystals,” J. Am. Chem. Soc. 139, 10087–10094 (2017).
[Crossref]

C. L. Lia, Z. G. Zanga, C. Hana, Z. P. Hua, X. S. Tanga, J. Dub, Y. Lengb, and K. Sunc, “Highly compact CsPbBr3 perovskite thin films decorated by ZnO nanoparticles for enhanced random lasing,” Nano Energy 40, 195–202 (2017).
[Crossref]

Q. Zhang, R. Su, W. Du, X. Liu, L. Zhao, S.-T. Ha, and Q.-H. Xiong, “Advances in small perovskite-based lasers,” Small Methods 1, 1700163 (2017).
[Crossref]

X. Chen, H. Hu, Z. Xia, W. Gao, W. Gou, Y. Qu, and Y. Ma, “CsPbBr3 perovskite nanocrystals as highly selective and sensitive spectrochemical probes for gaseous Hcl detection,” J. Mater. Chem. C 5, 309–313 (2017).
[Crossref]

X. He, P. Liu, H. Zhang, Q. Liao, J. Yao, and H. Fu, “Patterning multicolored microdisk laser arrays of cesium lead halide perovskite,” Adv. Mater. 29, 1604510 (2017).
[Crossref]

D. Rossi, D. Parobek, Y. Dong, and D.-H. Son, “Dynamics of exciton-Mn energy transfer in Mn-doped CsPbCl3 perovskite nanocrystals,” J. Phys. Chem. C 121, 17143–17149 (2017).
[Crossref]

W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H.-L. Wang, and A. D. Mohite, “High-efficiency solution-processed perovskite solar cells with millimeter-scale grains,” Science 347, 522–525 (2017).
[Crossref]

C. L. Lia, C. Hana, Y. B. Zhangb, Z. G. Zanga, M. Wanga, X. S. Tanga, and J. Dub, “Enhanced photoresponse of self-powered perovskite photodetector based on ZnO nanoparticles decorated CsPbBr3 films,” Sol. Energy Mater. Sol. Cells 172, 341–346 (2017).
[Crossref]

C. Han, C. L. Li, Z. G. Zang, M. Wang, K. Sun, X. S. Tanga, and J. Dub, “Tunable luminescent CsPb2Br5 nanoplatelets: applications in light-emitting diodes and photodetectors,” Photon. Res. 5, 473–480 (2017).
[Crossref]

2016 (6)

C. L. Li, Z. G. Zang, W. Chen, Z. P. Hu, X. S. Tang, W. Hu, K. Sun, X. M. Liu, and W. M. Chen, “Highly pure green light emission of perovskite CsPbBr3 quantum dots and their application for green light-emitting diodes,” Opt. Express 24, 15071–15078 (2016).
[Crossref]

R. E. Beal, D. J. Slotcavage, T. Leijtens, A. R. Bowring, R. A. Belisle, W. H. Nguyen, G. F. Burkhard, E. T. Hoke, and M. D. McGehee, “Cesium lead halide perovskites with improved stability for tandem solar cells,” J. Phys. Chem. Lett. 7, 746–751 (2016).
[Crossref]

M. Kulbak, S. Gupta, N. Kedem, I. Levine, T. Bendikov, G. Hodes, and D. Cahen, “Cesium enhances long-term stability of lead bromide perovskite-based solar cells,” J. Phys. Chem. Lett. 7, 167–172 (2016).
[Crossref]

T. C. Sum, N. Mathews, G. C. Xing, S. S. Lim, W. K. Chong, D. Giovanni, and H. A. Dewi, “Spectral features and charge dynamics of lead halide perovskites: origins and interpretations,” Acc. Chem. Res. 49, 294–302 (2016).
[Crossref]

P. Ramasamy, D. H. Lim, B. Kim, S. H. Lee, M. S. Lee, and J. S. Lee, “All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications,” Chem. Commun. 52, 2067–2070 (2016).
[Crossref]

D. Bi, C. Yi, J. Luo, J.-D. DÉCoppet, F. Zhang, S. M. Zakeeruddin, X. Li, A. Hagfeldt, and M. Grätzel, “Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%,” Nat. Energy 1, 16142 (2016).
[Crossref]

2015 (11)

Y. Wang, X. Li, J. Song, L. Xiao, H. Zeng, and H. Sun, “AllInorganic colloidal perovskite quantum dots: a new class of lasing materials with favorable characteristics,” Adv. Mater. 27, 7101–7108 (2015).
[Crossref]

A. H. Ip, A. Kiani, I. J. Kramer, O. Voznyy, H. F. Movahed, L. Levina, M. M. Adachi, S. Hoogland, and E. H. Sargent, “Infrared colloidal quantum dot photovoltaics via coupling enhancement and agglomeration suppression,” ACS Nano 9, 8833–8842 (2015).
[Crossref]

G. H. Carey, A. L. Abdelhady, Z. J. Ning, S. M. Thon, O. M. Bakr, and E. H. Sargent, “Colloidal quantum dot solar cells,” Chem. Rev. 115, 12732–12763 (2015).
[Crossref]

L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, “Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut,” Nano Lett. 15, 3692–3696 (2015).
[Crossref]

H. Cho, S.-H. Jeong, M. H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, and T.-W. Lee, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350, 1222–1225 (2015).
[Crossref]

J. Xing, X. F. Liu, Q. Zhang, S. T. Ha, Y. W. Yuan, C. Shen, T. C. Sum, and Q. H. Xiong, “Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers,” Nano Lett. 15, 4571–4577 (2015).
[Crossref]

F. Zhang, H. Zhong, C. Chen, X.-G. Wu, X. Hu, H. Huang, J. Han, B. Zou, and Y. Dong, “Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: potential alternatives for dsplay technology,” ACS Nano 9, 4533–4542 (2015).
[Crossref]

Z. Bai and H. Zhong, “Halide perovskite quantum dots: potential candidates for display technology,” Sci. Bull. 60, 1622–1624 (2015).
[Crossref]

B.-W. Max and K. J. Chau, “Simulations of radiation pressure experiments narrow down the energy and momentum of light in matter,” Rep. Prog. Phys. 78, 122401 (2015).
[Crossref]

J. Song, J. Li, X. Li, L. Xu, Y. Dong, and H. Zeng, “Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3),” Adv. Mater. 27, 7162–7167 (2015).
[Crossref]

N. Yantara, S. Bhaumik, F. Yan, D. Sabba, H. A. Dewi, N. Mathews, P. P. Boix, H. V. Demir, and S. Mhaisalkar, “Inorganic halide perovskites for efficient light-emitting diodes,” J. Phys. Chem. Lett. 6, 4360–4364 (2015).
[Crossref]

2014 (4)

O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Graetzel, M. K. Nazeeruddin, and H. J. Bolink, “Perovskite solar cells employing organic charge-transport layers,” Nat. Photonics 8, 128–132 (2014).
[Crossref]

D. Liu and T. L. Kelly, “Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques,” Nat. Photonics 8, 133–138 (2014).
[Crossref]

J.-W. Lee, D.-J. Seol, A.-N. Cho, and N.-G. Park, “High-efficiency perovskite solar cells based on the black polymorph of Hc(NH2)2PbI3,” Adv. Mater. 26, 4991–4998 (2014).
[Crossref]

H. Zhou, Q. Chen, G. Li, S. Luo, T. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, “Photovoltaics interface engineering of highly efficient perovskite solar cells,” Science 345, 542–546 (2014).
[Crossref]

2013 (4)

M. Liu, M. B. Johnston, and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature 501, 395–398 (2013).
[Crossref]

J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. S. Grätzel, “Deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499, 316–319 (2013).
[Crossref]

C. C. Stoumpos, C. D. Malliakas, J. A. Peters, Z. Liu, M. Sebastian, J. Im, T. C. Chasapis, A. C. Wibowo, D. Y. Chung, A. J. Freeman, and B. W. Wessels, “Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection,” Cryst. Growth Des. 13, 2722–2727 (2013).
[Crossref]

M. P. Prange, R. M. Van Ginhoven, N. Govind, and F. Gao, “Formation, stability, and mobility of self-trapped excitations in NaI and NaI1–xTlx from first principles,” Phys. Rev. B 87, 115101 (2013).
[Crossref]

2012 (2)

I. Chung, B. Lee, J. He, R. P. H. Chang, and M. G. Kanatzidis, “All-solid-state dye-sensitized solar cells with high efficiency,” Nature 485, 486–489 (2012).
[Crossref]

M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science 338, 643–647 (2012).
[Crossref]

2011 (1)

J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, and N.-G. Park, “6.5% efficient perovskite quantum-dot-sensitized solar cell,” Nanoscale 3, 4088–4093 (2011).
[Crossref]

2009 (3)

A. Henig, S. Steinke, and M. Schnuerer, “Radiation-pressure acceleration of ion beams driven by circularly polarized laser pulses,” Phys. Rev. Lett. 103, 245003 (2009).
[Crossref]

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131, 6050–6051 (2009).
[Crossref]

Y. Liu, P. Chen, Z. H. Wang, F. Bian, L. Lin, S. J. Chang, and G. G. Mu, “Efficient two-photon absorption of CdSe-CdS/Zns core-multishell quantum dots under the excitation of near-infrared femtosecond pulsed laser,” Laser Phys. 19, 1886–1890 (2009).
[Crossref]

2006 (3)

A. Schliesser, P. Del’Haye, and N. Nooshi, “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 97, 243905 (2006).
[Crossref]

O. Arcizet, P.-F. Cohadon, and T. Briant, “Radiation-pressure cooling and optomechanical instability of a micromirror,” Nature 444, 71–74 (2006).
[Crossref]

S. Gigan, H. R. Boehm, and M. Paternostro, “Self-cooling of a micromirror by radiation pressure,” Nature 444, 67–70 (2006).
[Crossref]

2005 (1)

T. J. Kippenberg, H. Rokhsari, and T. Carmon, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95, 033901 (2005).
[Crossref]

2002 (1)

A. S. Mancini, V. Giovannetti, and D. Vitali, “Entangling macroscopic oscillators exploiting radiation pressure,” Phys. Rev. Lett. 88, 120401 (2002).
[Crossref]

1998 (2)

H. Polaert, G. Grehan, and G. Gouesbet, “Forces and torques exerted on a multilayered spherical particle by a focused Gaussian bean,” Opt. Commun. 155, 169–179 (1998).
[Crossref]

J. P. Barton, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused light beam,” J. Appl. Phys. 64, 1632–1639 (1998).
[Crossref]

1993 (3)

M. Yoshizawa, Y. Hattori, and T. Kobayashi, “Nonlinear optical susceptibilities of epitaxially grown polydiacetylene measured by femtosecond time-resolved spectroscopy,” Phys. Rev. B 47, 3882–3889 (1993).
[Crossref]

M. Yoshizawa, K. Nishiyama, M. Fujihira, and T. Kobayashi, “Exciton transition energy and temperature dependence of ultrafast relaxation of self-trapped excitons in polydiacetylenes,” Chem. Phys. Lett. 207, 461–467 (1993).
[Crossref]

A. Yasuda, M. Yoshizawaand, and T. Kobayashi, “Fluorescence spectrum of a blue-phase polydiacetylene obtained by probe saturation spectroscopy,” Chem. Phys. Lett. 209, 281–286 (1993).
[Crossref]

1992 (1)

T. Kobayashi, “Ultrafast relaxation in conjugated polymers,” J. Lumin. 53, 159–164 (1992).
[Crossref]

1991 (2)

M. Yoshizawa, A. Yasuda, and T. Kobayashi, “Ultrafast optical response in polydiacetylenes and polythiophenes,” Appl. Phys. B 53, 296–307 (1991).
[Crossref]

T. Kobayashi and M. Yoshizawa, “Femtosecond nonlinear response of polydiacetylenes and polythiophenes,” Synth. Metals 43, 3129–3134 (1991).
[Crossref]

1990 (1)

K. Tanimura and N. Itoh, “Relaxation of excitons perturbed by self-trapped excitons in RbI: evidence for exciton fusion in inorganic solids with strong electron-phonon coupling,” Phys. Rev. Lett. 64, 1429–1432 (1990).
[Crossref]

1989 (1)

J. P. Barton and D. R. Alexander, “Fifth-order corrected electromagnetic field components for a fundamental Gaussian beam,” J. Appl. Phys. 66, 2800–2802 (1989).
[Crossref]

1987 (2)

T. Kobayashi and H. Ikeda, “Dependence of the spectrum and decay of transient photoinduced reflectance change on excitation wavelength and intensity in polydiacetylene single crystals,” Chem. Phys. Lett. 133, 54–58 (1987).
[Crossref]

T. Kobayashi and H. Ikeda, “Dependence of excitation wavelength and intensity on the spectrum and decay of the time-resolved reflectance change of polydiacetylene single crystals,” Synth. Metals 18, 441–446 (1987).
[Crossref]

1985 (1)

T. Kobayashi, H. Ikeda, S. Tstmeyuki, and T. Kotaka, “Tn ← T1 absorption spectra of urethane substituted polydiacetylene in solutions at several pH values,” Chem. Phys. Lett. 116, 515–520 (1985).
[Crossref]

1980 (1)

A. Ashkin, “Applications of laser-radiation pressure,” Science 210, 1081–1088 (1980).
[Crossref]

1903 (1)

E. F. Nichols and G. F. Hull, “The pressure due to radiation,” Astrophys. J. 17, 315–351 (1903).
[Crossref]

Abdelhady, A. L.

G. H. Carey, A. L. Abdelhady, Z. J. Ning, S. M. Thon, O. M. Bakr, and E. H. Sargent, “Colloidal quantum dot solar cells,” Chem. Rev. 115, 12732–12763 (2015).
[Crossref]

Adachi, M. M.

A. H. Ip, A. Kiani, I. J. Kramer, O. Voznyy, H. F. Movahed, L. Levina, M. M. Adachi, S. Hoogland, and E. H. Sargent, “Infrared colloidal quantum dot photovoltaics via coupling enhancement and agglomeration suppression,” ACS Nano 9, 8833–8842 (2015).
[Crossref]

Alam, M. A.

W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H.-L. Wang, and A. D. Mohite, “High-efficiency solution-processed perovskite solar cells with millimeter-scale grains,” Science 347, 522–525 (2017).
[Crossref]

Alexander, D. R.

J. P. Barton and D. R. Alexander, “Fifth-order corrected electromagnetic field components for a fundamental Gaussian beam,” J. Appl. Phys. 66, 2800–2802 (1989).
[Crossref]

Arcizet, O.

O. Arcizet, P.-F. Cohadon, and T. Briant, “Radiation-pressure cooling and optomechanical instability of a micromirror,” Nature 444, 71–74 (2006).
[Crossref]

Asadpour, R.

W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H.-L. Wang, and A. D. Mohite, “High-efficiency solution-processed perovskite solar cells with millimeter-scale grains,” Science 347, 522–525 (2017).
[Crossref]

Ashkin, A.

A. Ashkin, “Applications of laser-radiation pressure,” Science 210, 1081–1088 (1980).
[Crossref]

Bai, Z.

Z. Bai and H. Zhong, “Halide perovskite quantum dots: potential candidates for display technology,” Sci. Bull. 60, 1622–1624 (2015).
[Crossref]

Bakr, O. M.

Y. Zhou, J. Chen, O. M. Bakr, and H. Sun, “Metal-doped lead halide perovskites: synthesis, properties, and optoelectronic applications,” Chem. Mater. 30, 6589–6613 (2018).
[Crossref]

Z. Yong, S. Guo, J. Ma, J. Zhang, Z. Li, Y. Chen, B. Zhang, Y. Zhou, J. Shu, J. Gu, L. Zheng, O. M. Bakr, and H. Sun, “Doping-enhanced short-range order of perovskite nanocrystals for near-unity violet luminescence quantum yield,” J. Am. Chem. Soc. 140, 9942–9951 (2018).
[Crossref]

G. H. Carey, A. L. Abdelhady, Z. J. Ning, S. M. Thon, O. M. Bakr, and E. H. Sargent, “Colloidal quantum dot solar cells,” Chem. Rev. 115, 12732–12763 (2015).
[Crossref]

Barton, J. P.

J. P. Barton, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused light beam,” J. Appl. Phys. 64, 1632–1639 (1998).
[Crossref]

J. P. Barton and D. R. Alexander, “Fifth-order corrected electromagnetic field components for a fundamental Gaussian beam,” J. Appl. Phys. 66, 2800–2802 (1989).
[Crossref]

Beal, R. E.

R. E. Beal, D. J. Slotcavage, T. Leijtens, A. R. Bowring, R. A. Belisle, W. H. Nguyen, G. F. Burkhard, E. T. Hoke, and M. D. McGehee, “Cesium lead halide perovskites with improved stability for tandem solar cells,” J. Phys. Chem. Lett. 7, 746–751 (2016).
[Crossref]

Belisle, R. A.

R. E. Beal, D. J. Slotcavage, T. Leijtens, A. R. Bowring, R. A. Belisle, W. H. Nguyen, G. F. Burkhard, E. T. Hoke, and M. D. McGehee, “Cesium lead halide perovskites with improved stability for tandem solar cells,” J. Phys. Chem. Lett. 7, 746–751 (2016).
[Crossref]

Bendikov, T.

M. Kulbak, S. Gupta, N. Kedem, I. Levine, T. Bendikov, G. Hodes, and D. Cahen, “Cesium enhances long-term stability of lead bromide perovskite-based solar cells,” J. Phys. Chem. Lett. 7, 167–172 (2016).
[Crossref]

Beyer, W.

B. Macco, H. C. M. Knoops, M. A. Verheijen, W. Beyer, M. Creatore, and W. M. M. Kessels, “Atomic layer deposition of high-mobility hydrogen-doped zinc oxide,” Sol. Energ. Mater. Sol. Cells 173, 111–119 (2017).
[Crossref]

Bhaumik, S.

N. Yantara, S. Bhaumik, F. Yan, D. Sabba, H. A. Dewi, N. Mathews, P. P. Boix, H. V. Demir, and S. Mhaisalkar, “Inorganic halide perovskites for efficient light-emitting diodes,” J. Phys. Chem. Lett. 6, 4360–4364 (2015).
[Crossref]

Bi, D.

D. Bi, C. Yi, J. Luo, J.-D. DÉCoppet, F. Zhang, S. M. Zakeeruddin, X. Li, A. Hagfeldt, and M. Grätzel, “Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%,” Nat. Energy 1, 16142 (2016).
[Crossref]

Bian, F.

Y. Liu, P. Chen, Z. H. Wang, F. Bian, L. Lin, S. J. Chang, and G. G. Mu, “Efficient two-photon absorption of CdSe-CdS/Zns core-multishell quantum dots under the excitation of near-infrared femtosecond pulsed laser,” Laser Phys. 19, 1886–1890 (2009).
[Crossref]

Blancon, J.-C.

W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H.-L. Wang, and A. D. Mohite, “High-efficiency solution-processed perovskite solar cells with millimeter-scale grains,” Science 347, 522–525 (2017).
[Crossref]

Bodnarchuk, M. I.

L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, “Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut,” Nano Lett. 15, 3692–3696 (2015).
[Crossref]

Boehm, H. R.

S. Gigan, H. R. Boehm, and M. Paternostro, “Self-cooling of a micromirror by radiation pressure,” Nature 444, 67–70 (2006).
[Crossref]

Boix, P. P.

N. Yantara, S. Bhaumik, F. Yan, D. Sabba, H. A. Dewi, N. Mathews, P. P. Boix, H. V. Demir, and S. Mhaisalkar, “Inorganic halide perovskites for efficient light-emitting diodes,” J. Phys. Chem. Lett. 6, 4360–4364 (2015).
[Crossref]

Bolink, H. J.

O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Graetzel, M. K. Nazeeruddin, and H. J. Bolink, “Perovskite solar cells employing organic charge-transport layers,” Nat. Photonics 8, 128–132 (2014).
[Crossref]

Bowring, A. R.

R. E. Beal, D. J. Slotcavage, T. Leijtens, A. R. Bowring, R. A. Belisle, W. H. Nguyen, G. F. Burkhard, E. T. Hoke, and M. D. McGehee, “Cesium lead halide perovskites with improved stability for tandem solar cells,” J. Phys. Chem. Lett. 7, 746–751 (2016).
[Crossref]

Briant, T.

O. Arcizet, P.-F. Cohadon, and T. Briant, “Radiation-pressure cooling and optomechanical instability of a micromirror,” Nature 444, 71–74 (2006).
[Crossref]

Burkhard, G. F.

R. E. Beal, D. J. Slotcavage, T. Leijtens, A. R. Bowring, R. A. Belisle, W. H. Nguyen, G. F. Burkhard, E. T. Hoke, and M. D. McGehee, “Cesium lead halide perovskites with improved stability for tandem solar cells,” J. Phys. Chem. Lett. 7, 746–751 (2016).
[Crossref]

Burschka, J.

J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. S. Grätzel, “Deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499, 316–319 (2013).
[Crossref]

Cahen, D.

M. Kulbak, S. Gupta, N. Kedem, I. Levine, T. Bendikov, G. Hodes, and D. Cahen, “Cesium enhances long-term stability of lead bromide perovskite-based solar cells,” J. Phys. Chem. Lett. 7, 167–172 (2016).
[Crossref]

Cai, B.

Y. Wu, C. Wei, X. Li, Y. Li, S. Qiu, W. Shen, B. Cai, Z. Sun, D. Yang, Z. Deng, and H. Zeng, “In situ passivation of PbBr64− octahedra toward blue luminescent CsPbBr3 nanoplatelets with near 100% absolute quantum yield,” ACS Energy Lett. 3, 2030–2037 (2018).
[Crossref]

Cao, Y.

G. Xiao, Y. Cao, G. Qi, L. Wang, C. Liu, Z. Ma, X. Yang, Y. Sui, W. Zheng, and B. Zou, “Pressure effects on structure and optical properties in cesium lead bromide perovskite nanocrystals,” J. Am. Chem. Soc. 139, 10087–10094 (2017).
[Crossref]

Caputo, R.

L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, “Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut,” Nano Lett. 15, 3692–3696 (2015).
[Crossref]

Carey, G. H.

G. H. Carey, A. L. Abdelhady, Z. J. Ning, S. M. Thon, O. M. Bakr, and E. H. Sargent, “Colloidal quantum dot solar cells,” Chem. Rev. 115, 12732–12763 (2015).
[Crossref]

Carmon, T.

T. J. Kippenberg, H. Rokhsari, and T. Carmon, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95, 033901 (2005).
[Crossref]

Chandrasekhar, S.

S. Chandrasekhar, Radiative Transfer (Courier Corporation, 2013).

Chang, R. P. H.

I. Chung, B. Lee, J. He, R. P. H. Chang, and M. G. Kanatzidis, “All-solid-state dye-sensitized solar cells with high efficiency,” Nature 485, 486–489 (2012).
[Crossref]

Chang, S. J.

Y. Liu, P. Chen, Z. H. Wang, F. Bian, L. Lin, S. J. Chang, and G. G. Mu, “Efficient two-photon absorption of CdSe-CdS/Zns core-multishell quantum dots under the excitation of near-infrared femtosecond pulsed laser,” Laser Phys. 19, 1886–1890 (2009).
[Crossref]

Chasapis, T. C.

C. C. Stoumpos, C. D. Malliakas, J. A. Peters, Z. Liu, M. Sebastian, J. Im, T. C. Chasapis, A. C. Wibowo, D. Y. Chung, A. J. Freeman, and B. W. Wessels, “Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection,” Cryst. Growth Des. 13, 2722–2727 (2013).
[Crossref]

Chau, K. J.

B.-W. Max and K. J. Chau, “Simulations of radiation pressure experiments narrow down the energy and momentum of light in matter,” Rep. Prog. Phys. 78, 122401 (2015).
[Crossref]

Chen, C.

J. Yao, J. Ge, B. Han, K. Wang, H. Yao, H. Yu, J. Li, B. Zhu, J. Song, C. Chen, Q. Zhang, H. Zeng, Y. Luo, and S. Yu, “Ce3+-doping to modulate photoluminescence kinetics for efficient CsPbBr3 nanocrystals based light-emitting diodes,” J. Am. Chem. Soc. 140, 3626–3634 (2018).
[Crossref]

F. Zhang, H. Zhong, C. Chen, X.-G. Wu, X. Hu, H. Huang, J. Han, B. Zou, and Y. Dong, “Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: potential alternatives for dsplay technology,” ACS Nano 9, 4533–4542 (2015).
[Crossref]

Chen, J.

Y. Zhou, J. Chen, O. M. Bakr, and H. Sun, “Metal-doped lead halide perovskites: synthesis, properties, and optoelectronic applications,” Chem. Mater. 30, 6589–6613 (2018).
[Crossref]

Chen, O.

N. Yasutaka, K. Kimball, R. Tan, R. Li, Z. Wang, and O. Chen, “Nanocube superlattices of cesium lead bromide perovskites and pressure-induced phase transformations at atomic and mesoscale levels,” Adv. Mater. 29, 1606666 (2017).
[Crossref]

Chen, P.

Y. Liu, P. Chen, Z. H. Wang, F. Bian, L. Lin, S. J. Chang, and G. G. Mu, “Efficient two-photon absorption of CdSe-CdS/Zns core-multishell quantum dots under the excitation of near-infrared femtosecond pulsed laser,” Laser Phys. 19, 1886–1890 (2009).
[Crossref]

Chen, Q.

H. Zhou, Q. Chen, G. Li, S. Luo, T. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, “Photovoltaics interface engineering of highly efficient perovskite solar cells,” Science 345, 542–546 (2014).
[Crossref]

Chen, W.

Chen, W. M.

Chen, X.

X. Chen, H. Hu, Z. Xia, W. Gao, W. Gou, Y. Qu, and Y. Ma, “CsPbBr3 perovskite nanocrystals as highly selective and sensitive spectrochemical probes for gaseous Hcl detection,” J. Mater. Chem. C 5, 309–313 (2017).
[Crossref]

Chen, Y.

Z. Yong, S. Guo, J. Ma, J. Zhang, Z. Li, Y. Chen, B. Zhang, Y. Zhou, J. Shu, J. Gu, L. Zheng, O. M. Bakr, and H. Sun, “Doping-enhanced short-range order of perovskite nanocrystals for near-unity violet luminescence quantum yield,” J. Am. Chem. Soc. 140, 9942–9951 (2018).
[Crossref]

Chhowalla, M.

W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H.-L. Wang, and A. D. Mohite, “High-efficiency solution-processed perovskite solar cells with millimeter-scale grains,” Science 347, 522–525 (2017).
[Crossref]

Cho, A.-N.

J.-W. Lee, D.-J. Seol, A.-N. Cho, and N.-G. Park, “High-efficiency perovskite solar cells based on the black polymorph of Hc(NH2)2PbI3,” Adv. Mater. 26, 4991–4998 (2014).
[Crossref]

Cho, H.

H. Cho, S.-H. Jeong, M. H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, and T.-W. Lee, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350, 1222–1225 (2015).
[Crossref]

Chong, W. K.

T. C. Sum, N. Mathews, G. C. Xing, S. S. Lim, W. K. Chong, D. Giovanni, and H. A. Dewi, “Spectral features and charge dynamics of lead halide perovskites: origins and interpretations,” Acc. Chem. Res. 49, 294–302 (2016).
[Crossref]

Chung, D. Y.

C. C. Stoumpos, C. D. Malliakas, J. A. Peters, Z. Liu, M. Sebastian, J. Im, T. C. Chasapis, A. C. Wibowo, D. Y. Chung, A. J. Freeman, and B. W. Wessels, “Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection,” Cryst. Growth Des. 13, 2722–2727 (2013).
[Crossref]

Chung, I.

I. Chung, B. Lee, J. He, R. P. H. Chang, and M. G. Kanatzidis, “All-solid-state dye-sensitized solar cells with high efficiency,” Nature 485, 486–489 (2012).
[Crossref]

Cohadon, P.-F.

O. Arcizet, P.-F. Cohadon, and T. Briant, “Radiation-pressure cooling and optomechanical instability of a micromirror,” Nature 444, 71–74 (2006).
[Crossref]

Creatore, M.

B. Macco, H. C. M. Knoops, M. A. Verheijen, W. Beyer, M. Creatore, and W. M. M. Kessels, “Atomic layer deposition of high-mobility hydrogen-doped zinc oxide,” Sol. Energ. Mater. Sol. Cells 173, 111–119 (2017).
[Crossref]

Crochet, J. J.

W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H.-L. Wang, and A. D. Mohite, “High-efficiency solution-processed perovskite solar cells with millimeter-scale grains,” Science 347, 522–525 (2017).
[Crossref]

DÉCoppet, J.-D.

D. Bi, C. Yi, J. Luo, J.-D. DÉCoppet, F. Zhang, S. M. Zakeeruddin, X. Li, A. Hagfeldt, and M. Grätzel, “Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%,” Nat. Energy 1, 16142 (2016).
[Crossref]

Del’Haye, P.

A. Schliesser, P. Del’Haye, and N. Nooshi, “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 97, 243905 (2006).
[Crossref]

Demir, H. V.

N. Yantara, S. Bhaumik, F. Yan, D. Sabba, H. A. Dewi, N. Mathews, P. P. Boix, H. V. Demir, and S. Mhaisalkar, “Inorganic halide perovskites for efficient light-emitting diodes,” J. Phys. Chem. Lett. 6, 4360–4364 (2015).
[Crossref]

Deng, Z.

Y. Wu, C. Wei, X. Li, Y. Li, S. Qiu, W. Shen, B. Cai, Z. Sun, D. Yang, Z. Deng, and H. Zeng, “In situ passivation of PbBr64− octahedra toward blue luminescent CsPbBr3 nanoplatelets with near 100% absolute quantum yield,” ACS Energy Lett. 3, 2030–2037 (2018).
[Crossref]

Dewi, H. A.

T. C. Sum, N. Mathews, G. C. Xing, S. S. Lim, W. K. Chong, D. Giovanni, and H. A. Dewi, “Spectral features and charge dynamics of lead halide perovskites: origins and interpretations,” Acc. Chem. Res. 49, 294–302 (2016).
[Crossref]

N. Yantara, S. Bhaumik, F. Yan, D. Sabba, H. A. Dewi, N. Mathews, P. P. Boix, H. V. Demir, and S. Mhaisalkar, “Inorganic halide perovskites for efficient light-emitting diodes,” J. Phys. Chem. Lett. 6, 4360–4364 (2015).
[Crossref]

Dong, Y.

D. Rossi, D. Parobek, Y. Dong, and D.-H. Son, “Dynamics of exciton-Mn energy transfer in Mn-doped CsPbCl3 perovskite nanocrystals,” J. Phys. Chem. C 121, 17143–17149 (2017).
[Crossref]

F. Zhang, H. Zhong, C. Chen, X.-G. Wu, X. Hu, H. Huang, J. Han, B. Zou, and Y. Dong, “Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: potential alternatives for dsplay technology,” ACS Nano 9, 4533–4542 (2015).
[Crossref]

J. Song, J. Li, X. Li, L. Xu, Y. Dong, and H. Zeng, “Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3),” Adv. Mater. 27, 7162–7167 (2015).
[Crossref]

Du, W.

Q. Zhang, R. Su, W. Du, X. Liu, L. Zhao, S.-T. Ha, and Q.-H. Xiong, “Advances in small perovskite-based lasers,” Small Methods 1, 1700163 (2017).
[Crossref]

Duan, H.-S.

H. Zhou, Q. Chen, G. Li, S. Luo, T. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, “Photovoltaics interface engineering of highly efficient perovskite solar cells,” Science 345, 542–546 (2014).
[Crossref]

Dub, J.

C. L. Lia, C. Hana, Y. B. Zhangb, Z. G. Zanga, M. Wanga, X. S. Tanga, and J. Dub, “Enhanced photoresponse of self-powered perovskite photodetector based on ZnO nanoparticles decorated CsPbBr3 films,” Sol. Energy Mater. Sol. Cells 172, 341–346 (2017).
[Crossref]

C. Han, C. L. Li, Z. G. Zang, M. Wang, K. Sun, X. S. Tanga, and J. Dub, “Tunable luminescent CsPb2Br5 nanoplatelets: applications in light-emitting diodes and photodetectors,” Photon. Res. 5, 473–480 (2017).
[Crossref]

C. L. Lia, Z. G. Zanga, C. Hana, Z. P. Hua, X. S. Tanga, J. Dub, Y. Lengb, and K. Sunc, “Highly compact CsPbBr3 perovskite thin films decorated by ZnO nanoparticles for enhanced random lasing,” Nano Energy 40, 195–202 (2017).
[Crossref]

Eddington, A. S.

A. S. Eddington and A. S. Eddington, The Internal Constitution of the Stars (Cambridge University, 1988).

A. S. Eddington and A. S. Eddington, The Internal Constitution of the Stars (Cambridge University, 1988).

Espallargas, G. M.

O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Graetzel, M. K. Nazeeruddin, and H. J. Bolink, “Perovskite solar cells employing organic charge-transport layers,” Nat. Photonics 8, 128–132 (2014).
[Crossref]

Feng, X.

Z. Ma, Z. Liu, S. Lu, L. Wang, X. Feng, D. Yang, K. Wang, G. Xiao, L. Zhang, S. Redfern, and B. Zou, “Pressure-induced emission of cesium lead halide perovskite nanocrystals,” Nat. Commun. 9, 4506 (2018).
[Crossref]

Freeman, A. J.

C. C. Stoumpos, C. D. Malliakas, J. A. Peters, Z. Liu, M. Sebastian, J. Im, T. C. Chasapis, A. C. Wibowo, D. Y. Chung, A. J. Freeman, and B. W. Wessels, “Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection,” Cryst. Growth Des. 13, 2722–2727 (2013).
[Crossref]

Friend, R. H.

H. Cho, S.-H. Jeong, M. H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, and T.-W. Lee, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350, 1222–1225 (2015).
[Crossref]

Fu, H.

X. He, P. Liu, H. Zhang, Q. Liao, J. Yao, and H. Fu, “Patterning multicolored microdisk laser arrays of cesium lead halide perovskite,” Adv. Mater. 29, 1604510 (2017).
[Crossref]

Fujihira, M.

M. Yoshizawa, K. Nishiyama, M. Fujihira, and T. Kobayashi, “Exciton transition energy and temperature dependence of ultrafast relaxation of self-trapped excitons in polydiacetylenes,” Chem. Phys. Lett. 207, 461–467 (1993).
[Crossref]

Gao, F.

M. P. Prange, R. M. Van Ginhoven, N. Govind, and F. Gao, “Formation, stability, and mobility of self-trapped excitations in NaI and NaI1–xTlx from first principles,” Phys. Rev. B 87, 115101 (2013).
[Crossref]

Gao, P.

J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. S. Grätzel, “Deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499, 316–319 (2013).
[Crossref]

Gao, W.

X. Chen, H. Hu, Z. Xia, W. Gao, W. Gou, Y. Qu, and Y. Ma, “CsPbBr3 perovskite nanocrystals as highly selective and sensitive spectrochemical probes for gaseous Hcl detection,” J. Mater. Chem. C 5, 309–313 (2017).
[Crossref]

Ge, J.

J. Yao, J. Ge, B. Han, K. Wang, H. Yao, H. Yu, J. Li, B. Zhu, J. Song, C. Chen, Q. Zhang, H. Zeng, Y. Luo, and S. Yu, “Ce3+-doping to modulate photoluminescence kinetics for efficient CsPbBr3 nanocrystals based light-emitting diodes,” J. Am. Chem. Soc. 140, 3626–3634 (2018).
[Crossref]

Gigan, S.

S. Gigan, H. R. Boehm, and M. Paternostro, “Self-cooling of a micromirror by radiation pressure,” Nature 444, 67–70 (2006).
[Crossref]

Giovannetti, V.

A. S. Mancini, V. Giovannetti, and D. Vitali, “Entangling macroscopic oscillators exploiting radiation pressure,” Phys. Rev. Lett. 88, 120401 (2002).
[Crossref]

Giovanni, D.

T. C. Sum, N. Mathews, G. C. Xing, S. S. Lim, W. K. Chong, D. Giovanni, and H. A. Dewi, “Spectral features and charge dynamics of lead halide perovskites: origins and interpretations,” Acc. Chem. Res. 49, 294–302 (2016).
[Crossref]

Gou, W.

X. Chen, H. Hu, Z. Xia, W. Gao, W. Gou, Y. Qu, and Y. Ma, “CsPbBr3 perovskite nanocrystals as highly selective and sensitive spectrochemical probes for gaseous Hcl detection,” J. Mater. Chem. C 5, 309–313 (2017).
[Crossref]

Gouesbet, G.

H. Polaert, G. Grehan, and G. Gouesbet, “Forces and torques exerted on a multilayered spherical particle by a focused Gaussian bean,” Opt. Commun. 155, 169–179 (1998).
[Crossref]

Govind, N.

M. P. Prange, R. M. Van Ginhoven, N. Govind, and F. Gao, “Formation, stability, and mobility of self-trapped excitations in NaI and NaI1–xTlx from first principles,” Phys. Rev. B 87, 115101 (2013).
[Crossref]

Graetzel, M.

O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Graetzel, M. K. Nazeeruddin, and H. J. Bolink, “Perovskite solar cells employing organic charge-transport layers,” Nat. Photonics 8, 128–132 (2014).
[Crossref]

Grätzel, M.

D. Bi, C. Yi, J. Luo, J.-D. DÉCoppet, F. Zhang, S. M. Zakeeruddin, X. Li, A. Hagfeldt, and M. Grätzel, “Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%,” Nat. Energy 1, 16142 (2016).
[Crossref]

Grätzel, M. S.

J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. S. Grätzel, “Deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499, 316–319 (2013).
[Crossref]

Grehan, G.

H. Polaert, G. Grehan, and G. Gouesbet, “Forces and torques exerted on a multilayered spherical particle by a focused Gaussian bean,” Opt. Commun. 155, 169–179 (1998).
[Crossref]

Grice, C. R.

P. Uprety, B. Macco, M. M. Junda, C. R. Grice, W. M. M. Kessels, and N. J. Podraza, “Optical and electrical properties of H2 plasma-treated ZnO films prepared by atomic layer deposition using supercycles,” Mater. Sci. Semi. Proc. 84, 91–100 (2018).
[Crossref]

Gu, J.

Z. Yong, S. Guo, J. Ma, J. Zhang, Z. Li, Y. Chen, B. Zhang, Y. Zhou, J. Shu, J. Gu, L. Zheng, O. M. Bakr, and H. Sun, “Doping-enhanced short-range order of perovskite nanocrystals for near-unity violet luminescence quantum yield,” J. Am. Chem. Soc. 140, 9942–9951 (2018).
[Crossref]

Guo, S.

Z. Yong, S. Guo, J. Ma, J. Zhang, Z. Li, Y. Chen, B. Zhang, Y. Zhou, J. Shu, J. Gu, L. Zheng, O. M. Bakr, and H. Sun, “Doping-enhanced short-range order of perovskite nanocrystals for near-unity violet luminescence quantum yield,” J. Am. Chem. Soc. 140, 9942–9951 (2018).
[Crossref]

Gupta, G.

W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H.-L. Wang, and A. D. Mohite, “High-efficiency solution-processed perovskite solar cells with millimeter-scale grains,” Science 347, 522–525 (2017).
[Crossref]

Gupta, S.

M. Kulbak, S. Gupta, N. Kedem, I. Levine, T. Bendikov, G. Hodes, and D. Cahen, “Cesium enhances long-term stability of lead bromide perovskite-based solar cells,” J. Phys. Chem. Lett. 7, 167–172 (2016).
[Crossref]

Ha, S. T.

J. Xing, X. F. Liu, Q. Zhang, S. T. Ha, Y. W. Yuan, C. Shen, T. C. Sum, and Q. H. Xiong, “Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers,” Nano Lett. 15, 4571–4577 (2015).
[Crossref]

Ha, S.-T.

Q. Zhang, R. Su, W. Du, X. Liu, L. Zhao, S.-T. Ha, and Q.-H. Xiong, “Advances in small perovskite-based lasers,” Small Methods 1, 1700163 (2017).
[Crossref]

Hagfeldt, A.

D. Bi, C. Yi, J. Luo, J.-D. DÉCoppet, F. Zhang, S. M. Zakeeruddin, X. Li, A. Hagfeldt, and M. Grätzel, “Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%,” Nat. Energy 1, 16142 (2016).
[Crossref]

Han, B.

J. Yao, J. Ge, B. Han, K. Wang, H. Yao, H. Yu, J. Li, B. Zhu, J. Song, C. Chen, Q. Zhang, H. Zeng, Y. Luo, and S. Yu, “Ce3+-doping to modulate photoluminescence kinetics for efficient CsPbBr3 nanocrystals based light-emitting diodes,” J. Am. Chem. Soc. 140, 3626–3634 (2018).
[Crossref]

Han, C.

Han, J.

F. Zhang, H. Zhong, C. Chen, X.-G. Wu, X. Hu, H. Huang, J. Han, B. Zou, and Y. Dong, “Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: potential alternatives for dsplay technology,” ACS Nano 9, 4533–4542 (2015).
[Crossref]

Hana, C.

C. L. Lia, Z. G. Zanga, C. Hana, Z. P. Hua, X. S. Tanga, J. Dub, Y. Lengb, and K. Sunc, “Highly compact CsPbBr3 perovskite thin films decorated by ZnO nanoparticles for enhanced random lasing,” Nano Energy 40, 195–202 (2017).
[Crossref]

C. L. Lia, C. Hana, Y. B. Zhangb, Z. G. Zanga, M. Wanga, X. S. Tanga, and J. Dub, “Enhanced photoresponse of self-powered perovskite photodetector based on ZnO nanoparticles decorated CsPbBr3 films,” Sol. Energy Mater. Sol. Cells 172, 341–346 (2017).
[Crossref]

Hattori, Y.

M. Yoshizawa, Y. Hattori, and T. Kobayashi, “Nonlinear optical susceptibilities of epitaxially grown polydiacetylene measured by femtosecond time-resolved spectroscopy,” Phys. Rev. B 47, 3882–3889 (1993).
[Crossref]

He, J.

I. Chung, B. Lee, J. He, R. P. H. Chang, and M. G. Kanatzidis, “All-solid-state dye-sensitized solar cells with high efficiency,” Nature 485, 486–489 (2012).
[Crossref]

He, X.

X. He, P. Liu, H. Zhang, Q. Liao, J. Yao, and H. Fu, “Patterning multicolored microdisk laser arrays of cesium lead halide perovskite,” Adv. Mater. 29, 1604510 (2017).
[Crossref]

Hendon, C. H.

L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, “Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut,” Nano Lett. 15, 3692–3696 (2015).
[Crossref]

Henig, A.

A. Henig, S. Steinke, and M. Schnuerer, “Radiation-pressure acceleration of ion beams driven by circularly polarized laser pulses,” Phys. Rev. Lett. 103, 245003 (2009).
[Crossref]

Heo, J. H.

H. Cho, S.-H. Jeong, M. H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, and T.-W. Lee, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350, 1222–1225 (2015).
[Crossref]

Hodes, G.

M. Kulbak, S. Gupta, N. Kedem, I. Levine, T. Bendikov, G. Hodes, and D. Cahen, “Cesium enhances long-term stability of lead bromide perovskite-based solar cells,” J. Phys. Chem. Lett. 7, 167–172 (2016).
[Crossref]

Hoke, E. T.

R. E. Beal, D. J. Slotcavage, T. Leijtens, A. R. Bowring, R. A. Belisle, W. H. Nguyen, G. F. Burkhard, E. T. Hoke, and M. D. McGehee, “Cesium lead halide perovskites with improved stability for tandem solar cells,” J. Phys. Chem. Lett. 7, 746–751 (2016).
[Crossref]

Hong, Z.

H. Zhou, Q. Chen, G. Li, S. Luo, T. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, “Photovoltaics interface engineering of highly efficient perovskite solar cells,” Science 345, 542–546 (2014).
[Crossref]

Hoogland, S.

A. H. Ip, A. Kiani, I. J. Kramer, O. Voznyy, H. F. Movahed, L. Levina, M. M. Adachi, S. Hoogland, and E. H. Sargent, “Infrared colloidal quantum dot photovoltaics via coupling enhancement and agglomeration suppression,” ACS Nano 9, 8833–8842 (2015).
[Crossref]

Hu, H.

X. Chen, H. Hu, Z. Xia, W. Gao, W. Gou, Y. Qu, and Y. Ma, “CsPbBr3 perovskite nanocrystals as highly selective and sensitive spectrochemical probes for gaseous Hcl detection,” J. Mater. Chem. C 5, 309–313 (2017).
[Crossref]

Hu, W.

Hu, X.

F. Zhang, H. Zhong, C. Chen, X.-G. Wu, X. Hu, H. Huang, J. Han, B. Zou, and Y. Dong, “Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: potential alternatives for dsplay technology,” ACS Nano 9, 4533–4542 (2015).
[Crossref]

Hu, Z. P.

Hua, Z. P.

C. L. Lia, Z. G. Zanga, C. Hana, Z. P. Hua, X. S. Tanga, J. Dub, Y. Lengb, and K. Sunc, “Highly compact CsPbBr3 perovskite thin films decorated by ZnO nanoparticles for enhanced random lasing,” Nano Energy 40, 195–202 (2017).
[Crossref]

Huang, H.

F. Zhang, H. Zhong, C. Chen, X.-G. Wu, X. Hu, H. Huang, J. Han, B. Zou, and Y. Dong, “Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: potential alternatives for dsplay technology,” ACS Nano 9, 4533–4542 (2015).
[Crossref]

Hull, G. F.

E. F. Nichols and G. F. Hull, “The pressure due to radiation,” Astrophys. J. 17, 315–351 (1903).
[Crossref]

Humphry-Baker, R.

J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. S. Grätzel, “Deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499, 316–319 (2013).
[Crossref]

Ikeda, H.

T. Kobayashi and H. Ikeda, “Dependence of the spectrum and decay of transient photoinduced reflectance change on excitation wavelength and intensity in polydiacetylene single crystals,” Chem. Phys. Lett. 133, 54–58 (1987).
[Crossref]

T. Kobayashi and H. Ikeda, “Dependence of excitation wavelength and intensity on the spectrum and decay of the time-resolved reflectance change of polydiacetylene single crystals,” Synth. Metals 18, 441–446 (1987).
[Crossref]

T. Kobayashi, H. Ikeda, S. Tstmeyuki, and T. Kotaka, “Tn ← T1 absorption spectra of urethane substituted polydiacetylene in solutions at several pH values,” Chem. Phys. Lett. 116, 515–520 (1985).
[Crossref]

Im, J.

C. C. Stoumpos, C. D. Malliakas, J. A. Peters, Z. Liu, M. Sebastian, J. Im, T. C. Chasapis, A. C. Wibowo, D. Y. Chung, A. J. Freeman, and B. W. Wessels, “Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection,” Cryst. Growth Des. 13, 2722–2727 (2013).
[Crossref]

Im, J.-H.

J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, and N.-G. Park, “6.5% efficient perovskite quantum-dot-sensitized solar cell,” Nanoscale 3, 4088–4093 (2011).
[Crossref]

Im, S. H.

H. Cho, S.-H. Jeong, M. H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, and T.-W. Lee, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350, 1222–1225 (2015).
[Crossref]

Ip, A. H.

A. H. Ip, A. Kiani, I. J. Kramer, O. Voznyy, H. F. Movahed, L. Levina, M. M. Adachi, S. Hoogland, and E. H. Sargent, “Infrared colloidal quantum dot photovoltaics via coupling enhancement and agglomeration suppression,” ACS Nano 9, 8833–8842 (2015).
[Crossref]

Itoh, N.

K. Tanimura and N. Itoh, “Relaxation of excitons perturbed by self-trapped excitons in RbI: evidence for exciton fusion in inorganic solids with strong electron-phonon coupling,” Phys. Rev. Lett. 64, 1429–1432 (1990).
[Crossref]

Jeong, S.-H.

H. Cho, S.-H. Jeong, M. H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, and T.-W. Lee, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350, 1222–1225 (2015).
[Crossref]

Johnston, M. B.

M. Liu, M. B. Johnston, and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature 501, 395–398 (2013).
[Crossref]

Junda, M. M.

P. Uprety, B. Macco, M. M. Junda, C. R. Grice, W. M. M. Kessels, and N. J. Podraza, “Optical and electrical properties of H2 plasma-treated ZnO films prepared by atomic layer deposition using supercycles,” Mater. Sci. Semi. Proc. 84, 91–100 (2018).
[Crossref]

Kanatzidis, M. G.

I. Chung, B. Lee, J. He, R. P. H. Chang, and M. G. Kanatzidis, “All-solid-state dye-sensitized solar cells with high efficiency,” Nature 485, 486–489 (2012).
[Crossref]

Kedem, N.

M. Kulbak, S. Gupta, N. Kedem, I. Levine, T. Bendikov, G. Hodes, and D. Cahen, “Cesium enhances long-term stability of lead bromide perovskite-based solar cells,” J. Phys. Chem. Lett. 7, 167–172 (2016).
[Crossref]

Kelly, T. L.

D. Liu and T. L. Kelly, “Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques,” Nat. Photonics 8, 133–138 (2014).
[Crossref]

Kessels, W. M. M.

P. Uprety, B. Macco, M. M. Junda, C. R. Grice, W. M. M. Kessels, and N. J. Podraza, “Optical and electrical properties of H2 plasma-treated ZnO films prepared by atomic layer deposition using supercycles,” Mater. Sci. Semi. Proc. 84, 91–100 (2018).
[Crossref]

B. Macco, H. C. M. Knoops, M. A. Verheijen, W. Beyer, M. Creatore, and W. M. M. Kessels, “Atomic layer deposition of high-mobility hydrogen-doped zinc oxide,” Sol. Energ. Mater. Sol. Cells 173, 111–119 (2017).
[Crossref]

Kiani, A.

A. H. Ip, A. Kiani, I. J. Kramer, O. Voznyy, H. F. Movahed, L. Levina, M. M. Adachi, S. Hoogland, and E. H. Sargent, “Infrared colloidal quantum dot photovoltaics via coupling enhancement and agglomeration suppression,” ACS Nano 9, 8833–8842 (2015).
[Crossref]

Kim, B.

P. Ramasamy, D. H. Lim, B. Kim, S. H. Lee, M. S. Lee, and J. S. Lee, “All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications,” Chem. Commun. 52, 2067–2070 (2016).
[Crossref]

Kim, Y.-H.

H. Cho, S.-H. Jeong, M. H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, and T.-W. Lee, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350, 1222–1225 (2015).
[Crossref]

Kimball, K.

N. Yasutaka, K. Kimball, R. Tan, R. Li, Z. Wang, and O. Chen, “Nanocube superlattices of cesium lead bromide perovskites and pressure-induced phase transformations at atomic and mesoscale levels,” Adv. Mater. 29, 1606666 (2017).
[Crossref]

Kippenberg, T. J.

T. J. Kippenberg, H. Rokhsari, and T. Carmon, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95, 033901 (2005).
[Crossref]

Knoops, H. C. M.

B. Macco, H. C. M. Knoops, M. A. Verheijen, W. Beyer, M. Creatore, and W. M. M. Kessels, “Atomic layer deposition of high-mobility hydrogen-doped zinc oxide,” Sol. Energ. Mater. Sol. Cells 173, 111–119 (2017).
[Crossref]

Kobayashi, T.

M. Yoshizawa, Y. Hattori, and T. Kobayashi, “Nonlinear optical susceptibilities of epitaxially grown polydiacetylene measured by femtosecond time-resolved spectroscopy,” Phys. Rev. B 47, 3882–3889 (1993).
[Crossref]

M. Yoshizawa, K. Nishiyama, M. Fujihira, and T. Kobayashi, “Exciton transition energy and temperature dependence of ultrafast relaxation of self-trapped excitons in polydiacetylenes,” Chem. Phys. Lett. 207, 461–467 (1993).
[Crossref]

A. Yasuda, M. Yoshizawaand, and T. Kobayashi, “Fluorescence spectrum of a blue-phase polydiacetylene obtained by probe saturation spectroscopy,” Chem. Phys. Lett. 209, 281–286 (1993).
[Crossref]

T. Kobayashi, “Ultrafast relaxation in conjugated polymers,” J. Lumin. 53, 159–164 (1992).
[Crossref]

M. Yoshizawa, A. Yasuda, and T. Kobayashi, “Ultrafast optical response in polydiacetylenes and polythiophenes,” Appl. Phys. B 53, 296–307 (1991).
[Crossref]

T. Kobayashi and M. Yoshizawa, “Femtosecond nonlinear response of polydiacetylenes and polythiophenes,” Synth. Metals 43, 3129–3134 (1991).
[Crossref]

T. Kobayashi and H. Ikeda, “Dependence of excitation wavelength and intensity on the spectrum and decay of the time-resolved reflectance change of polydiacetylene single crystals,” Synth. Metals 18, 441–446 (1987).
[Crossref]

T. Kobayashi and H. Ikeda, “Dependence of the spectrum and decay of transient photoinduced reflectance change on excitation wavelength and intensity in polydiacetylene single crystals,” Chem. Phys. Lett. 133, 54–58 (1987).
[Crossref]

T. Kobayashi, H. Ikeda, S. Tstmeyuki, and T. Kotaka, “Tn ← T1 absorption spectra of urethane substituted polydiacetylene in solutions at several pH values,” Chem. Phys. Lett. 116, 515–520 (1985).
[Crossref]

Kojima, A.

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131, 6050–6051 (2009).
[Crossref]

Kotaka, T.

T. Kobayashi, H. Ikeda, S. Tstmeyuki, and T. Kotaka, “Tn ← T1 absorption spectra of urethane substituted polydiacetylene in solutions at several pH values,” Chem. Phys. Lett. 116, 515–520 (1985).
[Crossref]

Kovalenko, M. V.

L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, “Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut,” Nano Lett. 15, 3692–3696 (2015).
[Crossref]

Kramer, I. J.

A. H. Ip, A. Kiani, I. J. Kramer, O. Voznyy, H. F. Movahed, L. Levina, M. M. Adachi, S. Hoogland, and E. H. Sargent, “Infrared colloidal quantum dot photovoltaics via coupling enhancement and agglomeration suppression,” ACS Nano 9, 8833–8842 (2015).
[Crossref]

Krieg, F.

L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, “Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut,” Nano Lett. 15, 3692–3696 (2015).
[Crossref]

Kulbak, M.

M. Kulbak, S. Gupta, N. Kedem, I. Levine, T. Bendikov, G. Hodes, and D. Cahen, “Cesium enhances long-term stability of lead bromide perovskite-based solar cells,” J. Phys. Chem. Lett. 7, 167–172 (2016).
[Crossref]

Lee, B.

I. Chung, B. Lee, J. He, R. P. H. Chang, and M. G. Kanatzidis, “All-solid-state dye-sensitized solar cells with high efficiency,” Nature 485, 486–489 (2012).
[Crossref]

Lee, C.-L.

H. Cho, S.-H. Jeong, M. H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, and T.-W. Lee, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350, 1222–1225 (2015).
[Crossref]

Lee, C.-R.

J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, and N.-G. Park, “6.5% efficient perovskite quantum-dot-sensitized solar cell,” Nanoscale 3, 4088–4093 (2011).
[Crossref]

Lee, J. S.

P. Ramasamy, D. H. Lim, B. Kim, S. H. Lee, M. S. Lee, and J. S. Lee, “All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications,” Chem. Commun. 52, 2067–2070 (2016).
[Crossref]

Lee, J.-W.

J.-W. Lee, D.-J. Seol, A.-N. Cho, and N.-G. Park, “High-efficiency perovskite solar cells based on the black polymorph of Hc(NH2)2PbI3,” Adv. Mater. 26, 4991–4998 (2014).
[Crossref]

J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, and N.-G. Park, “6.5% efficient perovskite quantum-dot-sensitized solar cell,” Nanoscale 3, 4088–4093 (2011).
[Crossref]

Lee, M. M.

M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science 338, 643–647 (2012).
[Crossref]

Lee, M. S.

P. Ramasamy, D. H. Lim, B. Kim, S. H. Lee, M. S. Lee, and J. S. Lee, “All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications,” Chem. Commun. 52, 2067–2070 (2016).
[Crossref]

Lee, S. H.

P. Ramasamy, D. H. Lim, B. Kim, S. H. Lee, M. S. Lee, and J. S. Lee, “All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications,” Chem. Commun. 52, 2067–2070 (2016).
[Crossref]

Lee, T.-W.

H. Cho, S.-H. Jeong, M. H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, and T.-W. Lee, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350, 1222–1225 (2015).
[Crossref]

Lee, Y. H.

O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Graetzel, M. K. Nazeeruddin, and H. J. Bolink, “Perovskite solar cells employing organic charge-transport layers,” Nat. Photonics 8, 128–132 (2014).
[Crossref]

Leijtens, T.

R. E. Beal, D. J. Slotcavage, T. Leijtens, A. R. Bowring, R. A. Belisle, W. H. Nguyen, G. F. Burkhard, E. T. Hoke, and M. D. McGehee, “Cesium lead halide perovskites with improved stability for tandem solar cells,” J. Phys. Chem. Lett. 7, 746–751 (2016).
[Crossref]

Lengb, Y.

C. L. Lia, Z. G. Zanga, C. Hana, Z. P. Hua, X. S. Tanga, J. Dub, Y. Lengb, and K. Sunc, “Highly compact CsPbBr3 perovskite thin films decorated by ZnO nanoparticles for enhanced random lasing,” Nano Energy 40, 195–202 (2017).
[Crossref]

Levina, L.

A. H. Ip, A. Kiani, I. J. Kramer, O. Voznyy, H. F. Movahed, L. Levina, M. M. Adachi, S. Hoogland, and E. H. Sargent, “Infrared colloidal quantum dot photovoltaics via coupling enhancement and agglomeration suppression,” ACS Nano 9, 8833–8842 (2015).
[Crossref]

Levine, I.

M. Kulbak, S. Gupta, N. Kedem, I. Levine, T. Bendikov, G. Hodes, and D. Cahen, “Cesium enhances long-term stability of lead bromide perovskite-based solar cells,” J. Phys. Chem. Lett. 7, 167–172 (2016).
[Crossref]

Li, C. L.

Li, G.

H. Zhou, Q. Chen, G. Li, S. Luo, T. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, “Photovoltaics interface engineering of highly efficient perovskite solar cells,” Science 345, 542–546 (2014).
[Crossref]

Li, J.

J. Yao, J. Ge, B. Han, K. Wang, H. Yao, H. Yu, J. Li, B. Zhu, J. Song, C. Chen, Q. Zhang, H. Zeng, Y. Luo, and S. Yu, “Ce3+-doping to modulate photoluminescence kinetics for efficient CsPbBr3 nanocrystals based light-emitting diodes,” J. Am. Chem. Soc. 140, 3626–3634 (2018).
[Crossref]

J. Song, J. Li, X. Li, L. Xu, Y. Dong, and H. Zeng, “Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3),” Adv. Mater. 27, 7162–7167 (2015).
[Crossref]

Li, R.

N. Yasutaka, K. Kimball, R. Tan, R. Li, Z. Wang, and O. Chen, “Nanocube superlattices of cesium lead bromide perovskites and pressure-induced phase transformations at atomic and mesoscale levels,” Adv. Mater. 29, 1606666 (2017).
[Crossref]

Li, X.

Y. Wu, C. Wei, X. Li, Y. Li, S. Qiu, W. Shen, B. Cai, Z. Sun, D. Yang, Z. Deng, and H. Zeng, “In situ passivation of PbBr64− octahedra toward blue luminescent CsPbBr3 nanoplatelets with near 100% absolute quantum yield,” ACS Energy Lett. 3, 2030–2037 (2018).
[Crossref]

D. Bi, C. Yi, J. Luo, J.-D. DÉCoppet, F. Zhang, S. M. Zakeeruddin, X. Li, A. Hagfeldt, and M. Grätzel, “Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%,” Nat. Energy 1, 16142 (2016).
[Crossref]

Y. Wang, X. Li, J. Song, L. Xiao, H. Zeng, and H. Sun, “AllInorganic colloidal perovskite quantum dots: a new class of lasing materials with favorable characteristics,” Adv. Mater. 27, 7101–7108 (2015).
[Crossref]

J. Song, J. Li, X. Li, L. Xu, Y. Dong, and H. Zeng, “Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3),” Adv. Mater. 27, 7162–7167 (2015).
[Crossref]

Li, Y.

Y. Wu, C. Wei, X. Li, Y. Li, S. Qiu, W. Shen, B. Cai, Z. Sun, D. Yang, Z. Deng, and H. Zeng, “In situ passivation of PbBr64− octahedra toward blue luminescent CsPbBr3 nanoplatelets with near 100% absolute quantum yield,” ACS Energy Lett. 3, 2030–2037 (2018).
[Crossref]

Li, Z.

Z. Yong, S. Guo, J. Ma, J. Zhang, Z. Li, Y. Chen, B. Zhang, Y. Zhou, J. Shu, J. Gu, L. Zheng, O. M. Bakr, and H. Sun, “Doping-enhanced short-range order of perovskite nanocrystals for near-unity violet luminescence quantum yield,” J. Am. Chem. Soc. 140, 9942–9951 (2018).
[Crossref]

Lia, C. L.

C. L. Lia, Z. G. Zanga, C. Hana, Z. P. Hua, X. S. Tanga, J. Dub, Y. Lengb, and K. Sunc, “Highly compact CsPbBr3 perovskite thin films decorated by ZnO nanoparticles for enhanced random lasing,” Nano Energy 40, 195–202 (2017).
[Crossref]

C. L. Lia, C. Hana, Y. B. Zhangb, Z. G. Zanga, M. Wanga, X. S. Tanga, and J. Dub, “Enhanced photoresponse of self-powered perovskite photodetector based on ZnO nanoparticles decorated CsPbBr3 films,” Sol. Energy Mater. Sol. Cells 172, 341–346 (2017).
[Crossref]

Liao, Q.

X. He, P. Liu, H. Zhang, Q. Liao, J. Yao, and H. Fu, “Patterning multicolored microdisk laser arrays of cesium lead halide perovskite,” Adv. Mater. 29, 1604510 (2017).
[Crossref]

Lim, D. H.

P. Ramasamy, D. H. Lim, B. Kim, S. H. Lee, M. S. Lee, and J. S. Lee, “All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications,” Chem. Commun. 52, 2067–2070 (2016).
[Crossref]

Lim, S. S.

T. C. Sum, N. Mathews, G. C. Xing, S. S. Lim, W. K. Chong, D. Giovanni, and H. A. Dewi, “Spectral features and charge dynamics of lead halide perovskites: origins and interpretations,” Acc. Chem. Res. 49, 294–302 (2016).
[Crossref]

Lin, L.

Y. Liu, P. Chen, Z. H. Wang, F. Bian, L. Lin, S. J. Chang, and G. G. Mu, “Efficient two-photon absorption of CdSe-CdS/Zns core-multishell quantum dots under the excitation of near-infrared femtosecond pulsed laser,” Laser Phys. 19, 1886–1890 (2009).
[Crossref]

Liu, C.

G. Xiao, Y. Cao, G. Qi, L. Wang, C. Liu, Z. Ma, X. Yang, Y. Sui, W. Zheng, and B. Zou, “Pressure effects on structure and optical properties in cesium lead bromide perovskite nanocrystals,” J. Am. Chem. Soc. 139, 10087–10094 (2017).
[Crossref]

Liu, D.

D. Liu and T. L. Kelly, “Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques,” Nat. Photonics 8, 133–138 (2014).
[Crossref]

Liu, M.

M. Liu, M. B. Johnston, and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature 501, 395–398 (2013).
[Crossref]

Liu, P.

X. He, P. Liu, H. Zhang, Q. Liao, J. Yao, and H. Fu, “Patterning multicolored microdisk laser arrays of cesium lead halide perovskite,” Adv. Mater. 29, 1604510 (2017).
[Crossref]

Liu, X.

Q. Zhang, R. Su, W. Du, X. Liu, L. Zhao, S.-T. Ha, and Q.-H. Xiong, “Advances in small perovskite-based lasers,” Small Methods 1, 1700163 (2017).
[Crossref]

Liu, X. F.

J. Xing, X. F. Liu, Q. Zhang, S. T. Ha, Y. W. Yuan, C. Shen, T. C. Sum, and Q. H. Xiong, “Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers,” Nano Lett. 15, 4571–4577 (2015).
[Crossref]

Liu, X. M.

Liu, Y.

H. Zhou, Q. Chen, G. Li, S. Luo, T. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, “Photovoltaics interface engineering of highly efficient perovskite solar cells,” Science 345, 542–546 (2014).
[Crossref]

Y. Liu, P. Chen, Z. H. Wang, F. Bian, L. Lin, S. J. Chang, and G. G. Mu, “Efficient two-photon absorption of CdSe-CdS/Zns core-multishell quantum dots under the excitation of near-infrared femtosecond pulsed laser,” Laser Phys. 19, 1886–1890 (2009).
[Crossref]

Liu, Z.

Z. Ma, Z. Liu, S. Lu, L. Wang, X. Feng, D. Yang, K. Wang, G. Xiao, L. Zhang, S. Redfern, and B. Zou, “Pressure-induced emission of cesium lead halide perovskite nanocrystals,” Nat. Commun. 9, 4506 (2018).
[Crossref]

C. C. Stoumpos, C. D. Malliakas, J. A. Peters, Z. Liu, M. Sebastian, J. Im, T. C. Chasapis, A. C. Wibowo, D. Y. Chung, A. J. Freeman, and B. W. Wessels, “Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection,” Cryst. Growth Des. 13, 2722–2727 (2013).
[Crossref]

Lu, S.

Z. Ma, Z. Liu, S. Lu, L. Wang, X. Feng, D. Yang, K. Wang, G. Xiao, L. Zhang, S. Redfern, and B. Zou, “Pressure-induced emission of cesium lead halide perovskite nanocrystals,” Nat. Commun. 9, 4506 (2018).
[Crossref]

Luo, J.

D. Bi, C. Yi, J. Luo, J.-D. DÉCoppet, F. Zhang, S. M. Zakeeruddin, X. Li, A. Hagfeldt, and M. Grätzel, “Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%,” Nat. Energy 1, 16142 (2016).
[Crossref]

Luo, S.

H. Zhou, Q. Chen, G. Li, S. Luo, T. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, “Photovoltaics interface engineering of highly efficient perovskite solar cells,” Science 345, 542–546 (2014).
[Crossref]

Luo, Y.

J. Yao, J. Ge, B. Han, K. Wang, H. Yao, H. Yu, J. Li, B. Zhu, J. Song, C. Chen, Q. Zhang, H. Zeng, Y. Luo, and S. Yu, “Ce3+-doping to modulate photoluminescence kinetics for efficient CsPbBr3 nanocrystals based light-emitting diodes,” J. Am. Chem. Soc. 140, 3626–3634 (2018).
[Crossref]

Ma, J.

Z. Yong, S. Guo, J. Ma, J. Zhang, Z. Li, Y. Chen, B. Zhang, Y. Zhou, J. Shu, J. Gu, L. Zheng, O. M. Bakr, and H. Sun, “Doping-enhanced short-range order of perovskite nanocrystals for near-unity violet luminescence quantum yield,” J. Am. Chem. Soc. 140, 9942–9951 (2018).
[Crossref]

Ma, Y.

X. Chen, H. Hu, Z. Xia, W. Gao, W. Gou, Y. Qu, and Y. Ma, “CsPbBr3 perovskite nanocrystals as highly selective and sensitive spectrochemical probes for gaseous Hcl detection,” J. Mater. Chem. C 5, 309–313 (2017).
[Crossref]

Ma, Z.

Z. Ma, Z. Liu, S. Lu, L. Wang, X. Feng, D. Yang, K. Wang, G. Xiao, L. Zhang, S. Redfern, and B. Zou, “Pressure-induced emission of cesium lead halide perovskite nanocrystals,” Nat. Commun. 9, 4506 (2018).
[Crossref]

G. Xiao, Y. Cao, G. Qi, L. Wang, C. Liu, Z. Ma, X. Yang, Y. Sui, W. Zheng, and B. Zou, “Pressure effects on structure and optical properties in cesium lead bromide perovskite nanocrystals,” J. Am. Chem. Soc. 139, 10087–10094 (2017).
[Crossref]

Macco, B.

P. Uprety, B. Macco, M. M. Junda, C. R. Grice, W. M. M. Kessels, and N. J. Podraza, “Optical and electrical properties of H2 plasma-treated ZnO films prepared by atomic layer deposition using supercycles,” Mater. Sci. Semi. Proc. 84, 91–100 (2018).
[Crossref]

B. Macco, H. C. M. Knoops, M. A. Verheijen, W. Beyer, M. Creatore, and W. M. M. Kessels, “Atomic layer deposition of high-mobility hydrogen-doped zinc oxide,” Sol. Energ. Mater. Sol. Cells 173, 111–119 (2017).
[Crossref]

Malinkiewicz, O.

O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Graetzel, M. K. Nazeeruddin, and H. J. Bolink, “Perovskite solar cells employing organic charge-transport layers,” Nat. Photonics 8, 128–132 (2014).
[Crossref]

Malliakas, C. D.

C. C. Stoumpos, C. D. Malliakas, J. A. Peters, Z. Liu, M. Sebastian, J. Im, T. C. Chasapis, A. C. Wibowo, D. Y. Chung, A. J. Freeman, and B. W. Wessels, “Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection,” Cryst. Growth Des. 13, 2722–2727 (2013).
[Crossref]

Mancini, A. S.

A. S. Mancini, V. Giovannetti, and D. Vitali, “Entangling macroscopic oscillators exploiting radiation pressure,” Phys. Rev. Lett. 88, 120401 (2002).
[Crossref]

Mathews, N.

T. C. Sum, N. Mathews, G. C. Xing, S. S. Lim, W. K. Chong, D. Giovanni, and H. A. Dewi, “Spectral features and charge dynamics of lead halide perovskites: origins and interpretations,” Acc. Chem. Res. 49, 294–302 (2016).
[Crossref]

N. Yantara, S. Bhaumik, F. Yan, D. Sabba, H. A. Dewi, N. Mathews, P. P. Boix, H. V. Demir, and S. Mhaisalkar, “Inorganic halide perovskites for efficient light-emitting diodes,” J. Phys. Chem. Lett. 6, 4360–4364 (2015).
[Crossref]

Max, B.-W.

B.-W. Max and K. J. Chau, “Simulations of radiation pressure experiments narrow down the energy and momentum of light in matter,” Rep. Prog. Phys. 78, 122401 (2015).
[Crossref]

McGehee, M. D.

R. E. Beal, D. J. Slotcavage, T. Leijtens, A. R. Bowring, R. A. Belisle, W. H. Nguyen, G. F. Burkhard, E. T. Hoke, and M. D. McGehee, “Cesium lead halide perovskites with improved stability for tandem solar cells,” J. Phys. Chem. Lett. 7, 746–751 (2016).
[Crossref]

Mhaisalkar, S.

N. Yantara, S. Bhaumik, F. Yan, D. Sabba, H. A. Dewi, N. Mathews, P. P. Boix, H. V. Demir, and S. Mhaisalkar, “Inorganic halide perovskites for efficient light-emitting diodes,” J. Phys. Chem. Lett. 6, 4360–4364 (2015).
[Crossref]

Miyasaka, T.

M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science 338, 643–647 (2012).
[Crossref]

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131, 6050–6051 (2009).
[Crossref]

Mohite, A. D.

W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H.-L. Wang, and A. D. Mohite, “High-efficiency solution-processed perovskite solar cells with millimeter-scale grains,” Science 347, 522–525 (2017).
[Crossref]

Mondal, N.

N. Mondal and A. Samanta, “Complete ultrafast charge carrier dynamics in photo-excited all-inorganic perovskite nanocrystals (CsPbX3),” Nanoscale 9, 1878–1885 (2017).
[Crossref]

Moon, S.-J.

J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. S. Grätzel, “Deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499, 316–319 (2013).
[Crossref]

Movahed, H. F.

A. H. Ip, A. Kiani, I. J. Kramer, O. Voznyy, H. F. Movahed, L. Levina, M. M. Adachi, S. Hoogland, and E. H. Sargent, “Infrared colloidal quantum dot photovoltaics via coupling enhancement and agglomeration suppression,” ACS Nano 9, 8833–8842 (2015).
[Crossref]

Mu, G. G.

Y. Liu, P. Chen, Z. H. Wang, F. Bian, L. Lin, S. J. Chang, and G. G. Mu, “Efficient two-photon absorption of CdSe-CdS/Zns core-multishell quantum dots under the excitation of near-infrared femtosecond pulsed laser,” Laser Phys. 19, 1886–1890 (2009).
[Crossref]

Murakami, T. N.

M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science 338, 643–647 (2012).
[Crossref]

Myoung, N.

H. Cho, S.-H. Jeong, M. H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, and T.-W. Lee, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350, 1222–1225 (2015).
[Crossref]

Nazeeruddin, M. K.

O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Graetzel, M. K. Nazeeruddin, and H. J. Bolink, “Perovskite solar cells employing organic charge-transport layers,” Nat. Photonics 8, 128–132 (2014).
[Crossref]

J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. S. Grätzel, “Deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499, 316–319 (2013).
[Crossref]

Neukirch, A. J.

W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H.-L. Wang, and A. D. Mohite, “High-efficiency solution-processed perovskite solar cells with millimeter-scale grains,” Science 347, 522–525 (2017).
[Crossref]

Nguyen, W. H.

R. E. Beal, D. J. Slotcavage, T. Leijtens, A. R. Bowring, R. A. Belisle, W. H. Nguyen, G. F. Burkhard, E. T. Hoke, and M. D. McGehee, “Cesium lead halide perovskites with improved stability for tandem solar cells,” J. Phys. Chem. Lett. 7, 746–751 (2016).
[Crossref]

Nichols, E. F.

E. F. Nichols and G. F. Hull, “The pressure due to radiation,” Astrophys. J. 17, 315–351 (1903).
[Crossref]

Nie, W.

W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H.-L. Wang, and A. D. Mohite, “High-efficiency solution-processed perovskite solar cells with millimeter-scale grains,” Science 347, 522–525 (2017).
[Crossref]

Ning, Z. J.

G. H. Carey, A. L. Abdelhady, Z. J. Ning, S. M. Thon, O. M. Bakr, and E. H. Sargent, “Colloidal quantum dot solar cells,” Chem. Rev. 115, 12732–12763 (2015).
[Crossref]

Nishiyama, K.

M. Yoshizawa, K. Nishiyama, M. Fujihira, and T. Kobayashi, “Exciton transition energy and temperature dependence of ultrafast relaxation of self-trapped excitons in polydiacetylenes,” Chem. Phys. Lett. 207, 461–467 (1993).
[Crossref]

Nooshi, N.

A. Schliesser, P. Del’Haye, and N. Nooshi, “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 97, 243905 (2006).
[Crossref]

Park, M. H.

H. Cho, S.-H. Jeong, M. H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, and T.-W. Lee, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350, 1222–1225 (2015).
[Crossref]

Park, N.-G.

J.-W. Lee, D.-J. Seol, A.-N. Cho, and N.-G. Park, “High-efficiency perovskite solar cells based on the black polymorph of Hc(NH2)2PbI3,” Adv. Mater. 26, 4991–4998 (2014).
[Crossref]

J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, and N.-G. Park, “6.5% efficient perovskite quantum-dot-sensitized solar cell,” Nanoscale 3, 4088–4093 (2011).
[Crossref]

Park, S.-W.

J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, and N.-G. Park, “6.5% efficient perovskite quantum-dot-sensitized solar cell,” Nanoscale 3, 4088–4093 (2011).
[Crossref]

Parobek, D.

D. Rossi, D. Parobek, Y. Dong, and D.-H. Son, “Dynamics of exciton-Mn energy transfer in Mn-doped CsPbCl3 perovskite nanocrystals,” J. Phys. Chem. C 121, 17143–17149 (2017).
[Crossref]

Paternostro, M.

S. Gigan, H. R. Boehm, and M. Paternostro, “Self-cooling of a micromirror by radiation pressure,” Nature 444, 67–70 (2006).
[Crossref]

Pellet, N.

J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. S. Grätzel, “Deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499, 316–319 (2013).
[Crossref]

Peters, J. A.

C. C. Stoumpos, C. D. Malliakas, J. A. Peters, Z. Liu, M. Sebastian, J. Im, T. C. Chasapis, A. C. Wibowo, D. Y. Chung, A. J. Freeman, and B. W. Wessels, “Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection,” Cryst. Growth Des. 13, 2722–2727 (2013).
[Crossref]

Podraza, N. J.

P. Uprety, B. Macco, M. M. Junda, C. R. Grice, W. M. M. Kessels, and N. J. Podraza, “Optical and electrical properties of H2 plasma-treated ZnO films prepared by atomic layer deposition using supercycles,” Mater. Sci. Semi. Proc. 84, 91–100 (2018).
[Crossref]

Polaert, H.

H. Polaert, G. Grehan, and G. Gouesbet, “Forces and torques exerted on a multilayered spherical particle by a focused Gaussian bean,” Opt. Commun. 155, 169–179 (1998).
[Crossref]

Prange, M. P.

M. P. Prange, R. M. Van Ginhoven, N. Govind, and F. Gao, “Formation, stability, and mobility of self-trapped excitations in NaI and NaI1–xTlx from first principles,” Phys. Rev. B 87, 115101 (2013).
[Crossref]

Protesescu, L.

L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, “Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut,” Nano Lett. 15, 3692–3696 (2015).
[Crossref]

Qi, G.

G. Xiao, Y. Cao, G. Qi, L. Wang, C. Liu, Z. Ma, X. Yang, Y. Sui, W. Zheng, and B. Zou, “Pressure effects on structure and optical properties in cesium lead bromide perovskite nanocrystals,” J. Am. Chem. Soc. 139, 10087–10094 (2017).
[Crossref]

Qiu, S.

Y. Wu, C. Wei, X. Li, Y. Li, S. Qiu, W. Shen, B. Cai, Z. Sun, D. Yang, Z. Deng, and H. Zeng, “In situ passivation of PbBr64− octahedra toward blue luminescent CsPbBr3 nanoplatelets with near 100% absolute quantum yield,” ACS Energy Lett. 3, 2030–2037 (2018).
[Crossref]

Qu, Y.

X. Chen, H. Hu, Z. Xia, W. Gao, W. Gou, Y. Qu, and Y. Ma, “CsPbBr3 perovskite nanocrystals as highly selective and sensitive spectrochemical probes for gaseous Hcl detection,” J. Mater. Chem. C 5, 309–313 (2017).
[Crossref]

Ramasamy, P.

P. Ramasamy, D. H. Lim, B. Kim, S. H. Lee, M. S. Lee, and J. S. Lee, “All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications,” Chem. Commun. 52, 2067–2070 (2016).
[Crossref]

Redfern, S.

Z. Ma, Z. Liu, S. Lu, L. Wang, X. Feng, D. Yang, K. Wang, G. Xiao, L. Zhang, S. Redfern, and B. Zou, “Pressure-induced emission of cesium lead halide perovskite nanocrystals,” Nat. Commun. 9, 4506 (2018).
[Crossref]

Rokhsari, H.

T. J. Kippenberg, H. Rokhsari, and T. Carmon, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95, 033901 (2005).
[Crossref]

Rossi, D.

D. Rossi, D. Parobek, Y. Dong, and D.-H. Son, “Dynamics of exciton-Mn energy transfer in Mn-doped CsPbCl3 perovskite nanocrystals,” J. Phys. Chem. C 121, 17143–17149 (2017).
[Crossref]

Sabba, D.

N. Yantara, S. Bhaumik, F. Yan, D. Sabba, H. A. Dewi, N. Mathews, P. P. Boix, H. V. Demir, and S. Mhaisalkar, “Inorganic halide perovskites for efficient light-emitting diodes,” J. Phys. Chem. Lett. 6, 4360–4364 (2015).
[Crossref]

Sadhanala, A.

H. Cho, S.-H. Jeong, M. H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, and T.-W. Lee, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350, 1222–1225 (2015).
[Crossref]

Samanta, A.

N. Mondal and A. Samanta, “Complete ultrafast charge carrier dynamics in photo-excited all-inorganic perovskite nanocrystals (CsPbX3),” Nanoscale 9, 1878–1885 (2017).
[Crossref]

Sargent, E. H.

G. H. Carey, A. L. Abdelhady, Z. J. Ning, S. M. Thon, O. M. Bakr, and E. H. Sargent, “Colloidal quantum dot solar cells,” Chem. Rev. 115, 12732–12763 (2015).
[Crossref]

A. H. Ip, A. Kiani, I. J. Kramer, O. Voznyy, H. F. Movahed, L. Levina, M. M. Adachi, S. Hoogland, and E. H. Sargent, “Infrared colloidal quantum dot photovoltaics via coupling enhancement and agglomeration suppression,” ACS Nano 9, 8833–8842 (2015).
[Crossref]

Schliesser, A.

A. Schliesser, P. Del’Haye, and N. Nooshi, “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 97, 243905 (2006).
[Crossref]

Schnuerer, M.

A. Henig, S. Steinke, and M. Schnuerer, “Radiation-pressure acceleration of ion beams driven by circularly polarized laser pulses,” Phys. Rev. Lett. 103, 245003 (2009).
[Crossref]

Sebastian, M.

C. C. Stoumpos, C. D. Malliakas, J. A. Peters, Z. Liu, M. Sebastian, J. Im, T. C. Chasapis, A. C. Wibowo, D. Y. Chung, A. J. Freeman, and B. W. Wessels, “Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection,” Cryst. Growth Des. 13, 2722–2727 (2013).
[Crossref]

Seol, D.-J.

J.-W. Lee, D.-J. Seol, A.-N. Cho, and N.-G. Park, “High-efficiency perovskite solar cells based on the black polymorph of Hc(NH2)2PbI3,” Adv. Mater. 26, 4991–4998 (2014).
[Crossref]

Shen, C.

J. Xing, X. F. Liu, Q. Zhang, S. T. Ha, Y. W. Yuan, C. Shen, T. C. Sum, and Q. H. Xiong, “Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers,” Nano Lett. 15, 4571–4577 (2015).
[Crossref]

Shen, W.

Y. Wu, C. Wei, X. Li, Y. Li, S. Qiu, W. Shen, B. Cai, Z. Sun, D. Yang, Z. Deng, and H. Zeng, “In situ passivation of PbBr64− octahedra toward blue luminescent CsPbBr3 nanoplatelets with near 100% absolute quantum yield,” ACS Energy Lett. 3, 2030–2037 (2018).
[Crossref]

Shirai, Y.

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131, 6050–6051 (2009).
[Crossref]

Shu, J.

Z. Yong, S. Guo, J. Ma, J. Zhang, Z. Li, Y. Chen, B. Zhang, Y. Zhou, J. Shu, J. Gu, L. Zheng, O. M. Bakr, and H. Sun, “Doping-enhanced short-range order of perovskite nanocrystals for near-unity violet luminescence quantum yield,” J. Am. Chem. Soc. 140, 9942–9951 (2018).
[Crossref]

Slotcavage, D. J.

R. E. Beal, D. J. Slotcavage, T. Leijtens, A. R. Bowring, R. A. Belisle, W. H. Nguyen, G. F. Burkhard, E. T. Hoke, and M. D. McGehee, “Cesium lead halide perovskites with improved stability for tandem solar cells,” J. Phys. Chem. Lett. 7, 746–751 (2016).
[Crossref]

Snaith, H. J.

M. Liu, M. B. Johnston, and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature 501, 395–398 (2013).
[Crossref]

M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science 338, 643–647 (2012).
[Crossref]

Son, D.-H.

D. Rossi, D. Parobek, Y. Dong, and D.-H. Son, “Dynamics of exciton-Mn energy transfer in Mn-doped CsPbCl3 perovskite nanocrystals,” J. Phys. Chem. C 121, 17143–17149 (2017).
[Crossref]

Song, J.

J. Yao, J. Ge, B. Han, K. Wang, H. Yao, H. Yu, J. Li, B. Zhu, J. Song, C. Chen, Q. Zhang, H. Zeng, Y. Luo, and S. Yu, “Ce3+-doping to modulate photoluminescence kinetics for efficient CsPbBr3 nanocrystals based light-emitting diodes,” J. Am. Chem. Soc. 140, 3626–3634 (2018).
[Crossref]

Y. Wang, X. Li, J. Song, L. Xiao, H. Zeng, and H. Sun, “AllInorganic colloidal perovskite quantum dots: a new class of lasing materials with favorable characteristics,” Adv. Mater. 27, 7101–7108 (2015).
[Crossref]

J. Song, J. Li, X. Li, L. Xu, Y. Dong, and H. Zeng, “Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3),” Adv. Mater. 27, 7162–7167 (2015).
[Crossref]

Song, T.

H. Zhou, Q. Chen, G. Li, S. Luo, T. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, “Photovoltaics interface engineering of highly efficient perovskite solar cells,” Science 345, 542–546 (2014).
[Crossref]

Steinke, S.

A. Henig, S. Steinke, and M. Schnuerer, “Radiation-pressure acceleration of ion beams driven by circularly polarized laser pulses,” Phys. Rev. Lett. 103, 245003 (2009).
[Crossref]

Stoumpos, C. C.

C. C. Stoumpos, C. D. Malliakas, J. A. Peters, Z. Liu, M. Sebastian, J. Im, T. C. Chasapis, A. C. Wibowo, D. Y. Chung, A. J. Freeman, and B. W. Wessels, “Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection,” Cryst. Growth Des. 13, 2722–2727 (2013).
[Crossref]

Su, R.

Q. Zhang, R. Su, W. Du, X. Liu, L. Zhao, S.-T. Ha, and Q.-H. Xiong, “Advances in small perovskite-based lasers,” Small Methods 1, 1700163 (2017).
[Crossref]

Sui, Y.

G. Xiao, Y. Cao, G. Qi, L. Wang, C. Liu, Z. Ma, X. Yang, Y. Sui, W. Zheng, and B. Zou, “Pressure effects on structure and optical properties in cesium lead bromide perovskite nanocrystals,” J. Am. Chem. Soc. 139, 10087–10094 (2017).
[Crossref]

Sum, T. C.

T. C. Sum, N. Mathews, G. C. Xing, S. S. Lim, W. K. Chong, D. Giovanni, and H. A. Dewi, “Spectral features and charge dynamics of lead halide perovskites: origins and interpretations,” Acc. Chem. Res. 49, 294–302 (2016).
[Crossref]

J. Xing, X. F. Liu, Q. Zhang, S. T. Ha, Y. W. Yuan, C. Shen, T. C. Sum, and Q. H. Xiong, “Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers,” Nano Lett. 15, 4571–4577 (2015).
[Crossref]

Sun, H.

Z. Yong, S. Guo, J. Ma, J. Zhang, Z. Li, Y. Chen, B. Zhang, Y. Zhou, J. Shu, J. Gu, L. Zheng, O. M. Bakr, and H. Sun, “Doping-enhanced short-range order of perovskite nanocrystals for near-unity violet luminescence quantum yield,” J. Am. Chem. Soc. 140, 9942–9951 (2018).
[Crossref]

Y. Zhou, J. Chen, O. M. Bakr, and H. Sun, “Metal-doped lead halide perovskites: synthesis, properties, and optoelectronic applications,” Chem. Mater. 30, 6589–6613 (2018).
[Crossref]

Y. Wang, X. Li, J. Song, L. Xiao, H. Zeng, and H. Sun, “AllInorganic colloidal perovskite quantum dots: a new class of lasing materials with favorable characteristics,” Adv. Mater. 27, 7101–7108 (2015).
[Crossref]

Sun, K.

Sun, Z.

Y. Wu, C. Wei, X. Li, Y. Li, S. Qiu, W. Shen, B. Cai, Z. Sun, D. Yang, Z. Deng, and H. Zeng, “In situ passivation of PbBr64− octahedra toward blue luminescent CsPbBr3 nanoplatelets with near 100% absolute quantum yield,” ACS Energy Lett. 3, 2030–2037 (2018).
[Crossref]

Sunc, K.

C. L. Lia, Z. G. Zanga, C. Hana, Z. P. Hua, X. S. Tanga, J. Dub, Y. Lengb, and K. Sunc, “Highly compact CsPbBr3 perovskite thin films decorated by ZnO nanoparticles for enhanced random lasing,” Nano Energy 40, 195–202 (2017).
[Crossref]

Tan, R.

N. Yasutaka, K. Kimball, R. Tan, R. Li, Z. Wang, and O. Chen, “Nanocube superlattices of cesium lead bromide perovskites and pressure-induced phase transformations at atomic and mesoscale levels,” Adv. Mater. 29, 1606666 (2017).
[Crossref]

Tang, X. S.

Tanga, X. S.

C. Han, C. L. Li, Z. G. Zang, M. Wang, K. Sun, X. S. Tanga, and J. Dub, “Tunable luminescent CsPb2Br5 nanoplatelets: applications in light-emitting diodes and photodetectors,” Photon. Res. 5, 473–480 (2017).
[Crossref]

C. L. Lia, C. Hana, Y. B. Zhangb, Z. G. Zanga, M. Wanga, X. S. Tanga, and J. Dub, “Enhanced photoresponse of self-powered perovskite photodetector based on ZnO nanoparticles decorated CsPbBr3 films,” Sol. Energy Mater. Sol. Cells 172, 341–346 (2017).
[Crossref]

C. L. Lia, Z. G. Zanga, C. Hana, Z. P. Hua, X. S. Tanga, J. Dub, Y. Lengb, and K. Sunc, “Highly compact CsPbBr3 perovskite thin films decorated by ZnO nanoparticles for enhanced random lasing,” Nano Energy 40, 195–202 (2017).
[Crossref]

Tanimura, K.

K. Tanimura and N. Itoh, “Relaxation of excitons perturbed by self-trapped excitons in RbI: evidence for exciton fusion in inorganic solids with strong electron-phonon coupling,” Phys. Rev. Lett. 64, 1429–1432 (1990).
[Crossref]

Teshima, K.

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131, 6050–6051 (2009).
[Crossref]

Teuscher, J.

M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science 338, 643–647 (2012).
[Crossref]

Thon, S. M.

G. H. Carey, A. L. Abdelhady, Z. J. Ning, S. M. Thon, O. M. Bakr, and E. H. Sargent, “Colloidal quantum dot solar cells,” Chem. Rev. 115, 12732–12763 (2015).
[Crossref]

Tretiak, S.

W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H.-L. Wang, and A. D. Mohite, “High-efficiency solution-processed perovskite solar cells with millimeter-scale grains,” Science 347, 522–525 (2017).
[Crossref]

Tsai, H.

W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H.-L. Wang, and A. D. Mohite, “High-efficiency solution-processed perovskite solar cells with millimeter-scale grains,” Science 347, 522–525 (2017).
[Crossref]

Tstmeyuki, S.

T. Kobayashi, H. Ikeda, S. Tstmeyuki, and T. Kotaka, “Tn ← T1 absorption spectra of urethane substituted polydiacetylene in solutions at several pH values,” Chem. Phys. Lett. 116, 515–520 (1985).
[Crossref]

Uprety, P.

P. Uprety, B. Macco, M. M. Junda, C. R. Grice, W. M. M. Kessels, and N. J. Podraza, “Optical and electrical properties of H2 plasma-treated ZnO films prepared by atomic layer deposition using supercycles,” Mater. Sci. Semi. Proc. 84, 91–100 (2018).
[Crossref]

Van Ginhoven, R. M.

M. P. Prange, R. M. Van Ginhoven, N. Govind, and F. Gao, “Formation, stability, and mobility of self-trapped excitations in NaI and NaI1–xTlx from first principles,” Phys. Rev. B 87, 115101 (2013).
[Crossref]

Verheijen, M. A.

B. Macco, H. C. M. Knoops, M. A. Verheijen, W. Beyer, M. Creatore, and W. M. M. Kessels, “Atomic layer deposition of high-mobility hydrogen-doped zinc oxide,” Sol. Energ. Mater. Sol. Cells 173, 111–119 (2017).
[Crossref]

Vitali, D.

A. S. Mancini, V. Giovannetti, and D. Vitali, “Entangling macroscopic oscillators exploiting radiation pressure,” Phys. Rev. Lett. 88, 120401 (2002).
[Crossref]

Voznyy, O.

A. H. Ip, A. Kiani, I. J. Kramer, O. Voznyy, H. F. Movahed, L. Levina, M. M. Adachi, S. Hoogland, and E. H. Sargent, “Infrared colloidal quantum dot photovoltaics via coupling enhancement and agglomeration suppression,” ACS Nano 9, 8833–8842 (2015).
[Crossref]

Walsh, A.

L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, “Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut,” Nano Lett. 15, 3692–3696 (2015).
[Crossref]

Wang, H.-L.

W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H.-L. Wang, and A. D. Mohite, “High-efficiency solution-processed perovskite solar cells with millimeter-scale grains,” Science 347, 522–525 (2017).
[Crossref]

Wang, K.

Z. Ma, Z. Liu, S. Lu, L. Wang, X. Feng, D. Yang, K. Wang, G. Xiao, L. Zhang, S. Redfern, and B. Zou, “Pressure-induced emission of cesium lead halide perovskite nanocrystals,” Nat. Commun. 9, 4506 (2018).
[Crossref]

J. Yao, J. Ge, B. Han, K. Wang, H. Yao, H. Yu, J. Li, B. Zhu, J. Song, C. Chen, Q. Zhang, H. Zeng, Y. Luo, and S. Yu, “Ce3+-doping to modulate photoluminescence kinetics for efficient CsPbBr3 nanocrystals based light-emitting diodes,” J. Am. Chem. Soc. 140, 3626–3634 (2018).
[Crossref]

Wang, L.

Z. Ma, Z. Liu, S. Lu, L. Wang, X. Feng, D. Yang, K. Wang, G. Xiao, L. Zhang, S. Redfern, and B. Zou, “Pressure-induced emission of cesium lead halide perovskite nanocrystals,” Nat. Commun. 9, 4506 (2018).
[Crossref]

G. Xiao, Y. Cao, G. Qi, L. Wang, C. Liu, Z. Ma, X. Yang, Y. Sui, W. Zheng, and B. Zou, “Pressure effects on structure and optical properties in cesium lead bromide perovskite nanocrystals,” J. Am. Chem. Soc. 139, 10087–10094 (2017).
[Crossref]

Wang, M.

Wang, Y.

Y. Wang, X. Li, J. Song, L. Xiao, H. Zeng, and H. Sun, “AllInorganic colloidal perovskite quantum dots: a new class of lasing materials with favorable characteristics,” Adv. Mater. 27, 7101–7108 (2015).
[Crossref]

Wang, Z.

N. Yasutaka, K. Kimball, R. Tan, R. Li, Z. Wang, and O. Chen, “Nanocube superlattices of cesium lead bromide perovskites and pressure-induced phase transformations at atomic and mesoscale levels,” Adv. Mater. 29, 1606666 (2017).
[Crossref]

Wang, Z. H.

Y. Liu, P. Chen, Z. H. Wang, F. Bian, L. Lin, S. J. Chang, and G. G. Mu, “Efficient two-photon absorption of CdSe-CdS/Zns core-multishell quantum dots under the excitation of near-infrared femtosecond pulsed laser,” Laser Phys. 19, 1886–1890 (2009).
[Crossref]

Wanga, M.

C. L. Lia, C. Hana, Y. B. Zhangb, Z. G. Zanga, M. Wanga, X. S. Tanga, and J. Dub, “Enhanced photoresponse of self-powered perovskite photodetector based on ZnO nanoparticles decorated CsPbBr3 films,” Sol. Energy Mater. Sol. Cells 172, 341–346 (2017).
[Crossref]

Wei, C.

Y. Wu, C. Wei, X. Li, Y. Li, S. Qiu, W. Shen, B. Cai, Z. Sun, D. Yang, Z. Deng, and H. Zeng, “In situ passivation of PbBr64− octahedra toward blue luminescent CsPbBr3 nanoplatelets with near 100% absolute quantum yield,” ACS Energy Lett. 3, 2030–2037 (2018).
[Crossref]

Wessels, B. W.

C. C. Stoumpos, C. D. Malliakas, J. A. Peters, Z. Liu, M. Sebastian, J. Im, T. C. Chasapis, A. C. Wibowo, D. Y. Chung, A. J. Freeman, and B. W. Wessels, “Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection,” Cryst. Growth Des. 13, 2722–2727 (2013).
[Crossref]

Wibowo, A. C.

C. C. Stoumpos, C. D. Malliakas, J. A. Peters, Z. Liu, M. Sebastian, J. Im, T. C. Chasapis, A. C. Wibowo, D. Y. Chung, A. J. Freeman, and B. W. Wessels, “Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection,” Cryst. Growth Des. 13, 2722–2727 (2013).
[Crossref]

Wolf, C.

H. Cho, S.-H. Jeong, M. H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, and T.-W. Lee, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350, 1222–1225 (2015).
[Crossref]

Wu, X.-G.

F. Zhang, H. Zhong, C. Chen, X.-G. Wu, X. Hu, H. Huang, J. Han, B. Zou, and Y. Dong, “Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: potential alternatives for dsplay technology,” ACS Nano 9, 4533–4542 (2015).
[Crossref]

Wu, Y.

Y. Wu, C. Wei, X. Li, Y. Li, S. Qiu, W. Shen, B. Cai, Z. Sun, D. Yang, Z. Deng, and H. Zeng, “In situ passivation of PbBr64− octahedra toward blue luminescent CsPbBr3 nanoplatelets with near 100% absolute quantum yield,” ACS Energy Lett. 3, 2030–2037 (2018).
[Crossref]

Xia, Z.

X. Chen, H. Hu, Z. Xia, W. Gao, W. Gou, Y. Qu, and Y. Ma, “CsPbBr3 perovskite nanocrystals as highly selective and sensitive spectrochemical probes for gaseous Hcl detection,” J. Mater. Chem. C 5, 309–313 (2017).
[Crossref]

Xiao, G.

Z. Ma, Z. Liu, S. Lu, L. Wang, X. Feng, D. Yang, K. Wang, G. Xiao, L. Zhang, S. Redfern, and B. Zou, “Pressure-induced emission of cesium lead halide perovskite nanocrystals,” Nat. Commun. 9, 4506 (2018).
[Crossref]

G. Xiao, Y. Cao, G. Qi, L. Wang, C. Liu, Z. Ma, X. Yang, Y. Sui, W. Zheng, and B. Zou, “Pressure effects on structure and optical properties in cesium lead bromide perovskite nanocrystals,” J. Am. Chem. Soc. 139, 10087–10094 (2017).
[Crossref]

Xiao, L.

Y. Wang, X. Li, J. Song, L. Xiao, H. Zeng, and H. Sun, “AllInorganic colloidal perovskite quantum dots: a new class of lasing materials with favorable characteristics,” Adv. Mater. 27, 7101–7108 (2015).
[Crossref]

Xing, G. C.

T. C. Sum, N. Mathews, G. C. Xing, S. S. Lim, W. K. Chong, D. Giovanni, and H. A. Dewi, “Spectral features and charge dynamics of lead halide perovskites: origins and interpretations,” Acc. Chem. Res. 49, 294–302 (2016).
[Crossref]

Xing, J.

J. Xing, X. F. Liu, Q. Zhang, S. T. Ha, Y. W. Yuan, C. Shen, T. C. Sum, and Q. H. Xiong, “Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers,” Nano Lett. 15, 4571–4577 (2015).
[Crossref]

Xiong, Q. H.

J. Xing, X. F. Liu, Q. Zhang, S. T. Ha, Y. W. Yuan, C. Shen, T. C. Sum, and Q. H. Xiong, “Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers,” Nano Lett. 15, 4571–4577 (2015).
[Crossref]

Xiong, Q.-H.

Q. Zhang, R. Su, W. Du, X. Liu, L. Zhao, S.-T. Ha, and Q.-H. Xiong, “Advances in small perovskite-based lasers,” Small Methods 1, 1700163 (2017).
[Crossref]

Xu, L.

J. Song, J. Li, X. Li, L. Xu, Y. Dong, and H. Zeng, “Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3),” Adv. Mater. 27, 7162–7167 (2015).
[Crossref]

Yakunin, S.

L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, “Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut,” Nano Lett. 15, 3692–3696 (2015).
[Crossref]

Yan, F.

N. Yantara, S. Bhaumik, F. Yan, D. Sabba, H. A. Dewi, N. Mathews, P. P. Boix, H. V. Demir, and S. Mhaisalkar, “Inorganic halide perovskites for efficient light-emitting diodes,” J. Phys. Chem. Lett. 6, 4360–4364 (2015).
[Crossref]

Yang, D.

Z. Ma, Z. Liu, S. Lu, L. Wang, X. Feng, D. Yang, K. Wang, G. Xiao, L. Zhang, S. Redfern, and B. Zou, “Pressure-induced emission of cesium lead halide perovskite nanocrystals,” Nat. Commun. 9, 4506 (2018).
[Crossref]

Y. Wu, C. Wei, X. Li, Y. Li, S. Qiu, W. Shen, B. Cai, Z. Sun, D. Yang, Z. Deng, and H. Zeng, “In situ passivation of PbBr64− octahedra toward blue luminescent CsPbBr3 nanoplatelets with near 100% absolute quantum yield,” ACS Energy Lett. 3, 2030–2037 (2018).
[Crossref]

Yang, R. X.

L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, “Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut,” Nano Lett. 15, 3692–3696 (2015).
[Crossref]

Yang, X.

G. Xiao, Y. Cao, G. Qi, L. Wang, C. Liu, Z. Ma, X. Yang, Y. Sui, W. Zheng, and B. Zou, “Pressure effects on structure and optical properties in cesium lead bromide perovskite nanocrystals,” J. Am. Chem. Soc. 139, 10087–10094 (2017).
[Crossref]

Yang, Y.

H. Zhou, Q. Chen, G. Li, S. Luo, T. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, “Photovoltaics interface engineering of highly efficient perovskite solar cells,” Science 345, 542–546 (2014).
[Crossref]

Yantara, N.

N. Yantara, S. Bhaumik, F. Yan, D. Sabba, H. A. Dewi, N. Mathews, P. P. Boix, H. V. Demir, and S. Mhaisalkar, “Inorganic halide perovskites for efficient light-emitting diodes,” J. Phys. Chem. Lett. 6, 4360–4364 (2015).
[Crossref]

Yao, H.

J. Yao, J. Ge, B. Han, K. Wang, H. Yao, H. Yu, J. Li, B. Zhu, J. Song, C. Chen, Q. Zhang, H. Zeng, Y. Luo, and S. Yu, “Ce3+-doping to modulate photoluminescence kinetics for efficient CsPbBr3 nanocrystals based light-emitting diodes,” J. Am. Chem. Soc. 140, 3626–3634 (2018).
[Crossref]

Yao, J.

J. Yao, J. Ge, B. Han, K. Wang, H. Yao, H. Yu, J. Li, B. Zhu, J. Song, C. Chen, Q. Zhang, H. Zeng, Y. Luo, and S. Yu, “Ce3+-doping to modulate photoluminescence kinetics for efficient CsPbBr3 nanocrystals based light-emitting diodes,” J. Am. Chem. Soc. 140, 3626–3634 (2018).
[Crossref]

X. He, P. Liu, H. Zhang, Q. Liao, J. Yao, and H. Fu, “Patterning multicolored microdisk laser arrays of cesium lead halide perovskite,” Adv. Mater. 29, 1604510 (2017).
[Crossref]

Yasuda, A.

A. Yasuda, M. Yoshizawaand, and T. Kobayashi, “Fluorescence spectrum of a blue-phase polydiacetylene obtained by probe saturation spectroscopy,” Chem. Phys. Lett. 209, 281–286 (1993).
[Crossref]

M. Yoshizawa, A. Yasuda, and T. Kobayashi, “Ultrafast optical response in polydiacetylenes and polythiophenes,” Appl. Phys. B 53, 296–307 (1991).
[Crossref]

Yasutaka, N.

N. Yasutaka, K. Kimball, R. Tan, R. Li, Z. Wang, and O. Chen, “Nanocube superlattices of cesium lead bromide perovskites and pressure-induced phase transformations at atomic and mesoscale levels,” Adv. Mater. 29, 1606666 (2017).
[Crossref]

Yella, A.

O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Graetzel, M. K. Nazeeruddin, and H. J. Bolink, “Perovskite solar cells employing organic charge-transport layers,” Nat. Photonics 8, 128–132 (2014).
[Crossref]

Yi, C.

D. Bi, C. Yi, J. Luo, J.-D. DÉCoppet, F. Zhang, S. M. Zakeeruddin, X. Li, A. Hagfeldt, and M. Grätzel, “Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%,” Nat. Energy 1, 16142 (2016).
[Crossref]

Yong, Z.

Z. Yong, S. Guo, J. Ma, J. Zhang, Z. Li, Y. Chen, B. Zhang, Y. Zhou, J. Shu, J. Gu, L. Zheng, O. M. Bakr, and H. Sun, “Doping-enhanced short-range order of perovskite nanocrystals for near-unity violet luminescence quantum yield,” J. Am. Chem. Soc. 140, 9942–9951 (2018).
[Crossref]

Yoo, S.

H. Cho, S.-H. Jeong, M. H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, and T.-W. Lee, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350, 1222–1225 (2015).
[Crossref]

Yoshizawa, M.

M. Yoshizawa, K. Nishiyama, M. Fujihira, and T. Kobayashi, “Exciton transition energy and temperature dependence of ultrafast relaxation of self-trapped excitons in polydiacetylenes,” Chem. Phys. Lett. 207, 461–467 (1993).
[Crossref]

M. Yoshizawa, Y. Hattori, and T. Kobayashi, “Nonlinear optical susceptibilities of epitaxially grown polydiacetylene measured by femtosecond time-resolved spectroscopy,” Phys. Rev. B 47, 3882–3889 (1993).
[Crossref]

M. Yoshizawa, A. Yasuda, and T. Kobayashi, “Ultrafast optical response in polydiacetylenes and polythiophenes,” Appl. Phys. B 53, 296–307 (1991).
[Crossref]

T. Kobayashi and M. Yoshizawa, “Femtosecond nonlinear response of polydiacetylenes and polythiophenes,” Synth. Metals 43, 3129–3134 (1991).
[Crossref]

Yoshizawaand, M.

A. Yasuda, M. Yoshizawaand, and T. Kobayashi, “Fluorescence spectrum of a blue-phase polydiacetylene obtained by probe saturation spectroscopy,” Chem. Phys. Lett. 209, 281–286 (1993).
[Crossref]

You, J.

H. Zhou, Q. Chen, G. Li, S. Luo, T. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, “Photovoltaics interface engineering of highly efficient perovskite solar cells,” Science 345, 542–546 (2014).
[Crossref]

Yu, H.

J. Yao, J. Ge, B. Han, K. Wang, H. Yao, H. Yu, J. Li, B. Zhu, J. Song, C. Chen, Q. Zhang, H. Zeng, Y. Luo, and S. Yu, “Ce3+-doping to modulate photoluminescence kinetics for efficient CsPbBr3 nanocrystals based light-emitting diodes,” J. Am. Chem. Soc. 140, 3626–3634 (2018).
[Crossref]

Yu, S.

J. Yao, J. Ge, B. Han, K. Wang, H. Yao, H. Yu, J. Li, B. Zhu, J. Song, C. Chen, Q. Zhang, H. Zeng, Y. Luo, and S. Yu, “Ce3+-doping to modulate photoluminescence kinetics for efficient CsPbBr3 nanocrystals based light-emitting diodes,” J. Am. Chem. Soc. 140, 3626–3634 (2018).
[Crossref]

Yuan, Y. W.

J. Xing, X. F. Liu, Q. Zhang, S. T. Ha, Y. W. Yuan, C. Shen, T. C. Sum, and Q. H. Xiong, “Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers,” Nano Lett. 15, 4571–4577 (2015).
[Crossref]

Zakeeruddin, S. M.

D. Bi, C. Yi, J. Luo, J.-D. DÉCoppet, F. Zhang, S. M. Zakeeruddin, X. Li, A. Hagfeldt, and M. Grätzel, “Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%,” Nat. Energy 1, 16142 (2016).
[Crossref]

Zang, Z. G.

Zanga, Z. G.

C. L. Lia, C. Hana, Y. B. Zhangb, Z. G. Zanga, M. Wanga, X. S. Tanga, and J. Dub, “Enhanced photoresponse of self-powered perovskite photodetector based on ZnO nanoparticles decorated CsPbBr3 films,” Sol. Energy Mater. Sol. Cells 172, 341–346 (2017).
[Crossref]

C. L. Lia, Z. G. Zanga, C. Hana, Z. P. Hua, X. S. Tanga, J. Dub, Y. Lengb, and K. Sunc, “Highly compact CsPbBr3 perovskite thin films decorated by ZnO nanoparticles for enhanced random lasing,” Nano Energy 40, 195–202 (2017).
[Crossref]

Zeng, H.

Y. Wu, C. Wei, X. Li, Y. Li, S. Qiu, W. Shen, B. Cai, Z. Sun, D. Yang, Z. Deng, and H. Zeng, “In situ passivation of PbBr64− octahedra toward blue luminescent CsPbBr3 nanoplatelets with near 100% absolute quantum yield,” ACS Energy Lett. 3, 2030–2037 (2018).
[Crossref]

J. Yao, J. Ge, B. Han, K. Wang, H. Yao, H. Yu, J. Li, B. Zhu, J. Song, C. Chen, Q. Zhang, H. Zeng, Y. Luo, and S. Yu, “Ce3+-doping to modulate photoluminescence kinetics for efficient CsPbBr3 nanocrystals based light-emitting diodes,” J. Am. Chem. Soc. 140, 3626–3634 (2018).
[Crossref]

Y. Wang, X. Li, J. Song, L. Xiao, H. Zeng, and H. Sun, “AllInorganic colloidal perovskite quantum dots: a new class of lasing materials with favorable characteristics,” Adv. Mater. 27, 7101–7108 (2015).
[Crossref]

J. Song, J. Li, X. Li, L. Xu, Y. Dong, and H. Zeng, “Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3),” Adv. Mater. 27, 7162–7167 (2015).
[Crossref]

Zhang, B.

Z. Yong, S. Guo, J. Ma, J. Zhang, Z. Li, Y. Chen, B. Zhang, Y. Zhou, J. Shu, J. Gu, L. Zheng, O. M. Bakr, and H. Sun, “Doping-enhanced short-range order of perovskite nanocrystals for near-unity violet luminescence quantum yield,” J. Am. Chem. Soc. 140, 9942–9951 (2018).
[Crossref]

Zhang, F.

D. Bi, C. Yi, J. Luo, J.-D. DÉCoppet, F. Zhang, S. M. Zakeeruddin, X. Li, A. Hagfeldt, and M. Grätzel, “Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%,” Nat. Energy 1, 16142 (2016).
[Crossref]

F. Zhang, H. Zhong, C. Chen, X.-G. Wu, X. Hu, H. Huang, J. Han, B. Zou, and Y. Dong, “Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: potential alternatives for dsplay technology,” ACS Nano 9, 4533–4542 (2015).
[Crossref]

Zhang, H.

X. He, P. Liu, H. Zhang, Q. Liao, J. Yao, and H. Fu, “Patterning multicolored microdisk laser arrays of cesium lead halide perovskite,” Adv. Mater. 29, 1604510 (2017).
[Crossref]

Zhang, J.

Z. Yong, S. Guo, J. Ma, J. Zhang, Z. Li, Y. Chen, B. Zhang, Y. Zhou, J. Shu, J. Gu, L. Zheng, O. M. Bakr, and H. Sun, “Doping-enhanced short-range order of perovskite nanocrystals for near-unity violet luminescence quantum yield,” J. Am. Chem. Soc. 140, 9942–9951 (2018).
[Crossref]

Zhang, L.

Z. Ma, Z. Liu, S. Lu, L. Wang, X. Feng, D. Yang, K. Wang, G. Xiao, L. Zhang, S. Redfern, and B. Zou, “Pressure-induced emission of cesium lead halide perovskite nanocrystals,” Nat. Commun. 9, 4506 (2018).
[Crossref]

Zhang, Q.

J. Yao, J. Ge, B. Han, K. Wang, H. Yao, H. Yu, J. Li, B. Zhu, J. Song, C. Chen, Q. Zhang, H. Zeng, Y. Luo, and S. Yu, “Ce3+-doping to modulate photoluminescence kinetics for efficient CsPbBr3 nanocrystals based light-emitting diodes,” J. Am. Chem. Soc. 140, 3626–3634 (2018).
[Crossref]

Q. Zhang, R. Su, W. Du, X. Liu, L. Zhao, S.-T. Ha, and Q.-H. Xiong, “Advances in small perovskite-based lasers,” Small Methods 1, 1700163 (2017).
[Crossref]

J. Xing, X. F. Liu, Q. Zhang, S. T. Ha, Y. W. Yuan, C. Shen, T. C. Sum, and Q. H. Xiong, “Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers,” Nano Lett. 15, 4571–4577 (2015).
[Crossref]

Zhangb, Y. B.

C. L. Lia, C. Hana, Y. B. Zhangb, Z. G. Zanga, M. Wanga, X. S. Tanga, and J. Dub, “Enhanced photoresponse of self-powered perovskite photodetector based on ZnO nanoparticles decorated CsPbBr3 films,” Sol. Energy Mater. Sol. Cells 172, 341–346 (2017).
[Crossref]

Zhao, L.

Q. Zhang, R. Su, W. Du, X. Liu, L. Zhao, S.-T. Ha, and Q.-H. Xiong, “Advances in small perovskite-based lasers,” Small Methods 1, 1700163 (2017).
[Crossref]

Zheng, L.

Z. Yong, S. Guo, J. Ma, J. Zhang, Z. Li, Y. Chen, B. Zhang, Y. Zhou, J. Shu, J. Gu, L. Zheng, O. M. Bakr, and H. Sun, “Doping-enhanced short-range order of perovskite nanocrystals for near-unity violet luminescence quantum yield,” J. Am. Chem. Soc. 140, 9942–9951 (2018).
[Crossref]

Zheng, W.

G. Xiao, Y. Cao, G. Qi, L. Wang, C. Liu, Z. Ma, X. Yang, Y. Sui, W. Zheng, and B. Zou, “Pressure effects on structure and optical properties in cesium lead bromide perovskite nanocrystals,” J. Am. Chem. Soc. 139, 10087–10094 (2017).
[Crossref]

Zhong, H.

F. Zhang, H. Zhong, C. Chen, X.-G. Wu, X. Hu, H. Huang, J. Han, B. Zou, and Y. Dong, “Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: potential alternatives for dsplay technology,” ACS Nano 9, 4533–4542 (2015).
[Crossref]

Z. Bai and H. Zhong, “Halide perovskite quantum dots: potential candidates for display technology,” Sci. Bull. 60, 1622–1624 (2015).
[Crossref]

Zhou, H.

H. Zhou, Q. Chen, G. Li, S. Luo, T. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, “Photovoltaics interface engineering of highly efficient perovskite solar cells,” Science 345, 542–546 (2014).
[Crossref]

Zhou, Y.

Z. Yong, S. Guo, J. Ma, J. Zhang, Z. Li, Y. Chen, B. Zhang, Y. Zhou, J. Shu, J. Gu, L. Zheng, O. M. Bakr, and H. Sun, “Doping-enhanced short-range order of perovskite nanocrystals for near-unity violet luminescence quantum yield,” J. Am. Chem. Soc. 140, 9942–9951 (2018).
[Crossref]

Y. Zhou, J. Chen, O. M. Bakr, and H. Sun, “Metal-doped lead halide perovskites: synthesis, properties, and optoelectronic applications,” Chem. Mater. 30, 6589–6613 (2018).
[Crossref]

Zhu, B.

J. Yao, J. Ge, B. Han, K. Wang, H. Yao, H. Yu, J. Li, B. Zhu, J. Song, C. Chen, Q. Zhang, H. Zeng, Y. Luo, and S. Yu, “Ce3+-doping to modulate photoluminescence kinetics for efficient CsPbBr3 nanocrystals based light-emitting diodes,” J. Am. Chem. Soc. 140, 3626–3634 (2018).
[Crossref]

Zou, B.

Z. Ma, Z. Liu, S. Lu, L. Wang, X. Feng, D. Yang, K. Wang, G. Xiao, L. Zhang, S. Redfern, and B. Zou, “Pressure-induced emission of cesium lead halide perovskite nanocrystals,” Nat. Commun. 9, 4506 (2018).
[Crossref]

G. Xiao, Y. Cao, G. Qi, L. Wang, C. Liu, Z. Ma, X. Yang, Y. Sui, W. Zheng, and B. Zou, “Pressure effects on structure and optical properties in cesium lead bromide perovskite nanocrystals,” J. Am. Chem. Soc. 139, 10087–10094 (2017).
[Crossref]

F. Zhang, H. Zhong, C. Chen, X.-G. Wu, X. Hu, H. Huang, J. Han, B. Zou, and Y. Dong, “Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: potential alternatives for dsplay technology,” ACS Nano 9, 4533–4542 (2015).
[Crossref]

Acc. Chem. Res. (1)

T. C. Sum, N. Mathews, G. C. Xing, S. S. Lim, W. K. Chong, D. Giovanni, and H. A. Dewi, “Spectral features and charge dynamics of lead halide perovskites: origins and interpretations,” Acc. Chem. Res. 49, 294–302 (2016).
[Crossref]

ACS Energy Lett. (1)

Y. Wu, C. Wei, X. Li, Y. Li, S. Qiu, W. Shen, B. Cai, Z. Sun, D. Yang, Z. Deng, and H. Zeng, “In situ passivation of PbBr64− octahedra toward blue luminescent CsPbBr3 nanoplatelets with near 100% absolute quantum yield,” ACS Energy Lett. 3, 2030–2037 (2018).
[Crossref]

ACS Nano (2)

A. H. Ip, A. Kiani, I. J. Kramer, O. Voznyy, H. F. Movahed, L. Levina, M. M. Adachi, S. Hoogland, and E. H. Sargent, “Infrared colloidal quantum dot photovoltaics via coupling enhancement and agglomeration suppression,” ACS Nano 9, 8833–8842 (2015).
[Crossref]

F. Zhang, H. Zhong, C. Chen, X.-G. Wu, X. Hu, H. Huang, J. Han, B. Zou, and Y. Dong, “Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: potential alternatives for dsplay technology,” ACS Nano 9, 4533–4542 (2015).
[Crossref]

Adv. Mater. (5)

N. Yasutaka, K. Kimball, R. Tan, R. Li, Z. Wang, and O. Chen, “Nanocube superlattices of cesium lead bromide perovskites and pressure-induced phase transformations at atomic and mesoscale levels,” Adv. Mater. 29, 1606666 (2017).
[Crossref]

J.-W. Lee, D.-J. Seol, A.-N. Cho, and N.-G. Park, “High-efficiency perovskite solar cells based on the black polymorph of Hc(NH2)2PbI3,” Adv. Mater. 26, 4991–4998 (2014).
[Crossref]

J. Song, J. Li, X. Li, L. Xu, Y. Dong, and H. Zeng, “Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3),” Adv. Mater. 27, 7162–7167 (2015).
[Crossref]

X. He, P. Liu, H. Zhang, Q. Liao, J. Yao, and H. Fu, “Patterning multicolored microdisk laser arrays of cesium lead halide perovskite,” Adv. Mater. 29, 1604510 (2017).
[Crossref]

Y. Wang, X. Li, J. Song, L. Xiao, H. Zeng, and H. Sun, “AllInorganic colloidal perovskite quantum dots: a new class of lasing materials with favorable characteristics,” Adv. Mater. 27, 7101–7108 (2015).
[Crossref]

Appl. Phys. B (1)

M. Yoshizawa, A. Yasuda, and T. Kobayashi, “Ultrafast optical response in polydiacetylenes and polythiophenes,” Appl. Phys. B 53, 296–307 (1991).
[Crossref]

Astrophys. J. (1)

E. F. Nichols and G. F. Hull, “The pressure due to radiation,” Astrophys. J. 17, 315–351 (1903).
[Crossref]

Chem. Commun. (1)

P. Ramasamy, D. H. Lim, B. Kim, S. H. Lee, M. S. Lee, and J. S. Lee, “All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications,” Chem. Commun. 52, 2067–2070 (2016).
[Crossref]

Chem. Mater. (1)

Y. Zhou, J. Chen, O. M. Bakr, and H. Sun, “Metal-doped lead halide perovskites: synthesis, properties, and optoelectronic applications,” Chem. Mater. 30, 6589–6613 (2018).
[Crossref]

Chem. Phys. Lett. (4)

M. Yoshizawa, K. Nishiyama, M. Fujihira, and T. Kobayashi, “Exciton transition energy and temperature dependence of ultrafast relaxation of self-trapped excitons in polydiacetylenes,” Chem. Phys. Lett. 207, 461–467 (1993).
[Crossref]

A. Yasuda, M. Yoshizawaand, and T. Kobayashi, “Fluorescence spectrum of a blue-phase polydiacetylene obtained by probe saturation spectroscopy,” Chem. Phys. Lett. 209, 281–286 (1993).
[Crossref]

T. Kobayashi and H. Ikeda, “Dependence of the spectrum and decay of transient photoinduced reflectance change on excitation wavelength and intensity in polydiacetylene single crystals,” Chem. Phys. Lett. 133, 54–58 (1987).
[Crossref]

T. Kobayashi, H. Ikeda, S. Tstmeyuki, and T. Kotaka, “Tn ← T1 absorption spectra of urethane substituted polydiacetylene in solutions at several pH values,” Chem. Phys. Lett. 116, 515–520 (1985).
[Crossref]

Chem. Rev. (1)

G. H. Carey, A. L. Abdelhady, Z. J. Ning, S. M. Thon, O. M. Bakr, and E. H. Sargent, “Colloidal quantum dot solar cells,” Chem. Rev. 115, 12732–12763 (2015).
[Crossref]

Cryst. Growth Des. (1)

C. C. Stoumpos, C. D. Malliakas, J. A. Peters, Z. Liu, M. Sebastian, J. Im, T. C. Chasapis, A. C. Wibowo, D. Y. Chung, A. J. Freeman, and B. W. Wessels, “Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection,” Cryst. Growth Des. 13, 2722–2727 (2013).
[Crossref]

J. Am. Chem. Soc. (4)

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131, 6050–6051 (2009).
[Crossref]

Z. Yong, S. Guo, J. Ma, J. Zhang, Z. Li, Y. Chen, B. Zhang, Y. Zhou, J. Shu, J. Gu, L. Zheng, O. M. Bakr, and H. Sun, “Doping-enhanced short-range order of perovskite nanocrystals for near-unity violet luminescence quantum yield,” J. Am. Chem. Soc. 140, 9942–9951 (2018).
[Crossref]

G. Xiao, Y. Cao, G. Qi, L. Wang, C. Liu, Z. Ma, X. Yang, Y. Sui, W. Zheng, and B. Zou, “Pressure effects on structure and optical properties in cesium lead bromide perovskite nanocrystals,” J. Am. Chem. Soc. 139, 10087–10094 (2017).
[Crossref]

J. Yao, J. Ge, B. Han, K. Wang, H. Yao, H. Yu, J. Li, B. Zhu, J. Song, C. Chen, Q. Zhang, H. Zeng, Y. Luo, and S. Yu, “Ce3+-doping to modulate photoluminescence kinetics for efficient CsPbBr3 nanocrystals based light-emitting diodes,” J. Am. Chem. Soc. 140, 3626–3634 (2018).
[Crossref]

J. Appl. Phys. (2)

J. P. Barton, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused light beam,” J. Appl. Phys. 64, 1632–1639 (1998).
[Crossref]

J. P. Barton and D. R. Alexander, “Fifth-order corrected electromagnetic field components for a fundamental Gaussian beam,” J. Appl. Phys. 66, 2800–2802 (1989).
[Crossref]

J. Lumin. (1)

T. Kobayashi, “Ultrafast relaxation in conjugated polymers,” J. Lumin. 53, 159–164 (1992).
[Crossref]

J. Mater. Chem. C (1)

X. Chen, H. Hu, Z. Xia, W. Gao, W. Gou, Y. Qu, and Y. Ma, “CsPbBr3 perovskite nanocrystals as highly selective and sensitive spectrochemical probes for gaseous Hcl detection,” J. Mater. Chem. C 5, 309–313 (2017).
[Crossref]

J. Phys. Chem. C (1)

D. Rossi, D. Parobek, Y. Dong, and D.-H. Son, “Dynamics of exciton-Mn energy transfer in Mn-doped CsPbCl3 perovskite nanocrystals,” J. Phys. Chem. C 121, 17143–17149 (2017).
[Crossref]

J. Phys. Chem. Lett. (3)

N. Yantara, S. Bhaumik, F. Yan, D. Sabba, H. A. Dewi, N. Mathews, P. P. Boix, H. V. Demir, and S. Mhaisalkar, “Inorganic halide perovskites for efficient light-emitting diodes,” J. Phys. Chem. Lett. 6, 4360–4364 (2015).
[Crossref]

R. E. Beal, D. J. Slotcavage, T. Leijtens, A. R. Bowring, R. A. Belisle, W. H. Nguyen, G. F. Burkhard, E. T. Hoke, and M. D. McGehee, “Cesium lead halide perovskites with improved stability for tandem solar cells,” J. Phys. Chem. Lett. 7, 746–751 (2016).
[Crossref]

M. Kulbak, S. Gupta, N. Kedem, I. Levine, T. Bendikov, G. Hodes, and D. Cahen, “Cesium enhances long-term stability of lead bromide perovskite-based solar cells,” J. Phys. Chem. Lett. 7, 167–172 (2016).
[Crossref]

Laser Phys. (1)

Y. Liu, P. Chen, Z. H. Wang, F. Bian, L. Lin, S. J. Chang, and G. G. Mu, “Efficient two-photon absorption of CdSe-CdS/Zns core-multishell quantum dots under the excitation of near-infrared femtosecond pulsed laser,” Laser Phys. 19, 1886–1890 (2009).
[Crossref]

Mater. Sci. Semi. Proc. (1)

P. Uprety, B. Macco, M. M. Junda, C. R. Grice, W. M. M. Kessels, and N. J. Podraza, “Optical and electrical properties of H2 plasma-treated ZnO films prepared by atomic layer deposition using supercycles,” Mater. Sci. Semi. Proc. 84, 91–100 (2018).
[Crossref]

Nano Energy (1)

C. L. Lia, Z. G. Zanga, C. Hana, Z. P. Hua, X. S. Tanga, J. Dub, Y. Lengb, and K. Sunc, “Highly compact CsPbBr3 perovskite thin films decorated by ZnO nanoparticles for enhanced random lasing,” Nano Energy 40, 195–202 (2017).
[Crossref]

Nano Lett. (2)

J. Xing, X. F. Liu, Q. Zhang, S. T. Ha, Y. W. Yuan, C. Shen, T. C. Sum, and Q. H. Xiong, “Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers,” Nano Lett. 15, 4571–4577 (2015).
[Crossref]

L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, “Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut,” Nano Lett. 15, 3692–3696 (2015).
[Crossref]

Nanoscale (2)

N. Mondal and A. Samanta, “Complete ultrafast charge carrier dynamics in photo-excited all-inorganic perovskite nanocrystals (CsPbX3),” Nanoscale 9, 1878–1885 (2017).
[Crossref]

J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, and N.-G. Park, “6.5% efficient perovskite quantum-dot-sensitized solar cell,” Nanoscale 3, 4088–4093 (2011).
[Crossref]

Nat. Commun. (1)

Z. Ma, Z. Liu, S. Lu, L. Wang, X. Feng, D. Yang, K. Wang, G. Xiao, L. Zhang, S. Redfern, and B. Zou, “Pressure-induced emission of cesium lead halide perovskite nanocrystals,” Nat. Commun. 9, 4506 (2018).
[Crossref]

Nat. Energy (1)

D. Bi, C. Yi, J. Luo, J.-D. DÉCoppet, F. Zhang, S. M. Zakeeruddin, X. Li, A. Hagfeldt, and M. Grätzel, “Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%,” Nat. Energy 1, 16142 (2016).
[Crossref]

Nat. Photonics (2)

O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Graetzel, M. K. Nazeeruddin, and H. J. Bolink, “Perovskite solar cells employing organic charge-transport layers,” Nat. Photonics 8, 128–132 (2014).
[Crossref]

D. Liu and T. L. Kelly, “Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques,” Nat. Photonics 8, 133–138 (2014).
[Crossref]

Nature (5)

M. Liu, M. B. Johnston, and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature 501, 395–398 (2013).
[Crossref]

J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. S. Grätzel, “Deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499, 316–319 (2013).
[Crossref]

I. Chung, B. Lee, J. He, R. P. H. Chang, and M. G. Kanatzidis, “All-solid-state dye-sensitized solar cells with high efficiency,” Nature 485, 486–489 (2012).
[Crossref]

O. Arcizet, P.-F. Cohadon, and T. Briant, “Radiation-pressure cooling and optomechanical instability of a micromirror,” Nature 444, 71–74 (2006).
[Crossref]

S. Gigan, H. R. Boehm, and M. Paternostro, “Self-cooling of a micromirror by radiation pressure,” Nature 444, 67–70 (2006).
[Crossref]

Opt. Commun. (1)

H. Polaert, G. Grehan, and G. Gouesbet, “Forces and torques exerted on a multilayered spherical particle by a focused Gaussian bean,” Opt. Commun. 155, 169–179 (1998).
[Crossref]

Opt. Express (1)

Photon. Res. (1)

Phys. Rev. B (2)

M. Yoshizawa, Y. Hattori, and T. Kobayashi, “Nonlinear optical susceptibilities of epitaxially grown polydiacetylene measured by femtosecond time-resolved spectroscopy,” Phys. Rev. B 47, 3882–3889 (1993).
[Crossref]

M. P. Prange, R. M. Van Ginhoven, N. Govind, and F. Gao, “Formation, stability, and mobility of self-trapped excitations in NaI and NaI1–xTlx from first principles,” Phys. Rev. B 87, 115101 (2013).
[Crossref]

Phys. Rev. Lett. (5)

K. Tanimura and N. Itoh, “Relaxation of excitons perturbed by self-trapped excitons in RbI: evidence for exciton fusion in inorganic solids with strong electron-phonon coupling,” Phys. Rev. Lett. 64, 1429–1432 (1990).
[Crossref]

A. Henig, S. Steinke, and M. Schnuerer, “Radiation-pressure acceleration of ion beams driven by circularly polarized laser pulses,” Phys. Rev. Lett. 103, 245003 (2009).
[Crossref]

A. Schliesser, P. Del’Haye, and N. Nooshi, “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 97, 243905 (2006).
[Crossref]

A. S. Mancini, V. Giovannetti, and D. Vitali, “Entangling macroscopic oscillators exploiting radiation pressure,” Phys. Rev. Lett. 88, 120401 (2002).
[Crossref]

T. J. Kippenberg, H. Rokhsari, and T. Carmon, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95, 033901 (2005).
[Crossref]

Rep. Prog. Phys. (1)

B.-W. Max and K. J. Chau, “Simulations of radiation pressure experiments narrow down the energy and momentum of light in matter,” Rep. Prog. Phys. 78, 122401 (2015).
[Crossref]

Sci. Bull. (1)

Z. Bai and H. Zhong, “Halide perovskite quantum dots: potential candidates for display technology,” Sci. Bull. 60, 1622–1624 (2015).
[Crossref]

Science (5)

H. Cho, S.-H. Jeong, M. H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, and T.-W. Lee, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350, 1222–1225 (2015).
[Crossref]

W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H.-L. Wang, and A. D. Mohite, “High-efficiency solution-processed perovskite solar cells with millimeter-scale grains,” Science 347, 522–525 (2017).
[Crossref]

A. Ashkin, “Applications of laser-radiation pressure,” Science 210, 1081–1088 (1980).
[Crossref]

M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science 338, 643–647 (2012).
[Crossref]

H. Zhou, Q. Chen, G. Li, S. Luo, T. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, “Photovoltaics interface engineering of highly efficient perovskite solar cells,” Science 345, 542–546 (2014).
[Crossref]

Small Methods (1)

Q. Zhang, R. Su, W. Du, X. Liu, L. Zhao, S.-T. Ha, and Q.-H. Xiong, “Advances in small perovskite-based lasers,” Small Methods 1, 1700163 (2017).
[Crossref]

Sol. Energ. Mater. Sol. Cells (1)

B. Macco, H. C. M. Knoops, M. A. Verheijen, W. Beyer, M. Creatore, and W. M. M. Kessels, “Atomic layer deposition of high-mobility hydrogen-doped zinc oxide,” Sol. Energ. Mater. Sol. Cells 173, 111–119 (2017).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

C. L. Lia, C. Hana, Y. B. Zhangb, Z. G. Zanga, M. Wanga, X. S. Tanga, and J. Dub, “Enhanced photoresponse of self-powered perovskite photodetector based on ZnO nanoparticles decorated CsPbBr3 films,” Sol. Energy Mater. Sol. Cells 172, 341–346 (2017).
[Crossref]

Synth. Metals (2)

T. Kobayashi and H. Ikeda, “Dependence of excitation wavelength and intensity on the spectrum and decay of the time-resolved reflectance change of polydiacetylene single crystals,” Synth. Metals 18, 441–446 (1987).
[Crossref]

T. Kobayashi and M. Yoshizawa, “Femtosecond nonlinear response of polydiacetylenes and polythiophenes,” Synth. Metals 43, 3129–3134 (1991).
[Crossref]

Other (3)

D. Mihalas, ed., Stellar Atmospheres, 2nd ed. (W. H. Freeman & Co., 1978).

A. S. Eddington and A. S. Eddington, The Internal Constitution of the Stars (Cambridge University, 1988).

S. Chandrasekhar, Radiative Transfer (Courier Corporation, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. (a) UV−vis absorption and PL emission spectra of CsPbBr 3 QDs. The inset shows the cubic perovskite structure of CsPbBr 3 (left) and schematic of perovskite CsPbBr 3 QDs after irradiation pressure (right). (b) TEM images of CsPbBr 3 . The inset is the HRTEM image. (c) Changes in the PL spactra of CsPbBr 3 QDs under different radiation pressures of the laser. The inset shows the beam quality of non-uniform Gaussian distribution. (d) PL spectra of the original and radiation pressure-processed CsPbBr 3 QDs.
Fig. 2.
Fig. 2. XPS profiles corresponding to (a) Cs 3d, (b) Pb 4f, and (c) Br 3d of original and radiation pressure CsPbBr 3 QDs. (d) XRD patterns of perovskite CsPbBr 3 QDs with and without radiation pressure. The black line represents original QDs, and the red line represents radiation pressure QDs. The corresponding Miller indices are labeled at the top of the diffraction peaks. (e) Optical absorption of CsPbBr 3 QDs with increasing radiation pressure.
Fig. 3.
Fig. 3. (a) TR-PL decays for perovskite films with radiation pressure CsPbBr 3 QDs. (b) Schematic energy diagram of the EF and STE states in original (left) and radiation pressure (right) perovskite QDs.
Fig. 4.
Fig. 4. (a) fs-TA spectra (excitation 400 nm) taken at several representative probe delays and (b) decay-associated spectra (DAS) for the original CsPbBr 3 QDs. (c) fs-TA spectra (excitation 400 nm) taken at several representative probe delays and (d) decay-associated spectra (DAS) for the radiation pressure CsPbBr 3 QDs.
Fig. 5.
Fig. 5. (a) Schematic diagram of the configuration of the prototype LED device. Normalized emission PL spectra at an applied current of 20 mA using green emissive (b) original and (c) radiation pressure CsPbBr 3 QDs films. (d) Current efficiency of the devices as a function of current. (e) Power efficiency of the devices as a function of luminance.
Fig. 6.
Fig. 6. (a) SEM image of CsPbBr 3 QDs thin film. (b)–(d) Elemental mappings of Cs, Pb, and Br in CsPbBr 3 QDs.
Fig. 7.
Fig. 7. TEM and high-resolution TEM images of radiation pressure CsPbBr 3 QDs thin film.
Fig. 8.
Fig. 8. Comparison of AFM images of (a) the original and (b) radiation pressure CsPbBr 3 films. The root mean square roughness is 6.615 nm and 14.63 nm, respectively.

Tables (5)

Tables Icon

Table 1. Lifetime Fitting Results of CsPbBr 3 QDs Sample

Tables Icon

Table 2. Resulting DAS-Related Characteristic Time Constants of Original and Radiation Pressure CsPbBr 3 Samples

Tables Icon

Table 3. Transport Properties of Original and Radiation Pressure CsPbBr 3 Samples

Tables Icon

Table 4. Radiation Pressure on Perfect Reflector at Normal Incidence ( α = 0 )

Tables Icon

Table 5. Different Magnitudes of Radiation Pressure on the Effect of PLQY of CsPbBr 3 QDs

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

A ( t ) = A 1 exp ( t / τ 1 ) + A 2 exp ( t / τ 2 ) ,
log ( I 0 / I ex ) ,
P L = I L d S = 2 π 0 p 0 I 0 · exp ( r 2 r 0 2 ) · r d r = I 0 · π r 0 2 .
P L = P 0 · exp ( t 2 τ 0 2 ) , E L = P 0 · π · τ ,

Metrics