Abstract

Plasmon induced hot electrons have attracted a great deal of interest as a novel route for photodetection and light-energy harvesting. Herein, we report a hot electron photodetector in which a large array of nanocones deposited sequentially with aluminum, titanium dioxide, and gold films can be integrated functionally with nanophotonics and microelectronics. The device exhibits a strong photoelectric response at around 620 nm with a responsivity of 180 μA/W under short-circuit conditions with a significant increase under 1 V reverse bias to 360 μA/W. The increase in responsivity and a red shift in the peak value with increasing bias voltage indicate that the bias causes an increase in the hot electron tunneling effect. Our approach will be advantageous for the implementation of the proposed architecture on a vast variety of integrated optoelectronic devices.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Nonequilibrium hot-electron-induced wavelength-tunable incandescent-type light sources

Zhipeng Sun, Mingming Jiang, Wangqi Mao, Caixia Kan, Chongxin Shan, and Dezhen Shen
Photon. Res. 8(1) 91-102 (2020)

Tunable infrared hot-electron photodetection by exciting gap-mode plasmons with wafer-scale gold nanohole arrays

Hao Ding, Shaolong Wu, Cheng Zhang, Liujing Li, Qingxin Sun, Luwei Zhou, and Xiaofeng Li
Opt. Express 28(5) 6511-6520 (2020)

Ultra-broadband photoresponse of localized surface plasmon resonance from Si-based pyramid structures

Hong-Jhang Syu, Hung-Chieh Chuang, Meng-Jie Lin, Chun-Chung Cheng, Po-Jui Huang, and Ching-Fuh Lin
Photon. Res. 7(10) 1119-1126 (2019)

References

  • View by:
  • |
  • |
  • |

  1. Y. Takahashi and T. Tatsuma, “Solid state photovoltaic cells based on localized surface plasmon-induced charge separation,” Appl. Phys. Lett. 99, 182110 (2011).
    [Crossref]
  2. Y. K. Lee, H. Lee, C. Lee, E. Hwang, and J. Y. Park, “Hot-electron-based solar energy conversion with metal–semiconductor nanodiodes,” J. Phys. Condens. Matter 28, 254006 (2016).
    [Crossref]
  3. J. M. Stern, J. Stanfeld, W. Kabbani, J.-T. Hsieh, and J. A. Cadeddu, “Selective prostate cancer thermal ablation with laser activated gold nanoshells,” J. Urol. 179, 748–753 (2008).
    [Crossref]
  4. S. Mubeen, J. Lee, N. Singh, S. Kramer, G. D. Stucky, and M. Moskovits, “An autonomous photosynthetic device in which all charge carriers derive from surface plasmons,” Nat. Nanotechnol. 8, 247–251 (2013).
    [Crossref]
  5. S. Mukherjee, F. Libisch, N. Large, O. Neumann, L. V. Brown, J. Cheng, J. B. Lassiter, E. A. Carter, P. Nordlander, and N. J. Halas, “Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au,” Nano Lett. 13, 240–247 (2013).
    [Crossref]
  6. W. Li and J. G. Valentine, “Harvesting the loss: surface plasmon-based hot electron photodetection,” Nanophotonics 6, 177–191 (2017).
    [Crossref]
  7. Y. P. Huang and L. A. Wang, “In-line silicon Schottky photodetectors on silicon cored fibers working in 1550 nm wavelength regimes,” Appl. Phys. Lett. 106, 191106 (2015).
    [Crossref]
  8. S. Muehlbrandt, A. Melikyan, T. Harter, K. Köhnle, A. Muslija, P. Vincze, S. Wolf, P. Jakobs, Y. Fedoryshyn, W. Freude, J. Leuthold, C. Koos, and M. Kohl, “Silicon-plasmonic internal-photoemission detector for 40  Gbit/s data reception,” Optica 3, 741–747 (2016).
    [Crossref]
  9. Z. Yang, M. Liu, S. Liang, W. Zhang, T. Mei, D. Zhang, and S. J. Chua, “Hybrid modes in plasmonic cavity array for enhanced hot-electron photodetection,” Opt. Express 25, 20268–20273 (2017).
    [Crossref]
  10. T. Gong and J. N. Munday, “Aluminum-based hot carrier plasmonics,” Appl. Phys. Lett. 110, 021117 (2017).
    [Crossref]
  11. Y. Liu, X. Zhang, J. Su, H. Li, Q. Zhang, and Y. Gao, “Ag nanoparticles@ZnO nanowire composite arrays: an absorption enhanced UV photodetector,” Opt. Express 22, 30148–30155 (2014).
    [Crossref]
  12. H. Li, X. Zhang, N. Liu, L. Ding, J. Tao, S. Wang, J. Su, L. Li, and Y. Gao, “Enhanced photo-response properties of a single ZnO microwire photodetector by coupling effect between localized Schottky barriers and piezoelectric potential,” Opt. Express 23, 21204–21212 (2015).
    [Crossref]
  13. M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10, 25–34 (2015).
    [Crossref]
  14. H. Chalabi and M. L. Brongersma, “Plasmonics: harvest season for hot electrons,” Nat. Nanotechnol. 8, 229–230 (2013).
    [Crossref]
  15. I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett. 11, 2219–2224 (2011).
    [Crossref]
  16. Y. K. Lee, C. H. Jung, J. Park, H. Seo, G. A. Somorjai, and J. Y. Park, “Surface plasmon-driven hot electron flow probed with metal-semiconductor nanodiodes,” Nano Lett. 11, 4251–4255 (2011).
    [Crossref]
  17. B. Desiatov, I. Goykhman, N. Mazurski, J. Shappir, J. B. Khurgin, and U. Levy, “Plasmonic enhanced silicon pyramids for internal photoemission Schottky detectors in the near-infrared regime,” Optica 2, 335–338 (2015).
    [Crossref]
  18. M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13, 1687–1692 (2013).
    [Crossref]
  19. W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6, 8379 (2015).
    [Crossref]
  20. M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
    [Crossref]
  21. A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
    [Crossref]
  22. K. T. Lin, H. L. Chen, Y. S. Lai, and C. C. Yu, “Silicon-based broadband antenna for high responsivity and polarization-insensitive photodetection at telecommunication wavelengths,” Nat. Commun. 5, 3288 (2014).
    [Crossref]
  23. W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14, 3510–3514 (2014).
    [Crossref]
  24. F. Pelayo García de Arquer, A. Mih, and G. Konstantatos, “Large-area plasmonic-crystal-hot-electron-based photodetectors,” ACS Photon. 2, 950–957 (2015).
    [Crossref]
  25. H. Lee, Y. K. Lee, E. Hwang, and J. Y. Park, “Enhanced surface plasmon effect of Ag/TiO2 nanodiodes on internal photoemission,” J. Phys. Chem. C 118, 5650–5656 (2014).
    [Crossref]
  26. M. G. Ramchandani, “Energy band structure of gold,” J. Phys. C 3, 1S (1970).
    [Crossref]
  27. P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photon. 2, 692–698 (2015).
    [Crossref]
  28. P. Gao, J. He, S. Zhou, X. Yang, S. Li, J. Sheng, D. Wang, T. Yu, J. Ye, and Y. Cui, “Large-area nanosphere self-assembly by a micro-propulsive injection method for high throughput periodic surface nanotexturing,” Nano Lett. 15, 4591–4598 (2015).
    [Crossref]
  29. C.-M. Hsu, S. T. Connor, M. X. Tang, and Y. Cui, “Wafer-scale silicon nanopillars and nanocones by Langmuir–Blodgett assembly and etching,” Appl. Phys. Lett. 93, 133109 (2008).
    [Crossref]
  30. J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83, 165107 (2011).
    [Crossref]
  31. R. H. Fowler, “The analysis of photoelectric sensitivity curves for clean metals at various temperatures,” Phys. Rev. 38, 45–56 (1931).
    [Crossref]
  32. C. Scales and P. Berini, “Thin-film Schottky barrier photodetector models,” IEEE J. Quantum Electron. 46, 633–643 (2010).
    [Crossref]
  33. C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8, 95–103 (2014).
    [Crossref]
  34. H. Chalabi, D. Schoen, and M. L. Brongersma, “Hot-electron photodetection with a plasmonic nanostripe antenna,” Nano Lett. 14, 1374–1380 (2014).
    [Crossref]
  35. T. Gong and J. N. Munday, “Angle-independent hot carrier generation and collection using transparent conducting oxides,” Nano Lett. 15, 147–152 (2015).
    [Crossref]
  36. J. G. Simmons, “Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film,” J. Appl. Phys. 34, 1793–1803 (1963).
    [Crossref]
  37. J. C. Fisher and I. Giaever, “Tunneling through thin insulating layers,” J. Appl. Phys. 32, 172–177 (1961).
    [Crossref]

2017 (3)

W. Li and J. G. Valentine, “Harvesting the loss: surface plasmon-based hot electron photodetection,” Nanophotonics 6, 177–191 (2017).
[Crossref]

Z. Yang, M. Liu, S. Liang, W. Zhang, T. Mei, D. Zhang, and S. J. Chua, “Hybrid modes in plasmonic cavity array for enhanced hot-electron photodetection,” Opt. Express 25, 20268–20273 (2017).
[Crossref]

T. Gong and J. N. Munday, “Aluminum-based hot carrier plasmonics,” Appl. Phys. Lett. 110, 021117 (2017).
[Crossref]

2016 (2)

2015 (9)

Y. P. Huang and L. A. Wang, “In-line silicon Schottky photodetectors on silicon cored fibers working in 1550 nm wavelength regimes,” Appl. Phys. Lett. 106, 191106 (2015).
[Crossref]

B. Desiatov, I. Goykhman, N. Mazurski, J. Shappir, J. B. Khurgin, and U. Levy, “Plasmonic enhanced silicon pyramids for internal photoemission Schottky detectors in the near-infrared regime,” Optica 2, 335–338 (2015).
[Crossref]

H. Li, X. Zhang, N. Liu, L. Ding, J. Tao, S. Wang, J. Su, L. Li, and Y. Gao, “Enhanced photo-response properties of a single ZnO microwire photodetector by coupling effect between localized Schottky barriers and piezoelectric potential,” Opt. Express 23, 21204–21212 (2015).
[Crossref]

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10, 25–34 (2015).
[Crossref]

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6, 8379 (2015).
[Crossref]

F. Pelayo García de Arquer, A. Mih, and G. Konstantatos, “Large-area plasmonic-crystal-hot-electron-based photodetectors,” ACS Photon. 2, 950–957 (2015).
[Crossref]

P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photon. 2, 692–698 (2015).
[Crossref]

P. Gao, J. He, S. Zhou, X. Yang, S. Li, J. Sheng, D. Wang, T. Yu, J. Ye, and Y. Cui, “Large-area nanosphere self-assembly by a micro-propulsive injection method for high throughput periodic surface nanotexturing,” Nano Lett. 15, 4591–4598 (2015).
[Crossref]

T. Gong and J. N. Munday, “Angle-independent hot carrier generation and collection using transparent conducting oxides,” Nano Lett. 15, 147–152 (2015).
[Crossref]

2014 (6)

C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8, 95–103 (2014).
[Crossref]

H. Chalabi, D. Schoen, and M. L. Brongersma, “Hot-electron photodetection with a plasmonic nanostripe antenna,” Nano Lett. 14, 1374–1380 (2014).
[Crossref]

H. Lee, Y. K. Lee, E. Hwang, and J. Y. Park, “Enhanced surface plasmon effect of Ag/TiO2 nanodiodes on internal photoemission,” J. Phys. Chem. C 118, 5650–5656 (2014).
[Crossref]

K. T. Lin, H. L. Chen, Y. S. Lai, and C. C. Yu, “Silicon-based broadband antenna for high responsivity and polarization-insensitive photodetection at telecommunication wavelengths,” Nat. Commun. 5, 3288 (2014).
[Crossref]

W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14, 3510–3514 (2014).
[Crossref]

Y. Liu, X. Zhang, J. Su, H. Li, Q. Zhang, and Y. Gao, “Ag nanoparticles@ZnO nanowire composite arrays: an absorption enhanced UV photodetector,” Opt. Express 22, 30148–30155 (2014).
[Crossref]

2013 (5)

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13, 1687–1692 (2013).
[Crossref]

H. Chalabi and M. L. Brongersma, “Plasmonics: harvest season for hot electrons,” Nat. Nanotechnol. 8, 229–230 (2013).
[Crossref]

S. Mubeen, J. Lee, N. Singh, S. Kramer, G. D. Stucky, and M. Moskovits, “An autonomous photosynthetic device in which all charge carriers derive from surface plasmons,” Nat. Nanotechnol. 8, 247–251 (2013).
[Crossref]

S. Mukherjee, F. Libisch, N. Large, O. Neumann, L. V. Brown, J. Cheng, J. B. Lassiter, E. A. Carter, P. Nordlander, and N. J. Halas, “Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au,” Nano Lett. 13, 240–247 (2013).
[Crossref]

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref]

2011 (5)

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83, 165107 (2011).
[Crossref]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
[Crossref]

Y. Takahashi and T. Tatsuma, “Solid state photovoltaic cells based on localized surface plasmon-induced charge separation,” Appl. Phys. Lett. 99, 182110 (2011).
[Crossref]

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett. 11, 2219–2224 (2011).
[Crossref]

Y. K. Lee, C. H. Jung, J. Park, H. Seo, G. A. Somorjai, and J. Y. Park, “Surface plasmon-driven hot electron flow probed with metal-semiconductor nanodiodes,” Nano Lett. 11, 4251–4255 (2011).
[Crossref]

2010 (1)

C. Scales and P. Berini, “Thin-film Schottky barrier photodetector models,” IEEE J. Quantum Electron. 46, 633–643 (2010).
[Crossref]

2008 (2)

C.-M. Hsu, S. T. Connor, M. X. Tang, and Y. Cui, “Wafer-scale silicon nanopillars and nanocones by Langmuir–Blodgett assembly and etching,” Appl. Phys. Lett. 93, 133109 (2008).
[Crossref]

J. M. Stern, J. Stanfeld, W. Kabbani, J.-T. Hsieh, and J. A. Cadeddu, “Selective prostate cancer thermal ablation with laser activated gold nanoshells,” J. Urol. 179, 748–753 (2008).
[Crossref]

1970 (1)

M. G. Ramchandani, “Energy band structure of gold,” J. Phys. C 3, 1S (1970).
[Crossref]

1963 (1)

J. G. Simmons, “Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film,” J. Appl. Phys. 34, 1793–1803 (1963).
[Crossref]

1961 (1)

J. C. Fisher and I. Giaever, “Tunneling through thin insulating layers,” J. Appl. Phys. 32, 172–177 (1961).
[Crossref]

1931 (1)

R. H. Fowler, “The analysis of photoelectric sensitivity curves for clean metals at various temperatures,” Phys. Rev. 38, 45–56 (1931).
[Crossref]

Berini, P.

C. Scales and P. Berini, “Thin-film Schottky barrier photodetector models,” IEEE J. Quantum Electron. 46, 633–643 (2010).
[Crossref]

Besteiro, L. V.

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6, 8379 (2015).
[Crossref]

Briggs, D. P.

P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photon. 2, 692–698 (2015).
[Crossref]

Brongersma, M. L.

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10, 25–34 (2015).
[Crossref]

H. Chalabi, D. Schoen, and M. L. Brongersma, “Hot-electron photodetection with a plasmonic nanostripe antenna,” Nano Lett. 14, 1374–1380 (2014).
[Crossref]

H. Chalabi and M. L. Brongersma, “Plasmonics: harvest season for hot electrons,” Nat. Nanotechnol. 8, 229–230 (2013).
[Crossref]

Brown, L. V.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref]

S. Mukherjee, F. Libisch, N. Large, O. Neumann, L. V. Brown, J. Cheng, J. B. Lassiter, E. A. Carter, P. Nordlander, and N. J. Halas, “Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au,” Nano Lett. 13, 240–247 (2013).
[Crossref]

Cadeddu, J. A.

J. M. Stern, J. Stanfeld, W. Kabbani, J.-T. Hsieh, and J. A. Cadeddu, “Selective prostate cancer thermal ablation with laser activated gold nanoshells,” J. Urol. 179, 748–753 (2008).
[Crossref]

Carter, E. A.

S. Mukherjee, F. Libisch, N. Large, O. Neumann, L. V. Brown, J. Cheng, J. B. Lassiter, E. A. Carter, P. Nordlander, and N. J. Halas, “Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au,” Nano Lett. 13, 240–247 (2013).
[Crossref]

Chalabi, H.

H. Chalabi, D. Schoen, and M. L. Brongersma, “Hot-electron photodetection with a plasmonic nanostripe antenna,” Nano Lett. 14, 1374–1380 (2014).
[Crossref]

H. Chalabi and M. L. Brongersma, “Plasmonics: harvest season for hot electrons,” Nat. Nanotechnol. 8, 229–230 (2013).
[Crossref]

Chen, H. L.

K. T. Lin, H. L. Chen, Y. S. Lai, and C. C. Yu, “Silicon-based broadband antenna for high responsivity and polarization-insensitive photodetection at telecommunication wavelengths,” Nat. Commun. 5, 3288 (2014).
[Crossref]

Cheng, J.

S. Mukherjee, F. Libisch, N. Large, O. Neumann, L. V. Brown, J. Cheng, J. B. Lassiter, E. A. Carter, P. Nordlander, and N. J. Halas, “Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au,” Nano Lett. 13, 240–247 (2013).
[Crossref]

Chua, S. J.

Clavero, C.

C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8, 95–103 (2014).
[Crossref]

Connor, S. T.

C.-M. Hsu, S. T. Connor, M. X. Tang, and Y. Cui, “Wafer-scale silicon nanopillars and nanocones by Langmuir–Blodgett assembly and etching,” Appl. Phys. Lett. 93, 133109 (2008).
[Crossref]

Coppens, Z. J.

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6, 8379 (2015).
[Crossref]

Cui, Y.

P. Gao, J. He, S. Zhou, X. Yang, S. Li, J. Sheng, D. Wang, T. Yu, J. Ye, and Y. Cui, “Large-area nanosphere self-assembly by a micro-propulsive injection method for high throughput periodic surface nanotexturing,” Nano Lett. 15, 4591–4598 (2015).
[Crossref]

C.-M. Hsu, S. T. Connor, M. X. Tang, and Y. Cui, “Wafer-scale silicon nanopillars and nanocones by Langmuir–Blodgett assembly and etching,” Appl. Phys. Lett. 93, 133109 (2008).
[Crossref]

Desiatov, B.

B. Desiatov, I. Goykhman, N. Mazurski, J. Shappir, J. B. Khurgin, and U. Levy, “Plasmonic enhanced silicon pyramids for internal photoemission Schottky detectors in the near-infrared regime,” Optica 2, 335–338 (2015).
[Crossref]

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett. 11, 2219–2224 (2011).
[Crossref]

Ding, L.

Fang, Z.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref]

Fedoryshyn, Y.

Fisher, J. C.

J. C. Fisher and I. Giaever, “Tunneling through thin insulating layers,” J. Appl. Phys. 32, 172–177 (1961).
[Crossref]

Fowler, R. H.

R. H. Fowler, “The analysis of photoelectric sensitivity curves for clean metals at various temperatures,” Phys. Rev. 38, 45–56 (1931).
[Crossref]

Freude, W.

Gao, P.

P. Gao, J. He, S. Zhou, X. Yang, S. Li, J. Sheng, D. Wang, T. Yu, J. Ye, and Y. Cui, “Large-area nanosphere self-assembly by a micro-propulsive injection method for high throughput periodic surface nanotexturing,” Nano Lett. 15, 4591–4598 (2015).
[Crossref]

Gao, Y.

Giaever, I.

J. C. Fisher and I. Giaever, “Tunneling through thin insulating layers,” J. Appl. Phys. 32, 172–177 (1961).
[Crossref]

Gong, T.

T. Gong and J. N. Munday, “Aluminum-based hot carrier plasmonics,” Appl. Phys. Lett. 110, 021117 (2017).
[Crossref]

T. Gong and J. N. Munday, “Angle-independent hot carrier generation and collection using transparent conducting oxides,” Nano Lett. 15, 147–152 (2015).
[Crossref]

Govorov, A. O.

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6, 8379 (2015).
[Crossref]

Goykhman, I.

B. Desiatov, I. Goykhman, N. Mazurski, J. Shappir, J. B. Khurgin, and U. Levy, “Plasmonic enhanced silicon pyramids for internal photoemission Schottky detectors in the near-infrared regime,” Optica 2, 335–338 (2015).
[Crossref]

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett. 11, 2219–2224 (2011).
[Crossref]

Halas, N. J.

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10, 25–34 (2015).
[Crossref]

S. Mukherjee, F. Libisch, N. Large, O. Neumann, L. V. Brown, J. Cheng, J. B. Lassiter, E. A. Carter, P. Nordlander, and N. J. Halas, “Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au,” Nano Lett. 13, 240–247 (2013).
[Crossref]

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13, 1687–1692 (2013).
[Crossref]

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
[Crossref]

Hao, J.

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83, 165107 (2011).
[Crossref]

Harter, T.

He, J.

P. Gao, J. He, S. Zhou, X. Yang, S. Li, J. Sheng, D. Wang, T. Yu, J. Ye, and Y. Cui, “Large-area nanosphere self-assembly by a micro-propulsive injection method for high throughput periodic surface nanotexturing,” Nano Lett. 15, 4591–4598 (2015).
[Crossref]

Hsieh, J.-T.

J. M. Stern, J. Stanfeld, W. Kabbani, J.-T. Hsieh, and J. A. Cadeddu, “Selective prostate cancer thermal ablation with laser activated gold nanoshells,” J. Urol. 179, 748–753 (2008).
[Crossref]

Hsu, C.-M.

C.-M. Hsu, S. T. Connor, M. X. Tang, and Y. Cui, “Wafer-scale silicon nanopillars and nanocones by Langmuir–Blodgett assembly and etching,” Appl. Phys. Lett. 93, 133109 (2008).
[Crossref]

Huang, Y. P.

Y. P. Huang and L. A. Wang, “In-line silicon Schottky photodetectors on silicon cored fibers working in 1550 nm wavelength regimes,” Appl. Phys. Lett. 106, 191106 (2015).
[Crossref]

Hwang, E.

Y. K. Lee, H. Lee, C. Lee, E. Hwang, and J. Y. Park, “Hot-electron-based solar energy conversion with metal–semiconductor nanodiodes,” J. Phys. Condens. Matter 28, 254006 (2016).
[Crossref]

H. Lee, Y. K. Lee, E. Hwang, and J. Y. Park, “Enhanced surface plasmon effect of Ag/TiO2 nanodiodes on internal photoemission,” J. Phys. Chem. C 118, 5650–5656 (2014).
[Crossref]

Jakobs, P.

Jung, C. H.

Y. K. Lee, C. H. Jung, J. Park, H. Seo, G. A. Somorjai, and J. Y. Park, “Surface plasmon-driven hot electron flow probed with metal-semiconductor nanodiodes,” Nano Lett. 11, 4251–4255 (2011).
[Crossref]

Kabbani, W.

J. M. Stern, J. Stanfeld, W. Kabbani, J.-T. Hsieh, and J. A. Cadeddu, “Selective prostate cancer thermal ablation with laser activated gold nanoshells,” J. Urol. 179, 748–753 (2008).
[Crossref]

Khurgin, J.

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett. 11, 2219–2224 (2011).
[Crossref]

Khurgin, J. B.

King, N. S.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref]

Knight, M. W.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref]

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13, 1687–1692 (2013).
[Crossref]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
[Crossref]

Kohl, M.

Köhnle, K.

Konstantatos, G.

F. Pelayo García de Arquer, A. Mih, and G. Konstantatos, “Large-area plasmonic-crystal-hot-electron-based photodetectors,” ACS Photon. 2, 950–957 (2015).
[Crossref]

Koos, C.

Kramer, S.

S. Mubeen, J. Lee, N. Singh, S. Kramer, G. D. Stucky, and M. Moskovits, “An autonomous photosynthetic device in which all charge carriers derive from surface plasmons,” Nat. Nanotechnol. 8, 247–251 (2013).
[Crossref]

Kravchencko, I. I.

P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photon. 2, 692–698 (2015).
[Crossref]

Krishnamurthy, S.

P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photon. 2, 692–698 (2015).
[Crossref]

Lai, Y. S.

K. T. Lin, H. L. Chen, Y. S. Lai, and C. C. Yu, “Silicon-based broadband antenna for high responsivity and polarization-insensitive photodetection at telecommunication wavelengths,” Nat. Commun. 5, 3288 (2014).
[Crossref]

Large, N.

S. Mukherjee, F. Libisch, N. Large, O. Neumann, L. V. Brown, J. Cheng, J. B. Lassiter, E. A. Carter, P. Nordlander, and N. J. Halas, “Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au,” Nano Lett. 13, 240–247 (2013).
[Crossref]

Lassiter, J. B.

S. Mukherjee, F. Libisch, N. Large, O. Neumann, L. V. Brown, J. Cheng, J. B. Lassiter, E. A. Carter, P. Nordlander, and N. J. Halas, “Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au,” Nano Lett. 13, 240–247 (2013).
[Crossref]

Lee, C.

Y. K. Lee, H. Lee, C. Lee, E. Hwang, and J. Y. Park, “Hot-electron-based solar energy conversion with metal–semiconductor nanodiodes,” J. Phys. Condens. Matter 28, 254006 (2016).
[Crossref]

Lee, H.

Y. K. Lee, H. Lee, C. Lee, E. Hwang, and J. Y. Park, “Hot-electron-based solar energy conversion with metal–semiconductor nanodiodes,” J. Phys. Condens. Matter 28, 254006 (2016).
[Crossref]

H. Lee, Y. K. Lee, E. Hwang, and J. Y. Park, “Enhanced surface plasmon effect of Ag/TiO2 nanodiodes on internal photoemission,” J. Phys. Chem. C 118, 5650–5656 (2014).
[Crossref]

Lee, J.

S. Mubeen, J. Lee, N. Singh, S. Kramer, G. D. Stucky, and M. Moskovits, “An autonomous photosynthetic device in which all charge carriers derive from surface plasmons,” Nat. Nanotechnol. 8, 247–251 (2013).
[Crossref]

Lee, Y. K.

Y. K. Lee, H. Lee, C. Lee, E. Hwang, and J. Y. Park, “Hot-electron-based solar energy conversion with metal–semiconductor nanodiodes,” J. Phys. Condens. Matter 28, 254006 (2016).
[Crossref]

H. Lee, Y. K. Lee, E. Hwang, and J. Y. Park, “Enhanced surface plasmon effect of Ag/TiO2 nanodiodes on internal photoemission,” J. Phys. Chem. C 118, 5650–5656 (2014).
[Crossref]

Y. K. Lee, C. H. Jung, J. Park, H. Seo, G. A. Somorjai, and J. Y. Park, “Surface plasmon-driven hot electron flow probed with metal-semiconductor nanodiodes,” Nano Lett. 11, 4251–4255 (2011).
[Crossref]

Leuthold, J.

Levy, U.

B. Desiatov, I. Goykhman, N. Mazurski, J. Shappir, J. B. Khurgin, and U. Levy, “Plasmonic enhanced silicon pyramids for internal photoemission Schottky detectors in the near-infrared regime,” Optica 2, 335–338 (2015).
[Crossref]

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett. 11, 2219–2224 (2011).
[Crossref]

Li, H.

Li, L.

Li, S.

P. Gao, J. He, S. Zhou, X. Yang, S. Li, J. Sheng, D. Wang, T. Yu, J. Ye, and Y. Cui, “Large-area nanosphere self-assembly by a micro-propulsive injection method for high throughput periodic surface nanotexturing,” Nano Lett. 15, 4591–4598 (2015).
[Crossref]

Li, W.

W. Li and J. G. Valentine, “Harvesting the loss: surface plasmon-based hot electron photodetection,” Nanophotonics 6, 177–191 (2017).
[Crossref]

P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photon. 2, 692–698 (2015).
[Crossref]

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6, 8379 (2015).
[Crossref]

W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14, 3510–3514 (2014).
[Crossref]

Liang, S.

Libisch, F.

S. Mukherjee, F. Libisch, N. Large, O. Neumann, L. V. Brown, J. Cheng, J. B. Lassiter, E. A. Carter, P. Nordlander, and N. J. Halas, “Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au,” Nano Lett. 13, 240–247 (2013).
[Crossref]

Lin, K. T.

K. T. Lin, H. L. Chen, Y. S. Lai, and C. C. Yu, “Silicon-based broadband antenna for high responsivity and polarization-insensitive photodetection at telecommunication wavelengths,” Nat. Commun. 5, 3288 (2014).
[Crossref]

Liu, M.

Liu, N.

Liu, Y.

Mazurski, N.

Mei, T.

Melikyan, A.

Mih, A.

F. Pelayo García de Arquer, A. Mih, and G. Konstantatos, “Large-area plasmonic-crystal-hot-electron-based photodetectors,” ACS Photon. 2, 950–957 (2015).
[Crossref]

Moitra, P.

P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photon. 2, 692–698 (2015).
[Crossref]

Moskovits, M.

S. Mubeen, J. Lee, N. Singh, S. Kramer, G. D. Stucky, and M. Moskovits, “An autonomous photosynthetic device in which all charge carriers derive from surface plasmons,” Nat. Nanotechnol. 8, 247–251 (2013).
[Crossref]

Mubeen, S.

S. Mubeen, J. Lee, N. Singh, S. Kramer, G. D. Stucky, and M. Moskovits, “An autonomous photosynthetic device in which all charge carriers derive from surface plasmons,” Nat. Nanotechnol. 8, 247–251 (2013).
[Crossref]

Muehlbrandt, S.

Mukherjee, S.

S. Mukherjee, F. Libisch, N. Large, O. Neumann, L. V. Brown, J. Cheng, J. B. Lassiter, E. A. Carter, P. Nordlander, and N. J. Halas, “Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au,” Nano Lett. 13, 240–247 (2013).
[Crossref]

Munday, J. N.

T. Gong and J. N. Munday, “Aluminum-based hot carrier plasmonics,” Appl. Phys. Lett. 110, 021117 (2017).
[Crossref]

T. Gong and J. N. Munday, “Angle-independent hot carrier generation and collection using transparent conducting oxides,” Nano Lett. 15, 147–152 (2015).
[Crossref]

Muslija, A.

Neumann, O.

S. Mukherjee, F. Libisch, N. Large, O. Neumann, L. V. Brown, J. Cheng, J. B. Lassiter, E. A. Carter, P. Nordlander, and N. J. Halas, “Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au,” Nano Lett. 13, 240–247 (2013).
[Crossref]

Nordlander, P.

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10, 25–34 (2015).
[Crossref]

S. Mukherjee, F. Libisch, N. Large, O. Neumann, L. V. Brown, J. Cheng, J. B. Lassiter, E. A. Carter, P. Nordlander, and N. J. Halas, “Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au,” Nano Lett. 13, 240–247 (2013).
[Crossref]

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref]

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13, 1687–1692 (2013).
[Crossref]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
[Crossref]

Park, J.

Y. K. Lee, C. H. Jung, J. Park, H. Seo, G. A. Somorjai, and J. Y. Park, “Surface plasmon-driven hot electron flow probed with metal-semiconductor nanodiodes,” Nano Lett. 11, 4251–4255 (2011).
[Crossref]

Park, J. Y.

Y. K. Lee, H. Lee, C. Lee, E. Hwang, and J. Y. Park, “Hot-electron-based solar energy conversion with metal–semiconductor nanodiodes,” J. Phys. Condens. Matter 28, 254006 (2016).
[Crossref]

H. Lee, Y. K. Lee, E. Hwang, and J. Y. Park, “Enhanced surface plasmon effect of Ag/TiO2 nanodiodes on internal photoemission,” J. Phys. Chem. C 118, 5650–5656 (2014).
[Crossref]

Y. K. Lee, C. H. Jung, J. Park, H. Seo, G. A. Somorjai, and J. Y. Park, “Surface plasmon-driven hot electron flow probed with metal-semiconductor nanodiodes,” Nano Lett. 11, 4251–4255 (2011).
[Crossref]

Pelayo García de Arquer, F.

F. Pelayo García de Arquer, A. Mih, and G. Konstantatos, “Large-area plasmonic-crystal-hot-electron-based photodetectors,” ACS Photon. 2, 950–957 (2015).
[Crossref]

Qiu, M.

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83, 165107 (2011).
[Crossref]

Ramchandani, M. G.

M. G. Ramchandani, “Energy band structure of gold,” J. Phys. C 3, 1S (1970).
[Crossref]

Scales, C.

C. Scales and P. Berini, “Thin-film Schottky barrier photodetector models,” IEEE J. Quantum Electron. 46, 633–643 (2010).
[Crossref]

Schoen, D.

H. Chalabi, D. Schoen, and M. L. Brongersma, “Hot-electron photodetection with a plasmonic nanostripe antenna,” Nano Lett. 14, 1374–1380 (2014).
[Crossref]

Seo, H.

Y. K. Lee, C. H. Jung, J. Park, H. Seo, G. A. Somorjai, and J. Y. Park, “Surface plasmon-driven hot electron flow probed with metal-semiconductor nanodiodes,” Nano Lett. 11, 4251–4255 (2011).
[Crossref]

Shappir, J.

B. Desiatov, I. Goykhman, N. Mazurski, J. Shappir, J. B. Khurgin, and U. Levy, “Plasmonic enhanced silicon pyramids for internal photoemission Schottky detectors in the near-infrared regime,” Optica 2, 335–338 (2015).
[Crossref]

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett. 11, 2219–2224 (2011).
[Crossref]

Sheng, J.

P. Gao, J. He, S. Zhou, X. Yang, S. Li, J. Sheng, D. Wang, T. Yu, J. Ye, and Y. Cui, “Large-area nanosphere self-assembly by a micro-propulsive injection method for high throughput periodic surface nanotexturing,” Nano Lett. 15, 4591–4598 (2015).
[Crossref]

Simmons, J. G.

J. G. Simmons, “Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film,” J. Appl. Phys. 34, 1793–1803 (1963).
[Crossref]

Singh, N.

S. Mubeen, J. Lee, N. Singh, S. Kramer, G. D. Stucky, and M. Moskovits, “An autonomous photosynthetic device in which all charge carriers derive from surface plasmons,” Nat. Nanotechnol. 8, 247–251 (2013).
[Crossref]

Slovick, B. A.

P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photon. 2, 692–698 (2015).
[Crossref]

Sobhani, A.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref]

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13, 1687–1692 (2013).
[Crossref]

Sobhani, H.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
[Crossref]

Somorjai, G. A.

Y. K. Lee, C. H. Jung, J. Park, H. Seo, G. A. Somorjai, and J. Y. Park, “Surface plasmon-driven hot electron flow probed with metal-semiconductor nanodiodes,” Nano Lett. 11, 4251–4255 (2011).
[Crossref]

Stanfeld, J.

J. M. Stern, J. Stanfeld, W. Kabbani, J.-T. Hsieh, and J. A. Cadeddu, “Selective prostate cancer thermal ablation with laser activated gold nanoshells,” J. Urol. 179, 748–753 (2008).
[Crossref]

Stern, J. M.

J. M. Stern, J. Stanfeld, W. Kabbani, J.-T. Hsieh, and J. A. Cadeddu, “Selective prostate cancer thermal ablation with laser activated gold nanoshells,” J. Urol. 179, 748–753 (2008).
[Crossref]

Stucky, G. D.

S. Mubeen, J. Lee, N. Singh, S. Kramer, G. D. Stucky, and M. Moskovits, “An autonomous photosynthetic device in which all charge carriers derive from surface plasmons,” Nat. Nanotechnol. 8, 247–251 (2013).
[Crossref]

Su, J.

Takahashi, Y.

Y. Takahashi and T. Tatsuma, “Solid state photovoltaic cells based on localized surface plasmon-induced charge separation,” Appl. Phys. Lett. 99, 182110 (2011).
[Crossref]

Tang, M. X.

C.-M. Hsu, S. T. Connor, M. X. Tang, and Y. Cui, “Wafer-scale silicon nanopillars and nanocones by Langmuir–Blodgett assembly and etching,” Appl. Phys. Lett. 93, 133109 (2008).
[Crossref]

Tao, J.

Tatsuma, T.

Y. Takahashi and T. Tatsuma, “Solid state photovoltaic cells based on localized surface plasmon-induced charge separation,” Appl. Phys. Lett. 99, 182110 (2011).
[Crossref]

Urban, A. S.

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13, 1687–1692 (2013).
[Crossref]

Valentine, J.

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6, 8379 (2015).
[Crossref]

P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photon. 2, 692–698 (2015).
[Crossref]

W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14, 3510–3514 (2014).
[Crossref]

Valentine, J. G.

W. Li and J. G. Valentine, “Harvesting the loss: surface plasmon-based hot electron photodetection,” Nanophotonics 6, 177–191 (2017).
[Crossref]

Vincze, P.

Wang, D.

P. Gao, J. He, S. Zhou, X. Yang, S. Li, J. Sheng, D. Wang, T. Yu, J. Ye, and Y. Cui, “Large-area nanosphere self-assembly by a micro-propulsive injection method for high throughput periodic surface nanotexturing,” Nano Lett. 15, 4591–4598 (2015).
[Crossref]

Wang, L. A.

Y. P. Huang and L. A. Wang, “In-line silicon Schottky photodetectors on silicon cored fibers working in 1550 nm wavelength regimes,” Appl. Phys. Lett. 106, 191106 (2015).
[Crossref]

Wang, S.

Wang, W.

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6, 8379 (2015).
[Crossref]

Wang, Y.

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13, 1687–1692 (2013).
[Crossref]

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref]

Wolf, S.

Yang, X.

P. Gao, J. He, S. Zhou, X. Yang, S. Li, J. Sheng, D. Wang, T. Yu, J. Ye, and Y. Cui, “Large-area nanosphere self-assembly by a micro-propulsive injection method for high throughput periodic surface nanotexturing,” Nano Lett. 15, 4591–4598 (2015).
[Crossref]

Yang, Z.

Ye, J.

P. Gao, J. He, S. Zhou, X. Yang, S. Li, J. Sheng, D. Wang, T. Yu, J. Ye, and Y. Cui, “Large-area nanosphere self-assembly by a micro-propulsive injection method for high throughput periodic surface nanotexturing,” Nano Lett. 15, 4591–4598 (2015).
[Crossref]

Yu, C. C.

K. T. Lin, H. L. Chen, Y. S. Lai, and C. C. Yu, “Silicon-based broadband antenna for high responsivity and polarization-insensitive photodetection at telecommunication wavelengths,” Nat. Commun. 5, 3288 (2014).
[Crossref]

Yu, T.

P. Gao, J. He, S. Zhou, X. Yang, S. Li, J. Sheng, D. Wang, T. Yu, J. Ye, and Y. Cui, “Large-area nanosphere self-assembly by a micro-propulsive injection method for high throughput periodic surface nanotexturing,” Nano Lett. 15, 4591–4598 (2015).
[Crossref]

Zhang, D.

Zhang, Q.

Zhang, W.

Zhang, X.

Zheng, B.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref]

Zheng, B. Y.

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13, 1687–1692 (2013).
[Crossref]

Zhou, L.

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83, 165107 (2011).
[Crossref]

Zhou, S.

P. Gao, J. He, S. Zhou, X. Yang, S. Li, J. Sheng, D. Wang, T. Yu, J. Ye, and Y. Cui, “Large-area nanosphere self-assembly by a micro-propulsive injection method for high throughput periodic surface nanotexturing,” Nano Lett. 15, 4591–4598 (2015).
[Crossref]

ACS Photon. (2)

F. Pelayo García de Arquer, A. Mih, and G. Konstantatos, “Large-area plasmonic-crystal-hot-electron-based photodetectors,” ACS Photon. 2, 950–957 (2015).
[Crossref]

P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photon. 2, 692–698 (2015).
[Crossref]

Appl. Phys. Lett. (4)

C.-M. Hsu, S. T. Connor, M. X. Tang, and Y. Cui, “Wafer-scale silicon nanopillars and nanocones by Langmuir–Blodgett assembly and etching,” Appl. Phys. Lett. 93, 133109 (2008).
[Crossref]

Y. Takahashi and T. Tatsuma, “Solid state photovoltaic cells based on localized surface plasmon-induced charge separation,” Appl. Phys. Lett. 99, 182110 (2011).
[Crossref]

Y. P. Huang and L. A. Wang, “In-line silicon Schottky photodetectors on silicon cored fibers working in 1550 nm wavelength regimes,” Appl. Phys. Lett. 106, 191106 (2015).
[Crossref]

T. Gong and J. N. Munday, “Aluminum-based hot carrier plasmonics,” Appl. Phys. Lett. 110, 021117 (2017).
[Crossref]

IEEE J. Quantum Electron. (1)

C. Scales and P. Berini, “Thin-film Schottky barrier photodetector models,” IEEE J. Quantum Electron. 46, 633–643 (2010).
[Crossref]

J. Appl. Phys. (2)

J. G. Simmons, “Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film,” J. Appl. Phys. 34, 1793–1803 (1963).
[Crossref]

J. C. Fisher and I. Giaever, “Tunneling through thin insulating layers,” J. Appl. Phys. 32, 172–177 (1961).
[Crossref]

J. Phys. C (1)

M. G. Ramchandani, “Energy band structure of gold,” J. Phys. C 3, 1S (1970).
[Crossref]

J. Phys. Chem. C (1)

H. Lee, Y. K. Lee, E. Hwang, and J. Y. Park, “Enhanced surface plasmon effect of Ag/TiO2 nanodiodes on internal photoemission,” J. Phys. Chem. C 118, 5650–5656 (2014).
[Crossref]

J. Phys. Condens. Matter (1)

Y. K. Lee, H. Lee, C. Lee, E. Hwang, and J. Y. Park, “Hot-electron-based solar energy conversion with metal–semiconductor nanodiodes,” J. Phys. Condens. Matter 28, 254006 (2016).
[Crossref]

J. Urol. (1)

J. M. Stern, J. Stanfeld, W. Kabbani, J.-T. Hsieh, and J. A. Cadeddu, “Selective prostate cancer thermal ablation with laser activated gold nanoshells,” J. Urol. 179, 748–753 (2008).
[Crossref]

Nano Lett. (8)

S. Mukherjee, F. Libisch, N. Large, O. Neumann, L. V. Brown, J. Cheng, J. B. Lassiter, E. A. Carter, P. Nordlander, and N. J. Halas, “Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au,” Nano Lett. 13, 240–247 (2013).
[Crossref]

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett. 11, 2219–2224 (2011).
[Crossref]

Y. K. Lee, C. H. Jung, J. Park, H. Seo, G. A. Somorjai, and J. Y. Park, “Surface plasmon-driven hot electron flow probed with metal-semiconductor nanodiodes,” Nano Lett. 11, 4251–4255 (2011).
[Crossref]

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13, 1687–1692 (2013).
[Crossref]

P. Gao, J. He, S. Zhou, X. Yang, S. Li, J. Sheng, D. Wang, T. Yu, J. Ye, and Y. Cui, “Large-area nanosphere self-assembly by a micro-propulsive injection method for high throughput periodic surface nanotexturing,” Nano Lett. 15, 4591–4598 (2015).
[Crossref]

W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14, 3510–3514 (2014).
[Crossref]

H. Chalabi, D. Schoen, and M. L. Brongersma, “Hot-electron photodetection with a plasmonic nanostripe antenna,” Nano Lett. 14, 1374–1380 (2014).
[Crossref]

T. Gong and J. N. Munday, “Angle-independent hot carrier generation and collection using transparent conducting oxides,” Nano Lett. 15, 147–152 (2015).
[Crossref]

Nanophotonics (1)

W. Li and J. G. Valentine, “Harvesting the loss: surface plasmon-based hot electron photodetection,” Nanophotonics 6, 177–191 (2017).
[Crossref]

Nat. Commun. (3)

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6, 8379 (2015).
[Crossref]

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[Crossref]

K. T. Lin, H. L. Chen, Y. S. Lai, and C. C. Yu, “Silicon-based broadband antenna for high responsivity and polarization-insensitive photodetection at telecommunication wavelengths,” Nat. Commun. 5, 3288 (2014).
[Crossref]

Nat. Nanotechnol. (3)

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10, 25–34 (2015).
[Crossref]

H. Chalabi and M. L. Brongersma, “Plasmonics: harvest season for hot electrons,” Nat. Nanotechnol. 8, 229–230 (2013).
[Crossref]

S. Mubeen, J. Lee, N. Singh, S. Kramer, G. D. Stucky, and M. Moskovits, “An autonomous photosynthetic device in which all charge carriers derive from surface plasmons,” Nat. Nanotechnol. 8, 247–251 (2013).
[Crossref]

Nat. Photonics (1)

C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8, 95–103 (2014).
[Crossref]

Opt. Express (3)

Optica (2)

Phys. Rev. (1)

R. H. Fowler, “The analysis of photoelectric sensitivity curves for clean metals at various temperatures,” Phys. Rev. 38, 45–56 (1931).
[Crossref]

Phys. Rev. B (1)

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83, 165107 (2011).
[Crossref]

Science (1)

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Device architecture and principle of operation. (a) Representation of the NCA photodetector. Light impinges on the top Au film, exciting hot electrons through SP generation. The color of the cones corresponds to the layer with the same color shown in (b). (b) Transport process of hot electrons. (c) Etched silicon dioxide with a 400 nm PS nanosphere mask on a 1.5    cm × 1.5    cm sample. The green color is due to the reflected light from the nanostructured surface, whereas the dark area is the unetched silicon oxide. (d) Top view and (e) cross-sectional SEM image of the final device.
Fig. 2.
Fig. 2. (a) Calculated absorbance spectrum in the 400–1000 nm range. (b) Simulated electric-field intensity distribution at the cross-section at the wavelength of 620 nm. (c) Distribution of dissipative energy density at the wavelength of 620 nm, showing strong absorption along the sidewall.
Fig. 3.
Fig. 3. Photocurrent varies with the thickness of the Au layer.
Fig. 4.
Fig. 4. (a) Responsivity under short-circuit conditions. (b) Band diagram of Au showing excitation from different bands. Hot electrons with energy larger than the Schottky barrier can be emitted over the barrier into the semiconductor.
Fig. 5.
Fig. 5. (a) Equivalent circuit diagram of the device under bias. (b) Schematic of hot electrons transported across the Schottky barrier under short-circuit conditions. (c) Schematic of hot electrons tunneling under reverse bias. As the reverse bias increases, the barrier profile is modulated as their alternating bands are pushed downward. (d) Responsivity under different reverse biases. (e) Relationship between the photocurrent and the bias voltage under 620 nm illumination.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Q ( x , y , z , λ ) = 1 2 ω Im [ ε ( x , y , z , λ ) ] | E ( x , y , z , λ ) | 2 ,
R = C f ( h v φ B ) 2 h v q A ( λ ) h v ,

Metrics