Abstract

We demonstrate low-loss hydrogenated amorphous silicon (a-Si:H) waveguides by hot-wire chemical vapor deposition (HWCVD). The effect of hydrogenation in a-Si at different deposition temperatures has been investigated and analyzed by Raman spectroscopy. We obtained an optical quality a-Si:H waveguide deposited at 230°C that has a strong Raman peak shift at 480  cm1, peak width (full width at half-maximum) of 68.9  cm1, and bond angle deviation of 8.98°. Optical transmission measurement shows a low propagation loss of 0.8 dB/cm at the 1550 nm wavelength, which is the first, to our knowledge, report for a HWCVD a-Si:H waveguide.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
HWCVD a-Si:H interlayer slope waveguide coupler for multilayer silicon photonics platform

Rafidah Petra, Swe Zin Oo, Antulio Tarazona, Robert Cernansky, Scott A. Reynolds, Ali Z. Khokhar, Vinita Mittal, David J. Thomson, Alberto Politi, Goran Z. Mashanovich, Graham T. Reed, and Harold M. H. Chong
Opt. Express 27(11) 15735-15749 (2019)

Effect of cladding layer and subsequent heat treatment on hydrogenated amorphous silicon waveguides

Shiyang Zhu, G. Q. Lo, Weihong Li, and D. L. Kwong
Opt. Express 20(21) 23676-23683 (2012)

References

  • View by:
  • |
  • |
  • |

  1. S. K. A. Neyer, E. Rabe, and D. Cai, “Polymer waveguide technologies for optical interconnects,” in European Conference on Integrated Optics (ECIO), Copenhagen, Denmark (2007), paper ThD0.
  2. A. Yeniay, R. Gao, K. Takayama, R. Gao, and A. F. Garito, “Ultra-low-loss polymer waveguides,” J. Lightwave Technol. 22, 154–158 (2004).
    [Crossref]
  3. C. K. Wong, H. Wong, M. Chan, Y. T. Chow, and H. P. Chan, “Silicon oxynitride integrated waveguide for on-chip optical interconnects applications,” Microelectron. Reliab. 48, 212–218 (2008).
    [Crossref]
  4. E. G. Johnson, M. J. Shaw, G. P. Nordin, J. Guo, G. A. Vawter, T. J. Suleski, S. Habermehl, and C. T. Sullivan, “Fabrication techniques for low-loss silicon nitride waveguides,” Proc. SPIE 5720, 1–11 (2005).
    [Crossref]
  5. G. C. Righini, G. Cocorullo, S. I. Najafi, F. G. Della Corte, R. De Rosa, B. Jalali, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon waveguides and interferometers for low-cost silicon optoelectronics,” Proc. SPIE 3278, 286–292 (1998).
    [Crossref]
  6. A. Harke, M. Krause, and J. Mueller, “Low-loss single mode amorphous silicon waveguides,” Electron. Lett. 41, 1377–1379 (2005).
    [Crossref]
  7. R. Sun, K. McComber, J. Cheng, D. K. Sparacin, M. Beals, J. Michel, and L. C. Kimerling, “Transparent amorphous silicon channel waveguides with silicon nitride intercladding layer,” Appl. Phys. Lett. 94, 141108 (2009).
    [Crossref]
  8. S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282, 1767–1770 (2009).
    [Crossref]
  9. S. Zhu, G. Q. Lo, and D. L. Kwong, “Low-loss amorphous silicon wire waveguide for integrated photonics: effect of fabrication process and the thermal stability,” Opt. Express 18, 25283–25291 (2010).
    [Crossref]
  10. J. Kang, Y. Atsumi, M. Oda, T. Amemiya, N. Nishiyama, and S. Arai, “Low-loss amorphous silicon multilayer waveguides vertically stacked on silicon-on-insulator substrate,” Jpn. J. Appl. Phys. 50, 120208 (2011).
    [Crossref]
  11. T. Lipka, O. Horn, J. Amthor, and J. Müller, “Low-loss multilayer compatible a-Si:H optical thin films for photonic applications,” JEOS RP 7, 12033 (2012).
    [Crossref]
  12. R. Takei, S. Manako, E. Omoda, Y. Sakakibara, M. Mori, and T. Kamei, “Sub-1 dB/cm submicrometer-scale amorphous silicon waveguide for backend on-chip optical interconnect,” Opt. Express 22, 4779–4788 (2014).
    [Crossref]
  13. G. Franco, “Optoelectronic properties of amorphous silicon, the role of hydrogen: from experiment to modeling,” in Optoeletronics: Materials and Techniques, P. Padmanabhan, ed. (InTech, 2011), p. 496.
  14. T. Karabacak, Y. P. Zhao, G. C. Wang, and T. M. Lu, “Growth-front roughening in amorphous silicon films by sputtering,” Phys. Rev. B 64, 085323 (2001).
    [Crossref]
  15. M. H. Brodsky, M. Cardona, and J. J. Cuomo, “Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering,” Phys. Rev. B 16, 3556–3571 (1977).
    [Crossref]
  16. Y. Abdulraheem, I. Gordon, T. Bearda, H. Meddeb, and J. Poortmans, “Optical bandgap of ultra-thin amorphous silicon films deposited on crystalline silicon by PECVD,” AIP Adv. 4, 057122 (2014).
    [Crossref]
  17. J. Robertson, “Deposition mechanism of hydrogenated amorphous silicon,” J. Appl. Phys. 87, 2608–2617 (2000).
    [Crossref]
  18. D. Kaplan, N. Sol, G. Velasco, and P. A. Thomas, “Hydrogenation of evaporated amorphous silicon films by plasma treatment,” Appl. Phys. Lett. 33, 440–442 (1978).
    [Crossref]
  19. H. Matsumura, “Catalytic chemical vapor deposition (CTC-CVD) method producing high quality hydrogenated amorphous silicon,” Jpn. J. Appl. Phys. 25, L949–L951 (1986).
    [Crossref]
  20. Y. A. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12, 1622–1631 (2004).
    [Crossref]
  21. D. K. Sparacin, S. J. Spector, and L. C. Kimerling, “Silicon waveguide sidewall smoothing by wet chemical oxidation,” J. Lightwave Technol. 23, 2455–2461 (2005).
    [Crossref]
  22. M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44, 115–116 (2008).
    [Crossref]
  23. R. E. I. Schropp, “Hot wire chemical vapor deposition: recent progress, present state of the art and competitive opportunities,” ECS Trans. 25, 3–14 (2009).
    [Crossref]
  24. A. Takahiro, I. Makoto, M. Takeo, I. Koichi, O. Keisuke, and M. Hideki, “Propagation loss of amorphous silicon optical waveguides at the 0.8 μm-wavelength range,” in 7th IEEE International Conference on Group IV Photonics, Beijing, China (2010), pp. 269–271.
  25. R. S. Crandalla, X. Liub, and E. Iwaniczkoa, “Recent developments in hot wire amorphous silicon,” J. Non-Cryst. Solids 227–230, 23–28 (1998).
    [Crossref]
  26. K. F. Feenstra, R. E. I. Schropp, and W. F. Van der Weg, “Deposition of amorphous silicon films by hot-wire chemical vapor deposition,” J. Appl. Phys. 85, 6843–6852 (1999).
    [Crossref]
  27. A. H. Mahan, J. Carapella, B. P. Nelson, R. S. Crandall, and I. Balberg, “Deposition of device quality, low H content amorphous silicon,” J. Appl. Phys. 69, 6728–6730 (1991).
    [Crossref]
  28. S. Tange, K. Inoue, K. Tonokura, and M. Koshi, “Catalytic decomposition of SiH4 on a hot filament,” Thin Solid Films 395, 42–46 (2001).
    [Crossref]
  29. K. Tonokura, K. Inoue, and M. Koshi, “Chemical kinetics for film growth in silicon HWCVD,” J. Non-Cryst. Solids 299–302, 25–29 (2002).
    [Crossref]
  30. Y.-F. Wang and R. Pollard, “An approach for modeling surface reaction kinetics in chemical vapor deposition processes,” J. Electrochem. Soc. 142, 1712–1725 (1995).
    [Crossref]
  31. T. Shimizu, H. Kidoh, M. Matsumoto, A. Morimoto, and M. Kumeda, “Photo-created defects in a-Si:H as elucidated by ESR, LESR and CPM,” J. Non-Cryst. Solids 114, 630–632 (1989).
    [Crossref]
  32. S. Taebi, M. Khorasaninejad, and S. Singh Saini, “Modified Fabry-Perot interferometric method for waveguide loss measurement,” Appl. Opt. 47, 6625–6630 (2008).
    [Crossref]
  33. D. Han, J. D. Lorentzen, J. Weinberg-Wolf, L. E. McNeil, and Q. Wang, “Raman study of thin films of amorphous-to-microcrystalline silicon prepared by hot-wire chemical vapor deposition,” J. Appl. Phys. 94, 2930–2936 (2003).
    [Crossref]
  34. Y. Hishikawa, K. Watanabe, S. Tsuda, M. Ohnishi, and Y. Kuwano, “Raman study on the silicon network of hydrogenated amorphous silicon films deposited by a glow discharge,” Jpn. J. Appl. Phys. 24, 385–389 (1985).
    [Crossref]
  35. R. Carius, “Structural and optical properties of microcrystalline silicon for solar cell applications,” in Photovoltaic and Photoactive Materials: Properties, Technology and Applications, J. M. Marshall and D. Dimova-Malinovska, eds. (Springer Netherlands, 2002), p. 353.
  36. D. Beeman, R. Tsu, and M. F. Thorpe, “Structural information from the Raman spectrum of amorphous silicon,” Phys. Rev. B 32, 874–878 (1985).
    [Crossref]
  37. L. Houben, M. Luysberg, P. Hapke, R. Carius, F. Finger, and H. Wagner, “Structural properties of microcrystalline silicon in the transition from highly crystalline to amorphous growth,” Philos. Mag. A 77, 1447–1460 (1998).
    [Crossref]
  38. S. Gupta, R. S. Katiyar, G. Morell, S. Z. Weisz, and I. Balberg, “The effect of hydrogen on the network disorder in hydrogenated amorphous silicon,” Appl. Phys. Lett. 75, 2803–2805 (1999).
    [Crossref]
  39. Z. Wang, D. Flötotto, and E. J. Mittemeijer, “Stress originating from nanovoids in hydrogenated amorphous semiconductors,” J. Appl. Phys. 121, 095307 (2017).
    [Crossref]
  40. A. H. M. Smets, W. M. M. Kessels, and M. C. M. van de Sanden, “Vacancies and voids in hydrogenated amorphous silicon,” Appl. Phys. Lett. 82, 1547–1549 (2003).
    [Crossref]
  41. E. V. Johnson, L. Kroely, and P. Roca i Cabarrocas, “Raman scattering analysis of SiH bond stretching modes in hydrogenated microcrystalline silicon for use in thin-film photovoltaics,” Solar Energy Mater. Sol. Cells 93, 1904–1906 (2009).
    [Crossref]
  42. M. Hideki, “Formation of silicon-based thin films prepared by catalytic chemical vapor deposition (Cat-CVD) method,” Jpn. J. Appl. Phys. 37, 3175–3187 (1998).
    [Crossref]
  43. A. H. M. Smets, T. Matsui, and M. Kondo, “High-rate deposition of microcrystalline silicon p-i-n solar cells in the high pressure depletion regime,” J. Appl. Phys. 104, 034508 (2008).
    [Crossref]
  44. D. Stryahilev, F. Diehl, and B. Schröder, “The splitting of absorption bands in IR spectra of anisotropic SiH monolayers covering the internal surfaces in μc-Si:H,” J. Non-Cryst. Solids 266–269, 166–170 (2000).
    [Crossref]
  45. D. Ratnayake, M. D. Martin, U. R. Gowrishetty, D. A. Porter, T. A. Berfield, S. P. McNamara, and K. M. Walsh, “Engineering stress in thin films for the field of bistable MEMS,” J. Micromech. Microeng. 25, 125025 (2015).
    [Crossref]
  46. A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: applications in thin film photovoltaics,” J. Appl. Phys. 92, 2424–2436 (2002).
    [Crossref]

2017 (1)

Z. Wang, D. Flötotto, and E. J. Mittemeijer, “Stress originating from nanovoids in hydrogenated amorphous semiconductors,” J. Appl. Phys. 121, 095307 (2017).
[Crossref]

2015 (1)

D. Ratnayake, M. D. Martin, U. R. Gowrishetty, D. A. Porter, T. A. Berfield, S. P. McNamara, and K. M. Walsh, “Engineering stress in thin films for the field of bistable MEMS,” J. Micromech. Microeng. 25, 125025 (2015).
[Crossref]

2014 (2)

R. Takei, S. Manako, E. Omoda, Y. Sakakibara, M. Mori, and T. Kamei, “Sub-1 dB/cm submicrometer-scale amorphous silicon waveguide for backend on-chip optical interconnect,” Opt. Express 22, 4779–4788 (2014).
[Crossref]

Y. Abdulraheem, I. Gordon, T. Bearda, H. Meddeb, and J. Poortmans, “Optical bandgap of ultra-thin amorphous silicon films deposited on crystalline silicon by PECVD,” AIP Adv. 4, 057122 (2014).
[Crossref]

2012 (1)

T. Lipka, O. Horn, J. Amthor, and J. Müller, “Low-loss multilayer compatible a-Si:H optical thin films for photonic applications,” JEOS RP 7, 12033 (2012).
[Crossref]

2011 (1)

J. Kang, Y. Atsumi, M. Oda, T. Amemiya, N. Nishiyama, and S. Arai, “Low-loss amorphous silicon multilayer waveguides vertically stacked on silicon-on-insulator substrate,” Jpn. J. Appl. Phys. 50, 120208 (2011).
[Crossref]

2010 (1)

2009 (4)

R. Sun, K. McComber, J. Cheng, D. K. Sparacin, M. Beals, J. Michel, and L. C. Kimerling, “Transparent amorphous silicon channel waveguides with silicon nitride intercladding layer,” Appl. Phys. Lett. 94, 141108 (2009).
[Crossref]

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282, 1767–1770 (2009).
[Crossref]

R. E. I. Schropp, “Hot wire chemical vapor deposition: recent progress, present state of the art and competitive opportunities,” ECS Trans. 25, 3–14 (2009).
[Crossref]

E. V. Johnson, L. Kroely, and P. Roca i Cabarrocas, “Raman scattering analysis of SiH bond stretching modes in hydrogenated microcrystalline silicon for use in thin-film photovoltaics,” Solar Energy Mater. Sol. Cells 93, 1904–1906 (2009).
[Crossref]

2008 (4)

A. H. M. Smets, T. Matsui, and M. Kondo, “High-rate deposition of microcrystalline silicon p-i-n solar cells in the high pressure depletion regime,” J. Appl. Phys. 104, 034508 (2008).
[Crossref]

M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44, 115–116 (2008).
[Crossref]

S. Taebi, M. Khorasaninejad, and S. Singh Saini, “Modified Fabry-Perot interferometric method for waveguide loss measurement,” Appl. Opt. 47, 6625–6630 (2008).
[Crossref]

C. K. Wong, H. Wong, M. Chan, Y. T. Chow, and H. P. Chan, “Silicon oxynitride integrated waveguide for on-chip optical interconnects applications,” Microelectron. Reliab. 48, 212–218 (2008).
[Crossref]

2005 (3)

E. G. Johnson, M. J. Shaw, G. P. Nordin, J. Guo, G. A. Vawter, T. J. Suleski, S. Habermehl, and C. T. Sullivan, “Fabrication techniques for low-loss silicon nitride waveguides,” Proc. SPIE 5720, 1–11 (2005).
[Crossref]

A. Harke, M. Krause, and J. Mueller, “Low-loss single mode amorphous silicon waveguides,” Electron. Lett. 41, 1377–1379 (2005).
[Crossref]

D. K. Sparacin, S. J. Spector, and L. C. Kimerling, “Silicon waveguide sidewall smoothing by wet chemical oxidation,” J. Lightwave Technol. 23, 2455–2461 (2005).
[Crossref]

2004 (2)

2003 (2)

D. Han, J. D. Lorentzen, J. Weinberg-Wolf, L. E. McNeil, and Q. Wang, “Raman study of thin films of amorphous-to-microcrystalline silicon prepared by hot-wire chemical vapor deposition,” J. Appl. Phys. 94, 2930–2936 (2003).
[Crossref]

A. H. M. Smets, W. M. M. Kessels, and M. C. M. van de Sanden, “Vacancies and voids in hydrogenated amorphous silicon,” Appl. Phys. Lett. 82, 1547–1549 (2003).
[Crossref]

2002 (2)

K. Tonokura, K. Inoue, and M. Koshi, “Chemical kinetics for film growth in silicon HWCVD,” J. Non-Cryst. Solids 299–302, 25–29 (2002).
[Crossref]

A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: applications in thin film photovoltaics,” J. Appl. Phys. 92, 2424–2436 (2002).
[Crossref]

2001 (2)

S. Tange, K. Inoue, K. Tonokura, and M. Koshi, “Catalytic decomposition of SiH4 on a hot filament,” Thin Solid Films 395, 42–46 (2001).
[Crossref]

T. Karabacak, Y. P. Zhao, G. C. Wang, and T. M. Lu, “Growth-front roughening in amorphous silicon films by sputtering,” Phys. Rev. B 64, 085323 (2001).
[Crossref]

2000 (2)

J. Robertson, “Deposition mechanism of hydrogenated amorphous silicon,” J. Appl. Phys. 87, 2608–2617 (2000).
[Crossref]

D. Stryahilev, F. Diehl, and B. Schröder, “The splitting of absorption bands in IR spectra of anisotropic SiH monolayers covering the internal surfaces in μc-Si:H,” J. Non-Cryst. Solids 266–269, 166–170 (2000).
[Crossref]

1999 (2)

K. F. Feenstra, R. E. I. Schropp, and W. F. Van der Weg, “Deposition of amorphous silicon films by hot-wire chemical vapor deposition,” J. Appl. Phys. 85, 6843–6852 (1999).
[Crossref]

S. Gupta, R. S. Katiyar, G. Morell, S. Z. Weisz, and I. Balberg, “The effect of hydrogen on the network disorder in hydrogenated amorphous silicon,” Appl. Phys. Lett. 75, 2803–2805 (1999).
[Crossref]

1998 (4)

L. Houben, M. Luysberg, P. Hapke, R. Carius, F. Finger, and H. Wagner, “Structural properties of microcrystalline silicon in the transition from highly crystalline to amorphous growth,” Philos. Mag. A 77, 1447–1460 (1998).
[Crossref]

R. S. Crandalla, X. Liub, and E. Iwaniczkoa, “Recent developments in hot wire amorphous silicon,” J. Non-Cryst. Solids 227–230, 23–28 (1998).
[Crossref]

G. C. Righini, G. Cocorullo, S. I. Najafi, F. G. Della Corte, R. De Rosa, B. Jalali, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon waveguides and interferometers for low-cost silicon optoelectronics,” Proc. SPIE 3278, 286–292 (1998).
[Crossref]

M. Hideki, “Formation of silicon-based thin films prepared by catalytic chemical vapor deposition (Cat-CVD) method,” Jpn. J. Appl. Phys. 37, 3175–3187 (1998).
[Crossref]

1995 (1)

Y.-F. Wang and R. Pollard, “An approach for modeling surface reaction kinetics in chemical vapor deposition processes,” J. Electrochem. Soc. 142, 1712–1725 (1995).
[Crossref]

1991 (1)

A. H. Mahan, J. Carapella, B. P. Nelson, R. S. Crandall, and I. Balberg, “Deposition of device quality, low H content amorphous silicon,” J. Appl. Phys. 69, 6728–6730 (1991).
[Crossref]

1989 (1)

T. Shimizu, H. Kidoh, M. Matsumoto, A. Morimoto, and M. Kumeda, “Photo-created defects in a-Si:H as elucidated by ESR, LESR and CPM,” J. Non-Cryst. Solids 114, 630–632 (1989).
[Crossref]

1986 (1)

H. Matsumura, “Catalytic chemical vapor deposition (CTC-CVD) method producing high quality hydrogenated amorphous silicon,” Jpn. J. Appl. Phys. 25, L949–L951 (1986).
[Crossref]

1985 (2)

Y. Hishikawa, K. Watanabe, S. Tsuda, M. Ohnishi, and Y. Kuwano, “Raman study on the silicon network of hydrogenated amorphous silicon films deposited by a glow discharge,” Jpn. J. Appl. Phys. 24, 385–389 (1985).
[Crossref]

D. Beeman, R. Tsu, and M. F. Thorpe, “Structural information from the Raman spectrum of amorphous silicon,” Phys. Rev. B 32, 874–878 (1985).
[Crossref]

1978 (1)

D. Kaplan, N. Sol, G. Velasco, and P. A. Thomas, “Hydrogenation of evaporated amorphous silicon films by plasma treatment,” Appl. Phys. Lett. 33, 440–442 (1978).
[Crossref]

1977 (1)

M. H. Brodsky, M. Cardona, and J. J. Cuomo, “Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering,” Phys. Rev. B 16, 3556–3571 (1977).
[Crossref]

Abdulraheem, Y.

Y. Abdulraheem, I. Gordon, T. Bearda, H. Meddeb, and J. Poortmans, “Optical bandgap of ultra-thin amorphous silicon films deposited on crystalline silicon by PECVD,” AIP Adv. 4, 057122 (2014).
[Crossref]

Amemiya, T.

J. Kang, Y. Atsumi, M. Oda, T. Amemiya, N. Nishiyama, and S. Arai, “Low-loss amorphous silicon multilayer waveguides vertically stacked on silicon-on-insulator substrate,” Jpn. J. Appl. Phys. 50, 120208 (2011).
[Crossref]

Amthor, J.

T. Lipka, O. Horn, J. Amthor, and J. Müller, “Low-loss multilayer compatible a-Si:H optical thin films for photonic applications,” JEOS RP 7, 12033 (2012).
[Crossref]

Arai, S.

J. Kang, Y. Atsumi, M. Oda, T. Amemiya, N. Nishiyama, and S. Arai, “Low-loss amorphous silicon multilayer waveguides vertically stacked on silicon-on-insulator substrate,” Jpn. J. Appl. Phys. 50, 120208 (2011).
[Crossref]

Atsumi, Y.

J. Kang, Y. Atsumi, M. Oda, T. Amemiya, N. Nishiyama, and S. Arai, “Low-loss amorphous silicon multilayer waveguides vertically stacked on silicon-on-insulator substrate,” Jpn. J. Appl. Phys. 50, 120208 (2011).
[Crossref]

Baets, R.

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282, 1767–1770 (2009).
[Crossref]

Balberg, I.

S. Gupta, R. S. Katiyar, G. Morell, S. Z. Weisz, and I. Balberg, “The effect of hydrogen on the network disorder in hydrogenated amorphous silicon,” Appl. Phys. Lett. 75, 2803–2805 (1999).
[Crossref]

A. H. Mahan, J. Carapella, B. P. Nelson, R. S. Crandall, and I. Balberg, “Deposition of device quality, low H content amorphous silicon,” J. Appl. Phys. 69, 6728–6730 (1991).
[Crossref]

Beals, M.

R. Sun, K. McComber, J. Cheng, D. K. Sparacin, M. Beals, J. Michel, and L. C. Kimerling, “Transparent amorphous silicon channel waveguides with silicon nitride intercladding layer,” Appl. Phys. Lett. 94, 141108 (2009).
[Crossref]

Bearda, T.

Y. Abdulraheem, I. Gordon, T. Bearda, H. Meddeb, and J. Poortmans, “Optical bandgap of ultra-thin amorphous silicon films deposited on crystalline silicon by PECVD,” AIP Adv. 4, 057122 (2014).
[Crossref]

Beeman, D.

D. Beeman, R. Tsu, and M. F. Thorpe, “Structural information from the Raman spectrum of amorphous silicon,” Phys. Rev. B 32, 874–878 (1985).
[Crossref]

Berfield, T. A.

D. Ratnayake, M. D. Martin, U. R. Gowrishetty, D. A. Porter, T. A. Berfield, S. P. McNamara, and K. M. Walsh, “Engineering stress in thin films for the field of bistable MEMS,” J. Micromech. Microeng. 25, 125025 (2015).
[Crossref]

Bogaerts, W.

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282, 1767–1770 (2009).
[Crossref]

Brodsky, M. H.

M. H. Brodsky, M. Cardona, and J. J. Cuomo, “Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering,” Phys. Rev. B 16, 3556–3571 (1977).
[Crossref]

Cai, D.

S. K. A. Neyer, E. Rabe, and D. Cai, “Polymer waveguide technologies for optical interconnects,” in European Conference on Integrated Optics (ECIO), Copenhagen, Denmark (2007), paper ThD0.

Carapella, J.

A. H. Mahan, J. Carapella, B. P. Nelson, R. S. Crandall, and I. Balberg, “Deposition of device quality, low H content amorphous silicon,” J. Appl. Phys. 69, 6728–6730 (1991).
[Crossref]

Cardona, M.

M. H. Brodsky, M. Cardona, and J. J. Cuomo, “Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering,” Phys. Rev. B 16, 3556–3571 (1977).
[Crossref]

Carius, R.

L. Houben, M. Luysberg, P. Hapke, R. Carius, F. Finger, and H. Wagner, “Structural properties of microcrystalline silicon in the transition from highly crystalline to amorphous growth,” Philos. Mag. A 77, 1447–1460 (1998).
[Crossref]

R. Carius, “Structural and optical properties of microcrystalline silicon for solar cell applications,” in Photovoltaic and Photoactive Materials: Properties, Technology and Applications, J. M. Marshall and D. Dimova-Malinovska, eds. (Springer Netherlands, 2002), p. 353.

Chan, H. P.

C. K. Wong, H. Wong, M. Chan, Y. T. Chow, and H. P. Chan, “Silicon oxynitride integrated waveguide for on-chip optical interconnects applications,” Microelectron. Reliab. 48, 212–218 (2008).
[Crossref]

Chan, M.

C. K. Wong, H. Wong, M. Chan, Y. T. Chow, and H. P. Chan, “Silicon oxynitride integrated waveguide for on-chip optical interconnects applications,” Microelectron. Reliab. 48, 212–218 (2008).
[Crossref]

Cheng, J.

R. Sun, K. McComber, J. Cheng, D. K. Sparacin, M. Beals, J. Michel, and L. C. Kimerling, “Transparent amorphous silicon channel waveguides with silicon nitride intercladding layer,” Appl. Phys. Lett. 94, 141108 (2009).
[Crossref]

Chow, Y. T.

C. K. Wong, H. Wong, M. Chan, Y. T. Chow, and H. P. Chan, “Silicon oxynitride integrated waveguide for on-chip optical interconnects applications,” Microelectron. Reliab. 48, 212–218 (2008).
[Crossref]

Cocorullo, G.

G. C. Righini, G. Cocorullo, S. I. Najafi, F. G. Della Corte, R. De Rosa, B. Jalali, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon waveguides and interferometers for low-cost silicon optoelectronics,” Proc. SPIE 3278, 286–292 (1998).
[Crossref]

Collins, R. W.

A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: applications in thin film photovoltaics,” J. Appl. Phys. 92, 2424–2436 (2002).
[Crossref]

Crandall, R. S.

A. H. Mahan, J. Carapella, B. P. Nelson, R. S. Crandall, and I. Balberg, “Deposition of device quality, low H content amorphous silicon,” J. Appl. Phys. 69, 6728–6730 (1991).
[Crossref]

Crandalla, R. S.

R. S. Crandalla, X. Liub, and E. Iwaniczkoa, “Recent developments in hot wire amorphous silicon,” J. Non-Cryst. Solids 227–230, 23–28 (1998).
[Crossref]

Cuomo, J. J.

M. H. Brodsky, M. Cardona, and J. J. Cuomo, “Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering,” Phys. Rev. B 16, 3556–3571 (1977).
[Crossref]

De La Rue, R. M.

M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44, 115–116 (2008).
[Crossref]

De Rosa, R.

G. C. Righini, G. Cocorullo, S. I. Najafi, F. G. Della Corte, R. De Rosa, B. Jalali, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon waveguides and interferometers for low-cost silicon optoelectronics,” Proc. SPIE 3278, 286–292 (1998).
[Crossref]

Della Corte, F. G.

G. C. Righini, G. Cocorullo, S. I. Najafi, F. G. Della Corte, R. De Rosa, B. Jalali, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon waveguides and interferometers for low-cost silicon optoelectronics,” Proc. SPIE 3278, 286–292 (1998).
[Crossref]

Deng, X.

A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: applications in thin film photovoltaics,” J. Appl. Phys. 92, 2424–2436 (2002).
[Crossref]

Diehl, F.

D. Stryahilev, F. Diehl, and B. Schröder, “The splitting of absorption bands in IR spectra of anisotropic SiH monolayers covering the internal surfaces in μc-Si:H,” J. Non-Cryst. Solids 266–269, 166–170 (2000).
[Crossref]

Dumon, P.

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282, 1767–1770 (2009).
[Crossref]

Feenstra, K. F.

K. F. Feenstra, R. E. I. Schropp, and W. F. Van der Weg, “Deposition of amorphous silicon films by hot-wire chemical vapor deposition,” J. Appl. Phys. 85, 6843–6852 (1999).
[Crossref]

Ferlauto, A. S.

A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: applications in thin film photovoltaics,” J. Appl. Phys. 92, 2424–2436 (2002).
[Crossref]

Ferreira, G. M.

A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: applications in thin film photovoltaics,” J. Appl. Phys. 92, 2424–2436 (2002).
[Crossref]

Finger, F.

L. Houben, M. Luysberg, P. Hapke, R. Carius, F. Finger, and H. Wagner, “Structural properties of microcrystalline silicon in the transition from highly crystalline to amorphous growth,” Philos. Mag. A 77, 1447–1460 (1998).
[Crossref]

Flötotto, D.

Z. Wang, D. Flötotto, and E. J. Mittemeijer, “Stress originating from nanovoids in hydrogenated amorphous semiconductors,” J. Appl. Phys. 121, 095307 (2017).
[Crossref]

Franco, G.

G. Franco, “Optoelectronic properties of amorphous silicon, the role of hydrogen: from experiment to modeling,” in Optoeletronics: Materials and Techniques, P. Padmanabhan, ed. (InTech, 2011), p. 496.

Ganguly, G.

A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: applications in thin film photovoltaics,” J. Appl. Phys. 92, 2424–2436 (2002).
[Crossref]

Gao, R.

Garito, A. F.

Gnan, M.

M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44, 115–116 (2008).
[Crossref]

Gordon, I.

Y. Abdulraheem, I. Gordon, T. Bearda, H. Meddeb, and J. Poortmans, “Optical bandgap of ultra-thin amorphous silicon films deposited on crystalline silicon by PECVD,” AIP Adv. 4, 057122 (2014).
[Crossref]

Gowrishetty, U. R.

D. Ratnayake, M. D. Martin, U. R. Gowrishetty, D. A. Porter, T. A. Berfield, S. P. McNamara, and K. M. Walsh, “Engineering stress in thin films for the field of bistable MEMS,” J. Micromech. Microeng. 25, 125025 (2015).
[Crossref]

Guo, J.

E. G. Johnson, M. J. Shaw, G. P. Nordin, J. Guo, G. A. Vawter, T. J. Suleski, S. Habermehl, and C. T. Sullivan, “Fabrication techniques for low-loss silicon nitride waveguides,” Proc. SPIE 5720, 1–11 (2005).
[Crossref]

Gupta, S.

S. Gupta, R. S. Katiyar, G. Morell, S. Z. Weisz, and I. Balberg, “The effect of hydrogen on the network disorder in hydrogenated amorphous silicon,” Appl. Phys. Lett. 75, 2803–2805 (1999).
[Crossref]

Habermehl, S.

E. G. Johnson, M. J. Shaw, G. P. Nordin, J. Guo, G. A. Vawter, T. J. Suleski, S. Habermehl, and C. T. Sullivan, “Fabrication techniques for low-loss silicon nitride waveguides,” Proc. SPIE 5720, 1–11 (2005).
[Crossref]

Han, D.

D. Han, J. D. Lorentzen, J. Weinberg-Wolf, L. E. McNeil, and Q. Wang, “Raman study of thin films of amorphous-to-microcrystalline silicon prepared by hot-wire chemical vapor deposition,” J. Appl. Phys. 94, 2930–2936 (2003).
[Crossref]

Hapke, P.

L. Houben, M. Luysberg, P. Hapke, R. Carius, F. Finger, and H. Wagner, “Structural properties of microcrystalline silicon in the transition from highly crystalline to amorphous growth,” Philos. Mag. A 77, 1447–1460 (1998).
[Crossref]

Harke, A.

A. Harke, M. Krause, and J. Mueller, “Low-loss single mode amorphous silicon waveguides,” Electron. Lett. 41, 1377–1379 (2005).
[Crossref]

Hideki, M.

M. Hideki, “Formation of silicon-based thin films prepared by catalytic chemical vapor deposition (Cat-CVD) method,” Jpn. J. Appl. Phys. 37, 3175–3187 (1998).
[Crossref]

A. Takahiro, I. Makoto, M. Takeo, I. Koichi, O. Keisuke, and M. Hideki, “Propagation loss of amorphous silicon optical waveguides at the 0.8 μm-wavelength range,” in 7th IEEE International Conference on Group IV Photonics, Beijing, China (2010), pp. 269–271.

Hishikawa, Y.

Y. Hishikawa, K. Watanabe, S. Tsuda, M. Ohnishi, and Y. Kuwano, “Raman study on the silicon network of hydrogenated amorphous silicon films deposited by a glow discharge,” Jpn. J. Appl. Phys. 24, 385–389 (1985).
[Crossref]

Horn, O.

T. Lipka, O. Horn, J. Amthor, and J. Müller, “Low-loss multilayer compatible a-Si:H optical thin films for photonic applications,” JEOS RP 7, 12033 (2012).
[Crossref]

Houben, L.

L. Houben, M. Luysberg, P. Hapke, R. Carius, F. Finger, and H. Wagner, “Structural properties of microcrystalline silicon in the transition from highly crystalline to amorphous growth,” Philos. Mag. A 77, 1447–1460 (1998).
[Crossref]

Inoue, K.

K. Tonokura, K. Inoue, and M. Koshi, “Chemical kinetics for film growth in silicon HWCVD,” J. Non-Cryst. Solids 299–302, 25–29 (2002).
[Crossref]

S. Tange, K. Inoue, K. Tonokura, and M. Koshi, “Catalytic decomposition of SiH4 on a hot filament,” Thin Solid Films 395, 42–46 (2001).
[Crossref]

Iwaniczkoa, E.

R. S. Crandalla, X. Liub, and E. Iwaniczkoa, “Recent developments in hot wire amorphous silicon,” J. Non-Cryst. Solids 227–230, 23–28 (1998).
[Crossref]

Jalali, B.

G. C. Righini, G. Cocorullo, S. I. Najafi, F. G. Della Corte, R. De Rosa, B. Jalali, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon waveguides and interferometers for low-cost silicon optoelectronics,” Proc. SPIE 3278, 286–292 (1998).
[Crossref]

Johnson, E. G.

E. G. Johnson, M. J. Shaw, G. P. Nordin, J. Guo, G. A. Vawter, T. J. Suleski, S. Habermehl, and C. T. Sullivan, “Fabrication techniques for low-loss silicon nitride waveguides,” Proc. SPIE 5720, 1–11 (2005).
[Crossref]

Johnson, E. V.

E. V. Johnson, L. Kroely, and P. Roca i Cabarrocas, “Raman scattering analysis of SiH bond stretching modes in hydrogenated microcrystalline silicon for use in thin-film photovoltaics,” Solar Energy Mater. Sol. Cells 93, 1904–1906 (2009).
[Crossref]

Kamei, T.

Kang, J.

J. Kang, Y. Atsumi, M. Oda, T. Amemiya, N. Nishiyama, and S. Arai, “Low-loss amorphous silicon multilayer waveguides vertically stacked on silicon-on-insulator substrate,” Jpn. J. Appl. Phys. 50, 120208 (2011).
[Crossref]

Kaplan, D.

D. Kaplan, N. Sol, G. Velasco, and P. A. Thomas, “Hydrogenation of evaporated amorphous silicon films by plasma treatment,” Appl. Phys. Lett. 33, 440–442 (1978).
[Crossref]

Karabacak, T.

T. Karabacak, Y. P. Zhao, G. C. Wang, and T. M. Lu, “Growth-front roughening in amorphous silicon films by sputtering,” Phys. Rev. B 64, 085323 (2001).
[Crossref]

Katiyar, R. S.

S. Gupta, R. S. Katiyar, G. Morell, S. Z. Weisz, and I. Balberg, “The effect of hydrogen on the network disorder in hydrogenated amorphous silicon,” Appl. Phys. Lett. 75, 2803–2805 (1999).
[Crossref]

Keisuke, O.

A. Takahiro, I. Makoto, M. Takeo, I. Koichi, O. Keisuke, and M. Hideki, “Propagation loss of amorphous silicon optical waveguides at the 0.8 μm-wavelength range,” in 7th IEEE International Conference on Group IV Photonics, Beijing, China (2010), pp. 269–271.

Kessels, W. M. M.

A. H. M. Smets, W. M. M. Kessels, and M. C. M. van de Sanden, “Vacancies and voids in hydrogenated amorphous silicon,” Appl. Phys. Lett. 82, 1547–1549 (2003).
[Crossref]

Khorasaninejad, M.

Kidoh, H.

T. Shimizu, H. Kidoh, M. Matsumoto, A. Morimoto, and M. Kumeda, “Photo-created defects in a-Si:H as elucidated by ESR, LESR and CPM,” J. Non-Cryst. Solids 114, 630–632 (1989).
[Crossref]

Kimerling, L. C.

R. Sun, K. McComber, J. Cheng, D. K. Sparacin, M. Beals, J. Michel, and L. C. Kimerling, “Transparent amorphous silicon channel waveguides with silicon nitride intercladding layer,” Appl. Phys. Lett. 94, 141108 (2009).
[Crossref]

D. K. Sparacin, S. J. Spector, and L. C. Kimerling, “Silicon waveguide sidewall smoothing by wet chemical oxidation,” J. Lightwave Technol. 23, 2455–2461 (2005).
[Crossref]

Koichi, I.

A. Takahiro, I. Makoto, M. Takeo, I. Koichi, O. Keisuke, and M. Hideki, “Propagation loss of amorphous silicon optical waveguides at the 0.8 μm-wavelength range,” in 7th IEEE International Conference on Group IV Photonics, Beijing, China (2010), pp. 269–271.

Kondo, M.

A. H. M. Smets, T. Matsui, and M. Kondo, “High-rate deposition of microcrystalline silicon p-i-n solar cells in the high pressure depletion regime,” J. Appl. Phys. 104, 034508 (2008).
[Crossref]

Koshi, M.

K. Tonokura, K. Inoue, and M. Koshi, “Chemical kinetics for film growth in silicon HWCVD,” J. Non-Cryst. Solids 299–302, 25–29 (2002).
[Crossref]

S. Tange, K. Inoue, K. Tonokura, and M. Koshi, “Catalytic decomposition of SiH4 on a hot filament,” Thin Solid Films 395, 42–46 (2001).
[Crossref]

Krause, M.

A. Harke, M. Krause, and J. Mueller, “Low-loss single mode amorphous silicon waveguides,” Electron. Lett. 41, 1377–1379 (2005).
[Crossref]

Kroely, L.

E. V. Johnson, L. Kroely, and P. Roca i Cabarrocas, “Raman scattering analysis of SiH bond stretching modes in hydrogenated microcrystalline silicon for use in thin-film photovoltaics,” Solar Energy Mater. Sol. Cells 93, 1904–1906 (2009).
[Crossref]

Kumeda, M.

T. Shimizu, H. Kidoh, M. Matsumoto, A. Morimoto, and M. Kumeda, “Photo-created defects in a-Si:H as elucidated by ESR, LESR and CPM,” J. Non-Cryst. Solids 114, 630–632 (1989).
[Crossref]

Kuwano, Y.

Y. Hishikawa, K. Watanabe, S. Tsuda, M. Ohnishi, and Y. Kuwano, “Raman study on the silicon network of hydrogenated amorphous silicon films deposited by a glow discharge,” Jpn. J. Appl. Phys. 24, 385–389 (1985).
[Crossref]

Kwong, D. L.

Lipka, T.

T. Lipka, O. Horn, J. Amthor, and J. Müller, “Low-loss multilayer compatible a-Si:H optical thin films for photonic applications,” JEOS RP 7, 12033 (2012).
[Crossref]

Liub, X.

R. S. Crandalla, X. Liub, and E. Iwaniczkoa, “Recent developments in hot wire amorphous silicon,” J. Non-Cryst. Solids 227–230, 23–28 (1998).
[Crossref]

Lo, G. Q.

Lorentzen, J. D.

D. Han, J. D. Lorentzen, J. Weinberg-Wolf, L. E. McNeil, and Q. Wang, “Raman study of thin films of amorphous-to-microcrystalline silicon prepared by hot-wire chemical vapor deposition,” J. Appl. Phys. 94, 2930–2936 (2003).
[Crossref]

Lu, T. M.

T. Karabacak, Y. P. Zhao, G. C. Wang, and T. M. Lu, “Growth-front roughening in amorphous silicon films by sputtering,” Phys. Rev. B 64, 085323 (2001).
[Crossref]

Luysberg, M.

L. Houben, M. Luysberg, P. Hapke, R. Carius, F. Finger, and H. Wagner, “Structural properties of microcrystalline silicon in the transition from highly crystalline to amorphous growth,” Philos. Mag. A 77, 1447–1460 (1998).
[Crossref]

Macintyre, D. S.

M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44, 115–116 (2008).
[Crossref]

Mahan, A. H.

A. H. Mahan, J. Carapella, B. P. Nelson, R. S. Crandall, and I. Balberg, “Deposition of device quality, low H content amorphous silicon,” J. Appl. Phys. 69, 6728–6730 (1991).
[Crossref]

Makoto, I.

A. Takahiro, I. Makoto, M. Takeo, I. Koichi, O. Keisuke, and M. Hideki, “Propagation loss of amorphous silicon optical waveguides at the 0.8 μm-wavelength range,” in 7th IEEE International Conference on Group IV Photonics, Beijing, China (2010), pp. 269–271.

Manako, S.

Martin, M. D.

D. Ratnayake, M. D. Martin, U. R. Gowrishetty, D. A. Porter, T. A. Berfield, S. P. McNamara, and K. M. Walsh, “Engineering stress in thin films for the field of bistable MEMS,” J. Micromech. Microeng. 25, 125025 (2015).
[Crossref]

Matsui, T.

A. H. M. Smets, T. Matsui, and M. Kondo, “High-rate deposition of microcrystalline silicon p-i-n solar cells in the high pressure depletion regime,” J. Appl. Phys. 104, 034508 (2008).
[Crossref]

Matsumoto, M.

T. Shimizu, H. Kidoh, M. Matsumoto, A. Morimoto, and M. Kumeda, “Photo-created defects in a-Si:H as elucidated by ESR, LESR and CPM,” J. Non-Cryst. Solids 114, 630–632 (1989).
[Crossref]

Matsumura, H.

H. Matsumura, “Catalytic chemical vapor deposition (CTC-CVD) method producing high quality hydrogenated amorphous silicon,” Jpn. J. Appl. Phys. 25, L949–L951 (1986).
[Crossref]

McComber, K.

R. Sun, K. McComber, J. Cheng, D. K. Sparacin, M. Beals, J. Michel, and L. C. Kimerling, “Transparent amorphous silicon channel waveguides with silicon nitride intercladding layer,” Appl. Phys. Lett. 94, 141108 (2009).
[Crossref]

McNab, S. J.

McNamara, S. P.

D. Ratnayake, M. D. Martin, U. R. Gowrishetty, D. A. Porter, T. A. Berfield, S. P. McNamara, and K. M. Walsh, “Engineering stress in thin films for the field of bistable MEMS,” J. Micromech. Microeng. 25, 125025 (2015).
[Crossref]

McNeil, L. E.

D. Han, J. D. Lorentzen, J. Weinberg-Wolf, L. E. McNeil, and Q. Wang, “Raman study of thin films of amorphous-to-microcrystalline silicon prepared by hot-wire chemical vapor deposition,” J. Appl. Phys. 94, 2930–2936 (2003).
[Crossref]

Meddeb, H.

Y. Abdulraheem, I. Gordon, T. Bearda, H. Meddeb, and J. Poortmans, “Optical bandgap of ultra-thin amorphous silicon films deposited on crystalline silicon by PECVD,” AIP Adv. 4, 057122 (2014).
[Crossref]

Michel, J.

R. Sun, K. McComber, J. Cheng, D. K. Sparacin, M. Beals, J. Michel, and L. C. Kimerling, “Transparent amorphous silicon channel waveguides with silicon nitride intercladding layer,” Appl. Phys. Lett. 94, 141108 (2009).
[Crossref]

Mittemeijer, E. J.

Z. Wang, D. Flötotto, and E. J. Mittemeijer, “Stress originating from nanovoids in hydrogenated amorphous semiconductors,” J. Appl. Phys. 121, 095307 (2017).
[Crossref]

Morell, G.

S. Gupta, R. S. Katiyar, G. Morell, S. Z. Weisz, and I. Balberg, “The effect of hydrogen on the network disorder in hydrogenated amorphous silicon,” Appl. Phys. Lett. 75, 2803–2805 (1999).
[Crossref]

Mori, M.

Morimoto, A.

T. Shimizu, H. Kidoh, M. Matsumoto, A. Morimoto, and M. Kumeda, “Photo-created defects in a-Si:H as elucidated by ESR, LESR and CPM,” J. Non-Cryst. Solids 114, 630–632 (1989).
[Crossref]

Mueller, J.

A. Harke, M. Krause, and J. Mueller, “Low-loss single mode amorphous silicon waveguides,” Electron. Lett. 41, 1377–1379 (2005).
[Crossref]

Müller, J.

T. Lipka, O. Horn, J. Amthor, and J. Müller, “Low-loss multilayer compatible a-Si:H optical thin films for photonic applications,” JEOS RP 7, 12033 (2012).
[Crossref]

Najafi, S. I.

G. C. Righini, G. Cocorullo, S. I. Najafi, F. G. Della Corte, R. De Rosa, B. Jalali, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon waveguides and interferometers for low-cost silicon optoelectronics,” Proc. SPIE 3278, 286–292 (1998).
[Crossref]

Nelson, B. P.

A. H. Mahan, J. Carapella, B. P. Nelson, R. S. Crandall, and I. Balberg, “Deposition of device quality, low H content amorphous silicon,” J. Appl. Phys. 69, 6728–6730 (1991).
[Crossref]

Neyer, S. K. A.

S. K. A. Neyer, E. Rabe, and D. Cai, “Polymer waveguide technologies for optical interconnects,” in European Conference on Integrated Optics (ECIO), Copenhagen, Denmark (2007), paper ThD0.

Nishiyama, N.

J. Kang, Y. Atsumi, M. Oda, T. Amemiya, N. Nishiyama, and S. Arai, “Low-loss amorphous silicon multilayer waveguides vertically stacked on silicon-on-insulator substrate,” Jpn. J. Appl. Phys. 50, 120208 (2011).
[Crossref]

Nordin, G. P.

E. G. Johnson, M. J. Shaw, G. P. Nordin, J. Guo, G. A. Vawter, T. J. Suleski, S. Habermehl, and C. T. Sullivan, “Fabrication techniques for low-loss silicon nitride waveguides,” Proc. SPIE 5720, 1–11 (2005).
[Crossref]

Oda, M.

J. Kang, Y. Atsumi, M. Oda, T. Amemiya, N. Nishiyama, and S. Arai, “Low-loss amorphous silicon multilayer waveguides vertically stacked on silicon-on-insulator substrate,” Jpn. J. Appl. Phys. 50, 120208 (2011).
[Crossref]

Ohnishi, M.

Y. Hishikawa, K. Watanabe, S. Tsuda, M. Ohnishi, and Y. Kuwano, “Raman study on the silicon network of hydrogenated amorphous silicon films deposited by a glow discharge,” Jpn. J. Appl. Phys. 24, 385–389 (1985).
[Crossref]

Omoda, E.

Pearce, J. M.

A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: applications in thin film photovoltaics,” J. Appl. Phys. 92, 2424–2436 (2002).
[Crossref]

Pollard, R.

Y.-F. Wang and R. Pollard, “An approach for modeling surface reaction kinetics in chemical vapor deposition processes,” J. Electrochem. Soc. 142, 1712–1725 (1995).
[Crossref]

Poortmans, J.

Y. Abdulraheem, I. Gordon, T. Bearda, H. Meddeb, and J. Poortmans, “Optical bandgap of ultra-thin amorphous silicon films deposited on crystalline silicon by PECVD,” AIP Adv. 4, 057122 (2014).
[Crossref]

Porter, D. A.

D. Ratnayake, M. D. Martin, U. R. Gowrishetty, D. A. Porter, T. A. Berfield, S. P. McNamara, and K. M. Walsh, “Engineering stress in thin films for the field of bistable MEMS,” J. Micromech. Microeng. 25, 125025 (2015).
[Crossref]

Rabe, E.

S. K. A. Neyer, E. Rabe, and D. Cai, “Polymer waveguide technologies for optical interconnects,” in European Conference on Integrated Optics (ECIO), Copenhagen, Denmark (2007), paper ThD0.

Ratnayake, D.

D. Ratnayake, M. D. Martin, U. R. Gowrishetty, D. A. Porter, T. A. Berfield, S. P. McNamara, and K. M. Walsh, “Engineering stress in thin films for the field of bistable MEMS,” J. Micromech. Microeng. 25, 125025 (2015).
[Crossref]

Rendina, I.

G. C. Righini, G. Cocorullo, S. I. Najafi, F. G. Della Corte, R. De Rosa, B. Jalali, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon waveguides and interferometers for low-cost silicon optoelectronics,” Proc. SPIE 3278, 286–292 (1998).
[Crossref]

Righini, G. C.

G. C. Righini, G. Cocorullo, S. I. Najafi, F. G. Della Corte, R. De Rosa, B. Jalali, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon waveguides and interferometers for low-cost silicon optoelectronics,” Proc. SPIE 3278, 286–292 (1998).
[Crossref]

Robertson, J.

J. Robertson, “Deposition mechanism of hydrogenated amorphous silicon,” J. Appl. Phys. 87, 2608–2617 (2000).
[Crossref]

Roca i Cabarrocas, P.

E. V. Johnson, L. Kroely, and P. Roca i Cabarrocas, “Raman scattering analysis of SiH bond stretching modes in hydrogenated microcrystalline silicon for use in thin-film photovoltaics,” Solar Energy Mater. Sol. Cells 93, 1904–1906 (2009).
[Crossref]

Rubino, A.

G. C. Righini, G. Cocorullo, S. I. Najafi, F. G. Della Corte, R. De Rosa, B. Jalali, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon waveguides and interferometers for low-cost silicon optoelectronics,” Proc. SPIE 3278, 286–292 (1998).
[Crossref]

Sakakibara, Y.

Schaekers, M.

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282, 1767–1770 (2009).
[Crossref]

Schröder, B.

D. Stryahilev, F. Diehl, and B. Schröder, “The splitting of absorption bands in IR spectra of anisotropic SiH monolayers covering the internal surfaces in μc-Si:H,” J. Non-Cryst. Solids 266–269, 166–170 (2000).
[Crossref]

Schropp, R. E. I.

R. E. I. Schropp, “Hot wire chemical vapor deposition: recent progress, present state of the art and competitive opportunities,” ECS Trans. 25, 3–14 (2009).
[Crossref]

K. F. Feenstra, R. E. I. Schropp, and W. F. Van der Weg, “Deposition of amorphous silicon films by hot-wire chemical vapor deposition,” J. Appl. Phys. 85, 6843–6852 (1999).
[Crossref]

Selvaraja, S. K.

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282, 1767–1770 (2009).
[Crossref]

Shaw, M. J.

E. G. Johnson, M. J. Shaw, G. P. Nordin, J. Guo, G. A. Vawter, T. J. Suleski, S. Habermehl, and C. T. Sullivan, “Fabrication techniques for low-loss silicon nitride waveguides,” Proc. SPIE 5720, 1–11 (2005).
[Crossref]

Shimizu, T.

T. Shimizu, H. Kidoh, M. Matsumoto, A. Morimoto, and M. Kumeda, “Photo-created defects in a-Si:H as elucidated by ESR, LESR and CPM,” J. Non-Cryst. Solids 114, 630–632 (1989).
[Crossref]

Singh Saini, S.

Sleeckx, E.

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282, 1767–1770 (2009).
[Crossref]

Smets, A. H. M.

A. H. M. Smets, T. Matsui, and M. Kondo, “High-rate deposition of microcrystalline silicon p-i-n solar cells in the high pressure depletion regime,” J. Appl. Phys. 104, 034508 (2008).
[Crossref]

A. H. M. Smets, W. M. M. Kessels, and M. C. M. van de Sanden, “Vacancies and voids in hydrogenated amorphous silicon,” Appl. Phys. Lett. 82, 1547–1549 (2003).
[Crossref]

Sol, N.

D. Kaplan, N. Sol, G. Velasco, and P. A. Thomas, “Hydrogenation of evaporated amorphous silicon films by plasma treatment,” Appl. Phys. Lett. 33, 440–442 (1978).
[Crossref]

Sorel, M.

M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44, 115–116 (2008).
[Crossref]

Sparacin, D. K.

R. Sun, K. McComber, J. Cheng, D. K. Sparacin, M. Beals, J. Michel, and L. C. Kimerling, “Transparent amorphous silicon channel waveguides with silicon nitride intercladding layer,” Appl. Phys. Lett. 94, 141108 (2009).
[Crossref]

D. K. Sparacin, S. J. Spector, and L. C. Kimerling, “Silicon waveguide sidewall smoothing by wet chemical oxidation,” J. Lightwave Technol. 23, 2455–2461 (2005).
[Crossref]

Spector, S. J.

Stryahilev, D.

D. Stryahilev, F. Diehl, and B. Schröder, “The splitting of absorption bands in IR spectra of anisotropic SiH monolayers covering the internal surfaces in μc-Si:H,” J. Non-Cryst. Solids 266–269, 166–170 (2000).
[Crossref]

Suleski, T. J.

E. G. Johnson, M. J. Shaw, G. P. Nordin, J. Guo, G. A. Vawter, T. J. Suleski, S. Habermehl, and C. T. Sullivan, “Fabrication techniques for low-loss silicon nitride waveguides,” Proc. SPIE 5720, 1–11 (2005).
[Crossref]

Sullivan, C. T.

E. G. Johnson, M. J. Shaw, G. P. Nordin, J. Guo, G. A. Vawter, T. J. Suleski, S. Habermehl, and C. T. Sullivan, “Fabrication techniques for low-loss silicon nitride waveguides,” Proc. SPIE 5720, 1–11 (2005).
[Crossref]

Sun, R.

R. Sun, K. McComber, J. Cheng, D. K. Sparacin, M. Beals, J. Michel, and L. C. Kimerling, “Transparent amorphous silicon channel waveguides with silicon nitride intercladding layer,” Appl. Phys. Lett. 94, 141108 (2009).
[Crossref]

Taebi, S.

Takahiro, A.

A. Takahiro, I. Makoto, M. Takeo, I. Koichi, O. Keisuke, and M. Hideki, “Propagation loss of amorphous silicon optical waveguides at the 0.8 μm-wavelength range,” in 7th IEEE International Conference on Group IV Photonics, Beijing, China (2010), pp. 269–271.

Takayama, K.

Takei, R.

Takeo, M.

A. Takahiro, I. Makoto, M. Takeo, I. Koichi, O. Keisuke, and M. Hideki, “Propagation loss of amorphous silicon optical waveguides at the 0.8 μm-wavelength range,” in 7th IEEE International Conference on Group IV Photonics, Beijing, China (2010), pp. 269–271.

Tange, S.

S. Tange, K. Inoue, K. Tonokura, and M. Koshi, “Catalytic decomposition of SiH4 on a hot filament,” Thin Solid Films 395, 42–46 (2001).
[Crossref]

Terzini, E.

G. C. Righini, G. Cocorullo, S. I. Najafi, F. G. Della Corte, R. De Rosa, B. Jalali, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon waveguides and interferometers for low-cost silicon optoelectronics,” Proc. SPIE 3278, 286–292 (1998).
[Crossref]

Thomas, P. A.

D. Kaplan, N. Sol, G. Velasco, and P. A. Thomas, “Hydrogenation of evaporated amorphous silicon films by plasma treatment,” Appl. Phys. Lett. 33, 440–442 (1978).
[Crossref]

Thoms, S.

M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44, 115–116 (2008).
[Crossref]

Thorpe, M. F.

D. Beeman, R. Tsu, and M. F. Thorpe, “Structural information from the Raman spectrum of amorphous silicon,” Phys. Rev. B 32, 874–878 (1985).
[Crossref]

Thourhout, D. V.

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282, 1767–1770 (2009).
[Crossref]

Tonokura, K.

K. Tonokura, K. Inoue, and M. Koshi, “Chemical kinetics for film growth in silicon HWCVD,” J. Non-Cryst. Solids 299–302, 25–29 (2002).
[Crossref]

S. Tange, K. Inoue, K. Tonokura, and M. Koshi, “Catalytic decomposition of SiH4 on a hot filament,” Thin Solid Films 395, 42–46 (2001).
[Crossref]

Tsu, R.

D. Beeman, R. Tsu, and M. F. Thorpe, “Structural information from the Raman spectrum of amorphous silicon,” Phys. Rev. B 32, 874–878 (1985).
[Crossref]

Tsuda, S.

Y. Hishikawa, K. Watanabe, S. Tsuda, M. Ohnishi, and Y. Kuwano, “Raman study on the silicon network of hydrogenated amorphous silicon films deposited by a glow discharge,” Jpn. J. Appl. Phys. 24, 385–389 (1985).
[Crossref]

van de Sanden, M. C. M.

A. H. M. Smets, W. M. M. Kessels, and M. C. M. van de Sanden, “Vacancies and voids in hydrogenated amorphous silicon,” Appl. Phys. Lett. 82, 1547–1549 (2003).
[Crossref]

Van der Weg, W. F.

K. F. Feenstra, R. E. I. Schropp, and W. F. Van der Weg, “Deposition of amorphous silicon films by hot-wire chemical vapor deposition,” J. Appl. Phys. 85, 6843–6852 (1999).
[Crossref]

Vawter, G. A.

E. G. Johnson, M. J. Shaw, G. P. Nordin, J. Guo, G. A. Vawter, T. J. Suleski, S. Habermehl, and C. T. Sullivan, “Fabrication techniques for low-loss silicon nitride waveguides,” Proc. SPIE 5720, 1–11 (2005).
[Crossref]

Velasco, G.

D. Kaplan, N. Sol, G. Velasco, and P. A. Thomas, “Hydrogenation of evaporated amorphous silicon films by plasma treatment,” Appl. Phys. Lett. 33, 440–442 (1978).
[Crossref]

Vlasov, Y. A.

Wagner, H.

L. Houben, M. Luysberg, P. Hapke, R. Carius, F. Finger, and H. Wagner, “Structural properties of microcrystalline silicon in the transition from highly crystalline to amorphous growth,” Philos. Mag. A 77, 1447–1460 (1998).
[Crossref]

Walsh, K. M.

D. Ratnayake, M. D. Martin, U. R. Gowrishetty, D. A. Porter, T. A. Berfield, S. P. McNamara, and K. M. Walsh, “Engineering stress in thin films for the field of bistable MEMS,” J. Micromech. Microeng. 25, 125025 (2015).
[Crossref]

Wang, G. C.

T. Karabacak, Y. P. Zhao, G. C. Wang, and T. M. Lu, “Growth-front roughening in amorphous silicon films by sputtering,” Phys. Rev. B 64, 085323 (2001).
[Crossref]

Wang, Q.

D. Han, J. D. Lorentzen, J. Weinberg-Wolf, L. E. McNeil, and Q. Wang, “Raman study of thin films of amorphous-to-microcrystalline silicon prepared by hot-wire chemical vapor deposition,” J. Appl. Phys. 94, 2930–2936 (2003).
[Crossref]

Wang, Y.-F.

Y.-F. Wang and R. Pollard, “An approach for modeling surface reaction kinetics in chemical vapor deposition processes,” J. Electrochem. Soc. 142, 1712–1725 (1995).
[Crossref]

Wang, Z.

Z. Wang, D. Flötotto, and E. J. Mittemeijer, “Stress originating from nanovoids in hydrogenated amorphous semiconductors,” J. Appl. Phys. 121, 095307 (2017).
[Crossref]

Watanabe, K.

Y. Hishikawa, K. Watanabe, S. Tsuda, M. Ohnishi, and Y. Kuwano, “Raman study on the silicon network of hydrogenated amorphous silicon films deposited by a glow discharge,” Jpn. J. Appl. Phys. 24, 385–389 (1985).
[Crossref]

Weinberg-Wolf, J.

D. Han, J. D. Lorentzen, J. Weinberg-Wolf, L. E. McNeil, and Q. Wang, “Raman study of thin films of amorphous-to-microcrystalline silicon prepared by hot-wire chemical vapor deposition,” J. Appl. Phys. 94, 2930–2936 (2003).
[Crossref]

Weisz, S. Z.

S. Gupta, R. S. Katiyar, G. Morell, S. Z. Weisz, and I. Balberg, “The effect of hydrogen on the network disorder in hydrogenated amorphous silicon,” Appl. Phys. Lett. 75, 2803–2805 (1999).
[Crossref]

Wong, C. K.

C. K. Wong, H. Wong, M. Chan, Y. T. Chow, and H. P. Chan, “Silicon oxynitride integrated waveguide for on-chip optical interconnects applications,” Microelectron. Reliab. 48, 212–218 (2008).
[Crossref]

Wong, H.

C. K. Wong, H. Wong, M. Chan, Y. T. Chow, and H. P. Chan, “Silicon oxynitride integrated waveguide for on-chip optical interconnects applications,” Microelectron. Reliab. 48, 212–218 (2008).
[Crossref]

Wronski, C. R.

A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: applications in thin film photovoltaics,” J. Appl. Phys. 92, 2424–2436 (2002).
[Crossref]

Yeniay, A.

Zhao, Y. P.

T. Karabacak, Y. P. Zhao, G. C. Wang, and T. M. Lu, “Growth-front roughening in amorphous silicon films by sputtering,” Phys. Rev. B 64, 085323 (2001).
[Crossref]

Zhu, S.

AIP Adv. (1)

Y. Abdulraheem, I. Gordon, T. Bearda, H. Meddeb, and J. Poortmans, “Optical bandgap of ultra-thin amorphous silicon films deposited on crystalline silicon by PECVD,” AIP Adv. 4, 057122 (2014).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

D. Kaplan, N. Sol, G. Velasco, and P. A. Thomas, “Hydrogenation of evaporated amorphous silicon films by plasma treatment,” Appl. Phys. Lett. 33, 440–442 (1978).
[Crossref]

R. Sun, K. McComber, J. Cheng, D. K. Sparacin, M. Beals, J. Michel, and L. C. Kimerling, “Transparent amorphous silicon channel waveguides with silicon nitride intercladding layer,” Appl. Phys. Lett. 94, 141108 (2009).
[Crossref]

S. Gupta, R. S. Katiyar, G. Morell, S. Z. Weisz, and I. Balberg, “The effect of hydrogen on the network disorder in hydrogenated amorphous silicon,” Appl. Phys. Lett. 75, 2803–2805 (1999).
[Crossref]

A. H. M. Smets, W. M. M. Kessels, and M. C. M. van de Sanden, “Vacancies and voids in hydrogenated amorphous silicon,” Appl. Phys. Lett. 82, 1547–1549 (2003).
[Crossref]

ECS Trans. (1)

R. E. I. Schropp, “Hot wire chemical vapor deposition: recent progress, present state of the art and competitive opportunities,” ECS Trans. 25, 3–14 (2009).
[Crossref]

Electron. Lett. (2)

M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44, 115–116 (2008).
[Crossref]

A. Harke, M. Krause, and J. Mueller, “Low-loss single mode amorphous silicon waveguides,” Electron. Lett. 41, 1377–1379 (2005).
[Crossref]

J. Appl. Phys. (7)

J. Robertson, “Deposition mechanism of hydrogenated amorphous silicon,” J. Appl. Phys. 87, 2608–2617 (2000).
[Crossref]

K. F. Feenstra, R. E. I. Schropp, and W. F. Van der Weg, “Deposition of amorphous silicon films by hot-wire chemical vapor deposition,” J. Appl. Phys. 85, 6843–6852 (1999).
[Crossref]

A. H. Mahan, J. Carapella, B. P. Nelson, R. S. Crandall, and I. Balberg, “Deposition of device quality, low H content amorphous silicon,” J. Appl. Phys. 69, 6728–6730 (1991).
[Crossref]

D. Han, J. D. Lorentzen, J. Weinberg-Wolf, L. E. McNeil, and Q. Wang, “Raman study of thin films of amorphous-to-microcrystalline silicon prepared by hot-wire chemical vapor deposition,” J. Appl. Phys. 94, 2930–2936 (2003).
[Crossref]

Z. Wang, D. Flötotto, and E. J. Mittemeijer, “Stress originating from nanovoids in hydrogenated amorphous semiconductors,” J. Appl. Phys. 121, 095307 (2017).
[Crossref]

A. H. M. Smets, T. Matsui, and M. Kondo, “High-rate deposition of microcrystalline silicon p-i-n solar cells in the high pressure depletion regime,” J. Appl. Phys. 104, 034508 (2008).
[Crossref]

A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: applications in thin film photovoltaics,” J. Appl. Phys. 92, 2424–2436 (2002).
[Crossref]

J. Electrochem. Soc. (1)

Y.-F. Wang and R. Pollard, “An approach for modeling surface reaction kinetics in chemical vapor deposition processes,” J. Electrochem. Soc. 142, 1712–1725 (1995).
[Crossref]

J. Lightwave Technol. (2)

J. Micromech. Microeng. (1)

D. Ratnayake, M. D. Martin, U. R. Gowrishetty, D. A. Porter, T. A. Berfield, S. P. McNamara, and K. M. Walsh, “Engineering stress in thin films for the field of bistable MEMS,” J. Micromech. Microeng. 25, 125025 (2015).
[Crossref]

J. Non-Cryst. Solids (4)

D. Stryahilev, F. Diehl, and B. Schröder, “The splitting of absorption bands in IR spectra of anisotropic SiH monolayers covering the internal surfaces in μc-Si:H,” J. Non-Cryst. Solids 266–269, 166–170 (2000).
[Crossref]

R. S. Crandalla, X. Liub, and E. Iwaniczkoa, “Recent developments in hot wire amorphous silicon,” J. Non-Cryst. Solids 227–230, 23–28 (1998).
[Crossref]

T. Shimizu, H. Kidoh, M. Matsumoto, A. Morimoto, and M. Kumeda, “Photo-created defects in a-Si:H as elucidated by ESR, LESR and CPM,” J. Non-Cryst. Solids 114, 630–632 (1989).
[Crossref]

K. Tonokura, K. Inoue, and M. Koshi, “Chemical kinetics for film growth in silicon HWCVD,” J. Non-Cryst. Solids 299–302, 25–29 (2002).
[Crossref]

JEOS RP (1)

T. Lipka, O. Horn, J. Amthor, and J. Müller, “Low-loss multilayer compatible a-Si:H optical thin films for photonic applications,” JEOS RP 7, 12033 (2012).
[Crossref]

Jpn. J. Appl. Phys. (4)

H. Matsumura, “Catalytic chemical vapor deposition (CTC-CVD) method producing high quality hydrogenated amorphous silicon,” Jpn. J. Appl. Phys. 25, L949–L951 (1986).
[Crossref]

Y. Hishikawa, K. Watanabe, S. Tsuda, M. Ohnishi, and Y. Kuwano, “Raman study on the silicon network of hydrogenated amorphous silicon films deposited by a glow discharge,” Jpn. J. Appl. Phys. 24, 385–389 (1985).
[Crossref]

J. Kang, Y. Atsumi, M. Oda, T. Amemiya, N. Nishiyama, and S. Arai, “Low-loss amorphous silicon multilayer waveguides vertically stacked on silicon-on-insulator substrate,” Jpn. J. Appl. Phys. 50, 120208 (2011).
[Crossref]

M. Hideki, “Formation of silicon-based thin films prepared by catalytic chemical vapor deposition (Cat-CVD) method,” Jpn. J. Appl. Phys. 37, 3175–3187 (1998).
[Crossref]

Microelectron. Reliab. (1)

C. K. Wong, H. Wong, M. Chan, Y. T. Chow, and H. P. Chan, “Silicon oxynitride integrated waveguide for on-chip optical interconnects applications,” Microelectron. Reliab. 48, 212–218 (2008).
[Crossref]

Opt. Commun. (1)

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282, 1767–1770 (2009).
[Crossref]

Opt. Express (3)

Philos. Mag. A (1)

L. Houben, M. Luysberg, P. Hapke, R. Carius, F. Finger, and H. Wagner, “Structural properties of microcrystalline silicon in the transition from highly crystalline to amorphous growth,” Philos. Mag. A 77, 1447–1460 (1998).
[Crossref]

Phys. Rev. B (3)

T. Karabacak, Y. P. Zhao, G. C. Wang, and T. M. Lu, “Growth-front roughening in amorphous silicon films by sputtering,” Phys. Rev. B 64, 085323 (2001).
[Crossref]

M. H. Brodsky, M. Cardona, and J. J. Cuomo, “Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering,” Phys. Rev. B 16, 3556–3571 (1977).
[Crossref]

D. Beeman, R. Tsu, and M. F. Thorpe, “Structural information from the Raman spectrum of amorphous silicon,” Phys. Rev. B 32, 874–878 (1985).
[Crossref]

Proc. SPIE (2)

E. G. Johnson, M. J. Shaw, G. P. Nordin, J. Guo, G. A. Vawter, T. J. Suleski, S. Habermehl, and C. T. Sullivan, “Fabrication techniques for low-loss silicon nitride waveguides,” Proc. SPIE 5720, 1–11 (2005).
[Crossref]

G. C. Righini, G. Cocorullo, S. I. Najafi, F. G. Della Corte, R. De Rosa, B. Jalali, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon waveguides and interferometers for low-cost silicon optoelectronics,” Proc. SPIE 3278, 286–292 (1998).
[Crossref]

Solar Energy Mater. Sol. Cells (1)

E. V. Johnson, L. Kroely, and P. Roca i Cabarrocas, “Raman scattering analysis of SiH bond stretching modes in hydrogenated microcrystalline silicon for use in thin-film photovoltaics,” Solar Energy Mater. Sol. Cells 93, 1904–1906 (2009).
[Crossref]

Thin Solid Films (1)

S. Tange, K. Inoue, K. Tonokura, and M. Koshi, “Catalytic decomposition of SiH4 on a hot filament,” Thin Solid Films 395, 42–46 (2001).
[Crossref]

Other (4)

A. Takahiro, I. Makoto, M. Takeo, I. Koichi, O. Keisuke, and M. Hideki, “Propagation loss of amorphous silicon optical waveguides at the 0.8 μm-wavelength range,” in 7th IEEE International Conference on Group IV Photonics, Beijing, China (2010), pp. 269–271.

R. Carius, “Structural and optical properties of microcrystalline silicon for solar cell applications,” in Photovoltaic and Photoactive Materials: Properties, Technology and Applications, J. M. Marshall and D. Dimova-Malinovska, eds. (Springer Netherlands, 2002), p. 353.

S. K. A. Neyer, E. Rabe, and D. Cai, “Polymer waveguide technologies for optical interconnects,” in European Conference on Integrated Optics (ECIO), Copenhagen, Denmark (2007), paper ThD0.

G. Franco, “Optoelectronic properties of amorphous silicon, the role of hydrogen: from experiment to modeling,” in Optoeletronics: Materials and Techniques, P. Padmanabhan, ed. (InTech, 2011), p. 496.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Extensive Raman characterization on the structural disorder of an a-Si:H network as a function of Tsub. (a) The Raman spectrum of an a-Si:H network deposited at 230°C of Tsub shows four Raman active modes and the structural information available from those, such as peak position, can indicate chemical species and symmetry; the ω shift can specify the stress and strain; and the FWHM can express the structural disorder and angular distortion of the material network. (b) TO peak position as a function of Tsub, where the dotted line is a guideline for standard TO peak frequency, ωTO of a-Si:H at 480  cm1. Insets are the deconvolution of the TO peak into amorphous and micro-voids in the topology of a-Si:H deposited at 190°C and 320°C, where the solid line represents the TO peak of the Si-Si stretching mode of the deposited film and the dotted lines represent the Gaussian deconvolution of the TO peak. Red dotted lines suggest amorphous and green dotted lines suggest micro-voids. (c) TO peak width ΓTO as a function of Tsub, where dotted lines are guidelines for standard ΓTO at the fully amorphous condition and device-quality a-Si:H. (d) Dependence of the ratio of ITA to ITO on the hydrogen concentration in the diffusion control region. Schematic blue dotted arrows represent how bending modes vary with the hydrogen content in the H-role region and how the stretching mode changes with Tsub in the T-role region.
Fig. 2.
Fig. 2. (a) An Arrhenius plot shows the deposition rate versus the temperature (square symbol) and shows the propagation loss (dB/cm) corresponding to the deposited temperature (diamond symbol). (b) Cross-sectional SEM images of the a-Si:H films deposited at the different substrate temperatures. The red boxes represent the a-Si:H layer surrounded by silicon dioxide. Inset: the field intensity profile of the propagation mode (at λ=1.55  μm) obtained from the 2 μm width waveguide.
Fig. 3.
Fig. 3. (a) Measured propagation loss, which is normalized to the coupling loss for different widths. (b) Measured propagation loss (black dots) (dB/cm) of the fully etched ridge waveguide as a function of waveguide width at excitation wavelength 1550 nm. The dotted line is for the eye guide. The squares are the analytically calculated propagation losses. Inset is the cross-sectional image of the measured waveguide, W=350  nm, H=400  nm.
Fig. 4.
Fig. 4. (a) AFM images of the surface roughness of a-Si:H deposited at 230°C and 320°C. (b) 2D electric field profiles across the different waveguide widths, where all experimental defects [extinction coefficient, sidewall, surface roughness, air void (as shown in inset of Fig. 3(b)] are counted.

Tables (2)

Tables Icon

Table 1. Summary of the Performance of a-Si Waveguides and Techniques Used in Silicon Photonics Applications

Tables Icon

Table 2. Raman Spectral Information of an a-Si:H Network for Different Substrate Temperatures

Metrics