Abstract

We demonstrate, for the first time, to the best of our knowledge, an all-fiber figure-of-9 double-clad Tm-doped fiber laser operating in the dissipative soliton resonance (DSR) regime. Stable mode-locked rectangular pulses are obtained by using the nonlinear amplifying loop mirror (NALM) technique. A long spool of high-nonlinearity fiber (HNLF) and a segment of SMF-28 fiber are used to enhance the nonlinearity of the NALM loop and to obtain a large all-anomalous regime. Output power and pulse energy are further boosted by using a three-stage master oscillator power amplifier (MOPA) system. At the maximum pump power, average output power of up to 104.3 W with record pulse energy of 0.33 mJ is achieved with a 2 μm DSR-based MOPA system.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
100 W dissipative soliton resonances from a thulium-doped double-clad all-fiber-format MOPA system

Junqing Zhao, Deqin Ouyang, Zhijian Zheng, Minqiu Liu, Xikui Ren, Chunbo Li, Shuangchen Ruan, and Weixin Xie
Opt. Express 24(11) 12072-12081 (2016)

Compact all-fiber figure-9 dissipative soliton resonance mode-locked double-clad Er:Yb laser

Karol Krzempek, Jaroslaw Sotor, and Krzysztof Abramski
Opt. Lett. 41(21) 4995-4998 (2016)

Dissipative soliton resonance mode-locked double clad Er:Yb laser at different values of anomalous dispersion

Karol Krzempek and Krzysztof Abramski
Opt. Express 24(20) 22379-22386 (2016)

References

  • View by:
  • |
  • |
  • |

  1. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
    [Crossref]
  2. K. Sugioka and Y. Cheng, “Ultrafast lasers—reliable tools for advanced materials processing,” Light Sci. Appl. 3, e149 (2014).
    [Crossref]
  3. N. Fried and K. Murray, “High-power thulium fiber laser ablation of urinary tissues at 1.94  μm,” J. Endourol. 19, 25–31 (2005).
    [Crossref]
  4. N. Fried, “Thulium fiber laser lithotripsy: an in vitro analysis of stone fragmentation using a modulated 110-watt thulium fiber laser at 1.94  μm,” Lasers Surg. Med. 37, 53–58 (2005).
    [Crossref]
  5. P. Hajireza, W. Shi, K. Bell, R. Paproski, and R. Zemp, “Non-interferometric photoacoustic remote sensing microscopy,” Light Sci. Appl. 6, e16278 (2017).
    [Crossref]
  6. S. Henderson and C. Hale, “Fast widely-tunable single-frequency 2-micron laser for remote-sensing applications,” Proc. SPIE 10406, 104060C (2017).
    [Crossref]
  7. Z. Zheng, D. Ouyang, J. Zhao, M. Liu, S. Ruan, P. Yan, and J. Wang, “Scaling all-fiber mid-infrared supercontinuum up to 10 W-level based on thermal-spliced silica fiber and ZBLAN fiber,” Photon. Res. 4, 135–139 (2016).
    [Crossref]
  8. J. Buckley, F. Wise, F. Ilday, and T. Sosnowski, “Femtosecond fiber lasers with pulse energies above 10 nJ,” Opt. Lett. 30, 1888–1890 (2005).
    [Crossref]
  9. D. Dvoretskiy, V. Lazarev, V. Voropaev, Z. Rodnova, S. Sazonkin, S. Leonov, A. Pnev, V. Karasik, and A. Krylov, “High-energy, sub-100 fs, all-fiber stretched-pulse mode-locked Er-doped ring laser with a highly-nonlinear resonator,” Opt. Express 23, 33295–33300 (2015).
    [Crossref]
  10. B. Nie, D. Pestov, F. Wise, and M. Dantus, “Generation of 42-fs and 10-nJ pulses from a fiber laser with self-similar evolution in the gain segment,” Opt. Express 19, 12074–12080 (2011).
    [Crossref]
  11. J. Wang, Z. Jiang, H. Chen, J. Li, J. Yin, J. Wang, T. He, P. Yan, and S. Ruan, “High energy soliton pulse generation by a magnetron-sputtering-deposition-grown MoTe2 saturable absorber,” Photon. Res. 6, 535–541 (2018).
    [Crossref]
  12. N. Akhmediev, J. Soto-Crespo, and P. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A 372, 3124–3128 (2008).
    [Crossref]
  13. W. Chang, A. Ankiewicz, J. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78, 23830 (2008).
    [Crossref]
  14. W. Chang, A. Ankiewicz, J. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances in laser models with parameter management,” J. Opt. Soc. Am. B 25, 1972–1977 (2008).
    [Crossref]
  15. W. Chang, J. Soto-Crespo, A. Ankiewicz, and N. Akhmediev, “Dissipative soliton resonances in the anomalous dispersion regime,” Phys. Rev. A 79, 033840 (2009).
    [Crossref]
  16. P. Grelu, W. Chang, A. Ankiewicz, J. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonance as a guideline for high-energy pulse laser oscillators,” J. Opt. Soc. Am. B 27, 2336–2341 (2010).
    [Crossref]
  17. L. Liu, J. Liao, Q. Ning, W. Yu, A. Luo, S. Xu, Z. Luo, Z. Yang, and W. Xu, “Wave-breaking-free pulse in an all-fiber normal-dispersion Yb-doped fiber laser under dissipative soliton resonance condition,” Opt. Express 21, 27087–27092 (2013).
    [Crossref]
  18. X. Li, S. Zhang, H. Zhang, M. Han, F. Wen, and Z. Yang, “Highly efficient rectangular pulse emission in a mode-locked fiber laser,” IEEE Photon. Technol. Lett. 26, 2082–2085 (2014).
    [Crossref]
  19. J. Cai, S. Chen, and J. Hou, “1.1-kW Peak-power dissipative soliton resonance in a mode-locked Yb-fiber laser,” IEEE Photon. Technol. Lett. 29, 2191–2194 (2017).
    [Crossref]
  20. X. Wu, D. Tang, H. Zhang, and L. Zhao, “Dissipative soliton resonance in an all-normal-dispersion erbium-doped fiber laser,” Opt. Express 17, 5580–5584 (2009).
    [Crossref]
  21. X. Li, X. Liu, X. Hu, L. Wang, H. Lu, Y. Wang, and W. Zhao, “Long-cavity passively mode-locked fiber ring laser with high-energy rectangular-shape pulses in anomalous dispersion regime,” Opt. Lett. 35, 3249–3251 (2010).
    [Crossref]
  22. S. Wang, Q. Ning, A. Luo, Z. Lin, Z. Luo, and W. Xu, “Dissipative soliton resonance in a passively mode-locked figure-eight fiber laser,” Opt. Express 21, 2402–2407 (2013).
    [Crossref]
  23. K. Krzempek, D. Tomaszewska, and K. Abramski, “Dissipative soliton resonance mode-locked all-polarization-maintaining double clad Er:Yb fiber laser,” Opt. Express 25, 24853–24860 (2017).
    [Crossref]
  24. K. Krzempek, “Dissipative soliton resonances in all-fiber Er–Yb double clad figure-8 laser,” Opt. Express 23, 30651–30656 (2015).
    [Crossref]
  25. K. Krzempek, J. Sotor, and K. Abramski, “Compact all-fiber figure-9 dissipative soliton resonance mode-locked double-clad Er:Yb laser,” Opt. Lett. 41, 4995–4998 (2016).
    [Crossref]
  26. K. Krzempek and K. Abramski, “6.5  μJ pulses from a compact dissipative soliton resonance mode-locked erbium-ytterbium double clad (DC) laser,” Laser Phys. Lett. 14, 15101 (2017).
    [Crossref]
  27. G. Semaan, F. Braham, J. Fourmont, M. Salhi, F. Bahloul, and F. Sanchez, “10  μJ dissipative soliton resonance square pulse in a dual amplifier figure-of-eight double-clad Er:Yb mode-locked fiber laser,” Opt. Lett. 41, 4767–4770 (2016).
    [Crossref]
  28. Y. Xu, Y. Song, G. Du, P. Yan, C. Guo, G. Zhang, and S. Ruan, “Dissipative soliton resonance in a wavelength-tunable thulium-doped fiber laser with net-normal dispersion,” IEEE Photon. J. 7, 1502007 (2015).
    [Crossref]
  29. J. Zhao, D. Ouyang, Z. Zheng, M. Liu, X. Ren, C. Li, S. Ruan, and W. Xie, “100  W dissipative soliton resonances from a thulium-doped double-clad all-fiber-format MOPA system,” Opt. Express 24, 12072–12081 (2016).
    [Crossref]
  30. S. Kharitonov and C. Bres, “All-fiber dissipative soliton resonance mode-locked figure-9 thulium-doped fiber laser,” in Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) (2017), p. 1.
  31. T. Du, W. Li, Q. Ruan, K. Wang, N. Chen, and Z. Luo, “2  μm high-power dissipative soliton resonance in a compact σ-shaped Tm-doped double-clad fiber laser,” Appl. Phys. Express 11, 52701 (2018).
    [Crossref]
  32. Y. Lyu, H. Shi, C. Wei, H. Li, J. Li, and Y. Liu, “Harmonic dissipative soliton resonance pulses in a fiber ring laser at different values of anomalous dispersion,” Photon. Res. 5, 612–616 (2017).
    [Crossref]

2018 (2)

T. Du, W. Li, Q. Ruan, K. Wang, N. Chen, and Z. Luo, “2  μm high-power dissipative soliton resonance in a compact σ-shaped Tm-doped double-clad fiber laser,” Appl. Phys. Express 11, 52701 (2018).
[Crossref]

J. Wang, Z. Jiang, H. Chen, J. Li, J. Yin, J. Wang, T. He, P. Yan, and S. Ruan, “High energy soliton pulse generation by a magnetron-sputtering-deposition-grown MoTe2 saturable absorber,” Photon. Res. 6, 535–541 (2018).
[Crossref]

2017 (6)

K. Krzempek, D. Tomaszewska, and K. Abramski, “Dissipative soliton resonance mode-locked all-polarization-maintaining double clad Er:Yb fiber laser,” Opt. Express 25, 24853–24860 (2017).
[Crossref]

Y. Lyu, H. Shi, C. Wei, H. Li, J. Li, and Y. Liu, “Harmonic dissipative soliton resonance pulses in a fiber ring laser at different values of anomalous dispersion,” Photon. Res. 5, 612–616 (2017).
[Crossref]

J. Cai, S. Chen, and J. Hou, “1.1-kW Peak-power dissipative soliton resonance in a mode-locked Yb-fiber laser,” IEEE Photon. Technol. Lett. 29, 2191–2194 (2017).
[Crossref]

K. Krzempek and K. Abramski, “6.5  μJ pulses from a compact dissipative soliton resonance mode-locked erbium-ytterbium double clad (DC) laser,” Laser Phys. Lett. 14, 15101 (2017).
[Crossref]

P. Hajireza, W. Shi, K. Bell, R. Paproski, and R. Zemp, “Non-interferometric photoacoustic remote sensing microscopy,” Light Sci. Appl. 6, e16278 (2017).
[Crossref]

S. Henderson and C. Hale, “Fast widely-tunable single-frequency 2-micron laser for remote-sensing applications,” Proc. SPIE 10406, 104060C (2017).
[Crossref]

2016 (4)

2015 (3)

2014 (2)

X. Li, S. Zhang, H. Zhang, M. Han, F. Wen, and Z. Yang, “Highly efficient rectangular pulse emission in a mode-locked fiber laser,” IEEE Photon. Technol. Lett. 26, 2082–2085 (2014).
[Crossref]

K. Sugioka and Y. Cheng, “Ultrafast lasers—reliable tools for advanced materials processing,” Light Sci. Appl. 3, e149 (2014).
[Crossref]

2013 (2)

2011 (1)

2010 (2)

2009 (2)

W. Chang, J. Soto-Crespo, A. Ankiewicz, and N. Akhmediev, “Dissipative soliton resonances in the anomalous dispersion regime,” Phys. Rev. A 79, 033840 (2009).
[Crossref]

X. Wu, D. Tang, H. Zhang, and L. Zhao, “Dissipative soliton resonance in an all-normal-dispersion erbium-doped fiber laser,” Opt. Express 17, 5580–5584 (2009).
[Crossref]

2008 (4)

R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[Crossref]

N. Akhmediev, J. Soto-Crespo, and P. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A 372, 3124–3128 (2008).
[Crossref]

W. Chang, A. Ankiewicz, J. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78, 23830 (2008).
[Crossref]

W. Chang, A. Ankiewicz, J. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances in laser models with parameter management,” J. Opt. Soc. Am. B 25, 1972–1977 (2008).
[Crossref]

2005 (3)

J. Buckley, F. Wise, F. Ilday, and T. Sosnowski, “Femtosecond fiber lasers with pulse energies above 10 nJ,” Opt. Lett. 30, 1888–1890 (2005).
[Crossref]

N. Fried and K. Murray, “High-power thulium fiber laser ablation of urinary tissues at 1.94  μm,” J. Endourol. 19, 25–31 (2005).
[Crossref]

N. Fried, “Thulium fiber laser lithotripsy: an in vitro analysis of stone fragmentation using a modulated 110-watt thulium fiber laser at 1.94  μm,” Lasers Surg. Med. 37, 53–58 (2005).
[Crossref]

Abramski, K.

Akhmediev, N.

P. Grelu, W. Chang, A. Ankiewicz, J. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonance as a guideline for high-energy pulse laser oscillators,” J. Opt. Soc. Am. B 27, 2336–2341 (2010).
[Crossref]

W. Chang, J. Soto-Crespo, A. Ankiewicz, and N. Akhmediev, “Dissipative soliton resonances in the anomalous dispersion regime,” Phys. Rev. A 79, 033840 (2009).
[Crossref]

W. Chang, A. Ankiewicz, J. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78, 23830 (2008).
[Crossref]

N. Akhmediev, J. Soto-Crespo, and P. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A 372, 3124–3128 (2008).
[Crossref]

W. Chang, A. Ankiewicz, J. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances in laser models with parameter management,” J. Opt. Soc. Am. B 25, 1972–1977 (2008).
[Crossref]

Ankiewicz, A.

P. Grelu, W. Chang, A. Ankiewicz, J. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonance as a guideline for high-energy pulse laser oscillators,” J. Opt. Soc. Am. B 27, 2336–2341 (2010).
[Crossref]

W. Chang, J. Soto-Crespo, A. Ankiewicz, and N. Akhmediev, “Dissipative soliton resonances in the anomalous dispersion regime,” Phys. Rev. A 79, 033840 (2009).
[Crossref]

W. Chang, A. Ankiewicz, J. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78, 23830 (2008).
[Crossref]

W. Chang, A. Ankiewicz, J. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances in laser models with parameter management,” J. Opt. Soc. Am. B 25, 1972–1977 (2008).
[Crossref]

Bahloul, F.

Bell, K.

P. Hajireza, W. Shi, K. Bell, R. Paproski, and R. Zemp, “Non-interferometric photoacoustic remote sensing microscopy,” Light Sci. Appl. 6, e16278 (2017).
[Crossref]

Braham, F.

Bres, C.

S. Kharitonov and C. Bres, “All-fiber dissipative soliton resonance mode-locked figure-9 thulium-doped fiber laser,” in Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) (2017), p. 1.

Buckley, J.

Cai, J.

J. Cai, S. Chen, and J. Hou, “1.1-kW Peak-power dissipative soliton resonance in a mode-locked Yb-fiber laser,” IEEE Photon. Technol. Lett. 29, 2191–2194 (2017).
[Crossref]

Chang, W.

P. Grelu, W. Chang, A. Ankiewicz, J. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonance as a guideline for high-energy pulse laser oscillators,” J. Opt. Soc. Am. B 27, 2336–2341 (2010).
[Crossref]

W. Chang, J. Soto-Crespo, A. Ankiewicz, and N. Akhmediev, “Dissipative soliton resonances in the anomalous dispersion regime,” Phys. Rev. A 79, 033840 (2009).
[Crossref]

W. Chang, A. Ankiewicz, J. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78, 23830 (2008).
[Crossref]

W. Chang, A. Ankiewicz, J. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances in laser models with parameter management,” J. Opt. Soc. Am. B 25, 1972–1977 (2008).
[Crossref]

Chen, H.

Chen, N.

T. Du, W. Li, Q. Ruan, K. Wang, N. Chen, and Z. Luo, “2  μm high-power dissipative soliton resonance in a compact σ-shaped Tm-doped double-clad fiber laser,” Appl. Phys. Express 11, 52701 (2018).
[Crossref]

Chen, S.

J. Cai, S. Chen, and J. Hou, “1.1-kW Peak-power dissipative soliton resonance in a mode-locked Yb-fiber laser,” IEEE Photon. Technol. Lett. 29, 2191–2194 (2017).
[Crossref]

Cheng, Y.

K. Sugioka and Y. Cheng, “Ultrafast lasers—reliable tools for advanced materials processing,” Light Sci. Appl. 3, e149 (2014).
[Crossref]

Dantus, M.

Du, G.

Y. Xu, Y. Song, G. Du, P. Yan, C. Guo, G. Zhang, and S. Ruan, “Dissipative soliton resonance in a wavelength-tunable thulium-doped fiber laser with net-normal dispersion,” IEEE Photon. J. 7, 1502007 (2015).
[Crossref]

Du, T.

T. Du, W. Li, Q. Ruan, K. Wang, N. Chen, and Z. Luo, “2  μm high-power dissipative soliton resonance in a compact σ-shaped Tm-doped double-clad fiber laser,” Appl. Phys. Express 11, 52701 (2018).
[Crossref]

Dvoretskiy, D.

Fourmont, J.

Fried, N.

N. Fried and K. Murray, “High-power thulium fiber laser ablation of urinary tissues at 1.94  μm,” J. Endourol. 19, 25–31 (2005).
[Crossref]

N. Fried, “Thulium fiber laser lithotripsy: an in vitro analysis of stone fragmentation using a modulated 110-watt thulium fiber laser at 1.94  μm,” Lasers Surg. Med. 37, 53–58 (2005).
[Crossref]

Gattass, R.

R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[Crossref]

Grelu, P.

P. Grelu, W. Chang, A. Ankiewicz, J. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonance as a guideline for high-energy pulse laser oscillators,” J. Opt. Soc. Am. B 27, 2336–2341 (2010).
[Crossref]

N. Akhmediev, J. Soto-Crespo, and P. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A 372, 3124–3128 (2008).
[Crossref]

Guo, C.

Y. Xu, Y. Song, G. Du, P. Yan, C. Guo, G. Zhang, and S. Ruan, “Dissipative soliton resonance in a wavelength-tunable thulium-doped fiber laser with net-normal dispersion,” IEEE Photon. J. 7, 1502007 (2015).
[Crossref]

Hajireza, P.

P. Hajireza, W. Shi, K. Bell, R. Paproski, and R. Zemp, “Non-interferometric photoacoustic remote sensing microscopy,” Light Sci. Appl. 6, e16278 (2017).
[Crossref]

Hale, C.

S. Henderson and C. Hale, “Fast widely-tunable single-frequency 2-micron laser for remote-sensing applications,” Proc. SPIE 10406, 104060C (2017).
[Crossref]

Han, M.

X. Li, S. Zhang, H. Zhang, M. Han, F. Wen, and Z. Yang, “Highly efficient rectangular pulse emission in a mode-locked fiber laser,” IEEE Photon. Technol. Lett. 26, 2082–2085 (2014).
[Crossref]

He, T.

Henderson, S.

S. Henderson and C. Hale, “Fast widely-tunable single-frequency 2-micron laser for remote-sensing applications,” Proc. SPIE 10406, 104060C (2017).
[Crossref]

Hou, J.

J. Cai, S. Chen, and J. Hou, “1.1-kW Peak-power dissipative soliton resonance in a mode-locked Yb-fiber laser,” IEEE Photon. Technol. Lett. 29, 2191–2194 (2017).
[Crossref]

Hu, X.

Ilday, F.

Jiang, Z.

Karasik, V.

Kharitonov, S.

S. Kharitonov and C. Bres, “All-fiber dissipative soliton resonance mode-locked figure-9 thulium-doped fiber laser,” in Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) (2017), p. 1.

Krylov, A.

Krzempek, K.

Lazarev, V.

Leonov, S.

Li, C.

Li, H.

Li, J.

Li, W.

T. Du, W. Li, Q. Ruan, K. Wang, N. Chen, and Z. Luo, “2  μm high-power dissipative soliton resonance in a compact σ-shaped Tm-doped double-clad fiber laser,” Appl. Phys. Express 11, 52701 (2018).
[Crossref]

Li, X.

X. Li, S. Zhang, H. Zhang, M. Han, F. Wen, and Z. Yang, “Highly efficient rectangular pulse emission in a mode-locked fiber laser,” IEEE Photon. Technol. Lett. 26, 2082–2085 (2014).
[Crossref]

X. Li, X. Liu, X. Hu, L. Wang, H. Lu, Y. Wang, and W. Zhao, “Long-cavity passively mode-locked fiber ring laser with high-energy rectangular-shape pulses in anomalous dispersion regime,” Opt. Lett. 35, 3249–3251 (2010).
[Crossref]

Liao, J.

Lin, Z.

Liu, L.

Liu, M.

Liu, X.

Liu, Y.

Lu, H.

Luo, A.

Luo, Z.

Lyu, Y.

Mazur, E.

R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[Crossref]

Murray, K.

N. Fried and K. Murray, “High-power thulium fiber laser ablation of urinary tissues at 1.94  μm,” J. Endourol. 19, 25–31 (2005).
[Crossref]

Nie, B.

Ning, Q.

Ouyang, D.

Paproski, R.

P. Hajireza, W. Shi, K. Bell, R. Paproski, and R. Zemp, “Non-interferometric photoacoustic remote sensing microscopy,” Light Sci. Appl. 6, e16278 (2017).
[Crossref]

Pestov, D.

Pnev, A.

Ren, X.

Rodnova, Z.

Ruan, Q.

T. Du, W. Li, Q. Ruan, K. Wang, N. Chen, and Z. Luo, “2  μm high-power dissipative soliton resonance in a compact σ-shaped Tm-doped double-clad fiber laser,” Appl. Phys. Express 11, 52701 (2018).
[Crossref]

Ruan, S.

Salhi, M.

Sanchez, F.

Sazonkin, S.

Semaan, G.

Shi, H.

Shi, W.

P. Hajireza, W. Shi, K. Bell, R. Paproski, and R. Zemp, “Non-interferometric photoacoustic remote sensing microscopy,” Light Sci. Appl. 6, e16278 (2017).
[Crossref]

Song, Y.

Y. Xu, Y. Song, G. Du, P. Yan, C. Guo, G. Zhang, and S. Ruan, “Dissipative soliton resonance in a wavelength-tunable thulium-doped fiber laser with net-normal dispersion,” IEEE Photon. J. 7, 1502007 (2015).
[Crossref]

Sosnowski, T.

Soto-Crespo, J.

P. Grelu, W. Chang, A. Ankiewicz, J. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonance as a guideline for high-energy pulse laser oscillators,” J. Opt. Soc. Am. B 27, 2336–2341 (2010).
[Crossref]

W. Chang, J. Soto-Crespo, A. Ankiewicz, and N. Akhmediev, “Dissipative soliton resonances in the anomalous dispersion regime,” Phys. Rev. A 79, 033840 (2009).
[Crossref]

W. Chang, A. Ankiewicz, J. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78, 23830 (2008).
[Crossref]

N. Akhmediev, J. Soto-Crespo, and P. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A 372, 3124–3128 (2008).
[Crossref]

W. Chang, A. Ankiewicz, J. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances in laser models with parameter management,” J. Opt. Soc. Am. B 25, 1972–1977 (2008).
[Crossref]

Sotor, J.

Sugioka, K.

K. Sugioka and Y. Cheng, “Ultrafast lasers—reliable tools for advanced materials processing,” Light Sci. Appl. 3, e149 (2014).
[Crossref]

Tang, D.

Tomaszewska, D.

Voropaev, V.

Wang, J.

Wang, K.

T. Du, W. Li, Q. Ruan, K. Wang, N. Chen, and Z. Luo, “2  μm high-power dissipative soliton resonance in a compact σ-shaped Tm-doped double-clad fiber laser,” Appl. Phys. Express 11, 52701 (2018).
[Crossref]

Wang, L.

Wang, S.

Wang, Y.

Wei, C.

Wen, F.

X. Li, S. Zhang, H. Zhang, M. Han, F. Wen, and Z. Yang, “Highly efficient rectangular pulse emission in a mode-locked fiber laser,” IEEE Photon. Technol. Lett. 26, 2082–2085 (2014).
[Crossref]

Wise, F.

Wu, X.

Xie, W.

Xu, S.

Xu, W.

Xu, Y.

Y. Xu, Y. Song, G. Du, P. Yan, C. Guo, G. Zhang, and S. Ruan, “Dissipative soliton resonance in a wavelength-tunable thulium-doped fiber laser with net-normal dispersion,” IEEE Photon. J. 7, 1502007 (2015).
[Crossref]

Yan, P.

Yang, Z.

X. Li, S. Zhang, H. Zhang, M. Han, F. Wen, and Z. Yang, “Highly efficient rectangular pulse emission in a mode-locked fiber laser,” IEEE Photon. Technol. Lett. 26, 2082–2085 (2014).
[Crossref]

L. Liu, J. Liao, Q. Ning, W. Yu, A. Luo, S. Xu, Z. Luo, Z. Yang, and W. Xu, “Wave-breaking-free pulse in an all-fiber normal-dispersion Yb-doped fiber laser under dissipative soliton resonance condition,” Opt. Express 21, 27087–27092 (2013).
[Crossref]

Yin, J.

Yu, W.

Zemp, R.

P. Hajireza, W. Shi, K. Bell, R. Paproski, and R. Zemp, “Non-interferometric photoacoustic remote sensing microscopy,” Light Sci. Appl. 6, e16278 (2017).
[Crossref]

Zhang, G.

Y. Xu, Y. Song, G. Du, P. Yan, C. Guo, G. Zhang, and S. Ruan, “Dissipative soliton resonance in a wavelength-tunable thulium-doped fiber laser with net-normal dispersion,” IEEE Photon. J. 7, 1502007 (2015).
[Crossref]

Zhang, H.

X. Li, S. Zhang, H. Zhang, M. Han, F. Wen, and Z. Yang, “Highly efficient rectangular pulse emission in a mode-locked fiber laser,” IEEE Photon. Technol. Lett. 26, 2082–2085 (2014).
[Crossref]

X. Wu, D. Tang, H. Zhang, and L. Zhao, “Dissipative soliton resonance in an all-normal-dispersion erbium-doped fiber laser,” Opt. Express 17, 5580–5584 (2009).
[Crossref]

Zhang, S.

X. Li, S. Zhang, H. Zhang, M. Han, F. Wen, and Z. Yang, “Highly efficient rectangular pulse emission in a mode-locked fiber laser,” IEEE Photon. Technol. Lett. 26, 2082–2085 (2014).
[Crossref]

Zhao, J.

Zhao, L.

Zhao, W.

Zheng, Z.

Appl. Phys. Express (1)

T. Du, W. Li, Q. Ruan, K. Wang, N. Chen, and Z. Luo, “2  μm high-power dissipative soliton resonance in a compact σ-shaped Tm-doped double-clad fiber laser,” Appl. Phys. Express 11, 52701 (2018).
[Crossref]

IEEE Photon. J. (1)

Y. Xu, Y. Song, G. Du, P. Yan, C. Guo, G. Zhang, and S. Ruan, “Dissipative soliton resonance in a wavelength-tunable thulium-doped fiber laser with net-normal dispersion,” IEEE Photon. J. 7, 1502007 (2015).
[Crossref]

IEEE Photon. Technol. Lett. (2)

X. Li, S. Zhang, H. Zhang, M. Han, F. Wen, and Z. Yang, “Highly efficient rectangular pulse emission in a mode-locked fiber laser,” IEEE Photon. Technol. Lett. 26, 2082–2085 (2014).
[Crossref]

J. Cai, S. Chen, and J. Hou, “1.1-kW Peak-power dissipative soliton resonance in a mode-locked Yb-fiber laser,” IEEE Photon. Technol. Lett. 29, 2191–2194 (2017).
[Crossref]

J. Endourol. (1)

N. Fried and K. Murray, “High-power thulium fiber laser ablation of urinary tissues at 1.94  μm,” J. Endourol. 19, 25–31 (2005).
[Crossref]

J. Opt. Soc. Am. B (2)

Laser Phys. Lett. (1)

K. Krzempek and K. Abramski, “6.5  μJ pulses from a compact dissipative soliton resonance mode-locked erbium-ytterbium double clad (DC) laser,” Laser Phys. Lett. 14, 15101 (2017).
[Crossref]

Lasers Surg. Med. (1)

N. Fried, “Thulium fiber laser lithotripsy: an in vitro analysis of stone fragmentation using a modulated 110-watt thulium fiber laser at 1.94  μm,” Lasers Surg. Med. 37, 53–58 (2005).
[Crossref]

Light Sci. Appl. (2)

P. Hajireza, W. Shi, K. Bell, R. Paproski, and R. Zemp, “Non-interferometric photoacoustic remote sensing microscopy,” Light Sci. Appl. 6, e16278 (2017).
[Crossref]

K. Sugioka and Y. Cheng, “Ultrafast lasers—reliable tools for advanced materials processing,” Light Sci. Appl. 3, e149 (2014).
[Crossref]

Nat. Photonics (1)

R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[Crossref]

Opt. Express (8)

L. Liu, J. Liao, Q. Ning, W. Yu, A. Luo, S. Xu, Z. Luo, Z. Yang, and W. Xu, “Wave-breaking-free pulse in an all-fiber normal-dispersion Yb-doped fiber laser under dissipative soliton resonance condition,” Opt. Express 21, 27087–27092 (2013).
[Crossref]

D. Dvoretskiy, V. Lazarev, V. Voropaev, Z. Rodnova, S. Sazonkin, S. Leonov, A. Pnev, V. Karasik, and A. Krylov, “High-energy, sub-100 fs, all-fiber stretched-pulse mode-locked Er-doped ring laser with a highly-nonlinear resonator,” Opt. Express 23, 33295–33300 (2015).
[Crossref]

B. Nie, D. Pestov, F. Wise, and M. Dantus, “Generation of 42-fs and 10-nJ pulses from a fiber laser with self-similar evolution in the gain segment,” Opt. Express 19, 12074–12080 (2011).
[Crossref]

J. Zhao, D. Ouyang, Z. Zheng, M. Liu, X. Ren, C. Li, S. Ruan, and W. Xie, “100  W dissipative soliton resonances from a thulium-doped double-clad all-fiber-format MOPA system,” Opt. Express 24, 12072–12081 (2016).
[Crossref]

X. Wu, D. Tang, H. Zhang, and L. Zhao, “Dissipative soliton resonance in an all-normal-dispersion erbium-doped fiber laser,” Opt. Express 17, 5580–5584 (2009).
[Crossref]

S. Wang, Q. Ning, A. Luo, Z. Lin, Z. Luo, and W. Xu, “Dissipative soliton resonance in a passively mode-locked figure-eight fiber laser,” Opt. Express 21, 2402–2407 (2013).
[Crossref]

K. Krzempek, D. Tomaszewska, and K. Abramski, “Dissipative soliton resonance mode-locked all-polarization-maintaining double clad Er:Yb fiber laser,” Opt. Express 25, 24853–24860 (2017).
[Crossref]

K. Krzempek, “Dissipative soliton resonances in all-fiber Er–Yb double clad figure-8 laser,” Opt. Express 23, 30651–30656 (2015).
[Crossref]

Opt. Lett. (4)

Photon. Res. (3)

Phys. Lett. A (1)

N. Akhmediev, J. Soto-Crespo, and P. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A 372, 3124–3128 (2008).
[Crossref]

Phys. Rev. A (2)

W. Chang, A. Ankiewicz, J. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78, 23830 (2008).
[Crossref]

W. Chang, J. Soto-Crespo, A. Ankiewicz, and N. Akhmediev, “Dissipative soliton resonances in the anomalous dispersion regime,” Phys. Rev. A 79, 033840 (2009).
[Crossref]

Proc. SPIE (1)

S. Henderson and C. Hale, “Fast widely-tunable single-frequency 2-micron laser for remote-sensing applications,” Proc. SPIE 10406, 104060C (2017).
[Crossref]

Other (1)

S. Kharitonov and C. Bres, “All-fiber dissipative soliton resonance mode-locked figure-9 thulium-doped fiber laser,” in Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) (2017), p. 1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Schematic of the proposed figure-of-9 DSR fiber laser.
Fig. 2.
Fig. 2. Schematic of the high-power DSR-based all-fiber MOPA system.
Fig. 3.
Fig. 3. Characteristics of the figure-of-9 double-clad DSR fiber laser. (a) Output pulse. (b) Output spectra. (c) RF spectrum at the fundamental repetition rate. (d) RF spectrum with a 20 MHz span. (e) Pulse parameters versus average output power. (f) Power stability. Inset: autocorrelation trace.
Fig. 4.
Fig. 4. Pulse intensity at different pump powers.
Fig. 5.
Fig. 5. Characteristics of the MOPA system. (a) Average output power of the system versus the pump power injected into 3rd-Amp. (b) Output spectra.

Metrics