Abstract

Because they possess excellent visible light absorption properties, lead-free colloidal copper-based chalcogenide quantum dots (QDs) have emerged in photoelectronic fields. By means of localized surface plasmonic resonance (LSPR), the absorption properties of QDs can be enhanced. In this paper, we fabricate a lead-free CuInSe2 QD field effect phototransistor (FEpT) by utilizing the LSPR enhancement of Au nanoparticles (NPs). The plasmonic FEpT demonstrates responsivity up to 2.7  μA·W1 and a specific detectivity of 7×103 Jones at zero bias under illumination by a 532 nm laser, values that are enhanced by approximately 200% more than devices without Au NPs. Particularly, the FEpT exhibits a multi-wavelength response, which is photoresponsive to 405, 532, and 808 nm irradiations, and presents stability and reproducibility in the progress of ON–OFF cycles. Furthermore, the enhancement induced by Au NP LSPR can be interpreted by finite-difference time domain simulations. The low-cost solution-based process and excellent device performance strongly underscore lead-free CuInSe2 QDs as a promising material for self-powered photoelectronic applications, which can be further enhanced by Au NP LSPR.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Ag nanoparticles modified large area monolayer MoS2 phototransistors with high responsivity

Wenkui Jing, Nan Ding, Luying Li, Fan Jiang, Xing Xiong, Nishuang Liu, Tianyou Zhai, and Yihua Gao
Opt. Express 25(13) 14565-14574 (2017)

Surface plasmon-enhanced quantum dot light-emitting diodes by incorporating gold nanoparticles

Jiangyong Pan, Jing Chen, Dewei Zhao, Qianqian Huang, Qasim Khan, Xiang Liu, Zhi Tao, Zichen Zhang, and Wei Lei
Opt. Express 24(2) A33-A43 (2016)

High performance infrared photodetectors up to 2.8 µm wavelength based on lead selenide colloidal quantum dots

M. Thambidurai, Youngjin Jang, Arthur Shapiro, Gao Yuan, Hu Xiaonan, Yu Xuechao, Qi Jie Wang, Efrat Lifshitz, Hilmi Volkan Demir, and Cuong Dang
Opt. Mater. Express 7(7) 2326-2335 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. Feng, M. Graf, K. Liu, D. Ovchinnikov, D. Dumcenco, M. Heiranian, V. Nandigana, N. R. Aluru, A. Kis, and A. Radenovic, “Single-layer MoS2 nanopores as nanopower generators,” Nature 536, 197–200 (2016).
    [Crossref]
  2. S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang, and Z. L. Wang, “Self-powered nanowire devices,” Nat. Nanotechnol. 5, 366–373 (2010).
    [Crossref]
  3. F. Zhang, Y. Zang, D. Huang, C. A. Di, and D. Zhu, “Flexible and self-powered temperature-pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials,” Nat. Commun. 6, 8356 (2015).
    [Crossref]
  4. Z. Wang, R. Yu, C. Pan, Z. Li, J. Yang, F. Yi, and Z. L. Wang, “Light-induced pyroelectric effect as an effective approach for ultrafast ultraviolet nanosensing,” Nat. Commun. 6, 8401 (2015).
    [Crossref]
  5. S. F. Leung, K. T. Ho, P. K. Kung, V. K. S. Hsiao, H. N. Alshareef, Z. L. Wang, and J. H. He, “A self-powered and flexible organometallic halide perovskite photodetector with very high detectivity,” Adv. Mater. 30, 1704611 (2018).
    [Crossref]
  6. C. R. Kagan, E. Lifshitz, E. H. Sargent, and D. V. Talapin, “Building devices from colloidal quantum dots,” Science 353, aac5523 (2016).
    [Crossref]
  7. X. Lan, O. Voznyy, A. Kiani, F. Pelayo, G. de Arquer, A. S. Abbas, G.-H. Kim, M. Liu, Z. Yang, G. Walters, J. Xu, M. Yuan, Z. Ning, F. Fan, P. Kanjanaboos, I. Kramer, D. Zhitomirsky, P. Lee, A. Perelgut, S. Hoogland, and E. H. Sargent, “Passivation using molecular halides increases quantum dot solar cell performance,” Adv. Mater. 28, 299–304 (2016).
    [Crossref]
  8. Y. Kim, K. Bicanic, H. Tan, O. Ouellette, B. R. Sutherland, F. P. Garcia de Arquer, J. W. Jo, M. Liu, B. Sun, M. Liu, S. Hoogland, and E. H. Sargent, “Nanoimprint-transfer-patterned solids enhance light absorption in colloidal quantum dot solar cells,” Nano Lett. 17, 2349–2353 (2017).
    [Crossref]
  9. A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. J. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol. 7, 577–582 (2012).
    [Crossref]
  10. F. Fan, O. Voznyy, R. P. Sabatini, K. T. Bicanic, M. M. Adachi, J. R. McBride, K. R. Reid, Y. S. Park, X. Li, A. Jain, R. Quintero-Bermudez, M. Saravanapavanantham, M. Liu, M. Korkusinski, P. Hawrylak, V. I. Klimov, S. J. Rosenthal, S. Hoogland, and E. H. Sargent, “Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy,” Nature 544, 75–79 (2017).
    [Crossref]
  11. Z. Yang, O. Voznyy, G. Walters, J. Z. Fan, M. Liu, S. Kinge, S. Hoogland, and E. H. Sargent, “Quantum dots in two-dimensional perovskite matrices for efficient near-infrared light emission,” ACS Photon. 4, 830–836 (2017).
    [Crossref]
  12. T. Rauch, M. Boberl, S. F. Tedde, J. Furst, M. V. Kovalenko, G. N. Hesser, U. Lemmer, W. Heiss, and O. Hayden, “Near-infrared imaging with quantum-dot-sensitized organic photodiodes,” Nat. Photonics 3, 332–336 (2009).
    [Crossref]
  13. D. Y. Zhang, L. Gan, Y. Cao, Q. Wang, L. M. Qi, and X. F. Guo, “Understanding charge transfer at PbS-decorated graphene surfaces toward a tunable photosensor,” Adv. Mater. 24, 2715–2720 (2012).
    [Crossref]
  14. E. Lhuillier, M. Scarafagio, P. Hease, B. Nadal, H. Aubin, X. Z. Xu, N. Lequeux, G. Patriarche, S. Ithurria, and B. Dubertret, “Infrared photodetection based on colloidal quantum-dot films with high mobility and optical absorption up to THz,” Nano Lett. 16, 1282–1286 (2016).
    [Crossref]
  15. S. A. McDonald, G. Konstantatos, S. G. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4, 138–142 (2005).
    [Crossref]
  16. G. Konstantatos and E. H. Sargent, “Nanostructured materials for photon detection,” Nat. Nanotechnol. 5, 391–400 (2010).
    [Crossref]
  17. M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, P. F. Barbara, and B. A. Korgel, “Synthesis of CuInS2, CuInSe2, and Cu(InxGa1-x)Se2 (CIGS) nanocrystal ‘inks’ for printable photovoltaics,” J. Am. Chem. Soc. 130, 16770–16777 (2008).
    [Crossref]
  18. V. A. Akhavan, B. W. Goodfellow, M. G. Panthani, D. K. Reid, D. J. Hellebusch, T. Adachi, and B. A. Korgel, “Spray-deposited CuInSe2 nanocrystal photovoltaics,” Energy Environ. Sci. 3, 1600–1606 (2010).
    [Crossref]
  19. V. A. Akhavan, M. G. Panthani, B. W. Goodfellow, D. K. Reid, and B. A. Korgel, “Thickness-limited performance of CuInSe2 nanocrystal photovoltaic devices,” Opt. Express 18, A411–A420 (2010).
    [Crossref]
  20. C. J. Stolle, M. G. Panthani, T. B. Harvey, V. A. Akhavan, and B. A. Korgel, “Comparison of the photovoltaic response of oleylamine and inorganic ligand-capped CuInSe2 nanocrystals,” ACS Appl. Mater. Interface 4, 2757–2761 (2012).
    [Crossref]
  21. M. G. Panthani, C. J. Stolle, D. K. Reid, D. J. Rhee, T. B. Harvey, V. A. Akhavan, Y. Yu, and B. A. Korgel, “CuInSe2 quantum dot solar cells with high open-circuit voltage,” J. Phys. Chem. Lett. 4, 2030–2034 (2013).
    [Crossref]
  22. H. S. Choi, Y. Kim, J. C. Park, M. H. Oh, D. Y. Jeon, and Y. S. Nam, “Highly luminescent, off-stoichiometric CuxInyS2/ZnS quantum dots for near-infrared fluorescence bio-imaging,” RSC Adv. 5, 43449–43455 (2015).
    [Crossref]
  23. W. Yang, W. Guo, X. Gong, B. Zhang, S. Wang, N. Chen, W. Yang, Y. Tu, X. Fang, and J. Chang, “Facile synthesis of Gd-Cu-In-S/ZnS bimodal quantum dots with optimized properties for tumor targeted fluorescence/MR in vivo imaging,” ACS Appl. Mater. Interface 7, 18759–18768 (2015).
    [Crossref]
  24. V. G. Demillo, M. Liao, X. Zhu, D. Redelman, N. G. Publicover, and K. W. Hunter, “Fabrication of MnFe2O4–CuInS2/ZnS magnetofluorescent nanocomposites and their characterization,” Colloids Surf. A 464, 134–142 (2015).
    [Crossref]
  25. H. Liu, C. Gu, W. Xiong, and M. Zhang, “A sensitive hydrogen peroxide biosensor using ultra-small CuInS2 nanocrystals as peroxidase mimics,” Sens. Actuators B Chem. 209, 670–676 (2015).
    [Crossref]
  26. C. Dong, Z. Liu, L. Zhang, W. Guo, X. Li, J. Liu, H. Wang, and J. Chang, “pHe-induced charge-reversible NIR fluorescence nanoprobe for tumor-specific imaging,” ACS Appl. Mater. Interface 7, 7566–7575 (2015).
    [Crossref]
  27. K. H. Lee, J. H. Kim, H. S. Jang, Y. R. Do, and H. Yang, “Quantum-dot-based white lighting planar source through downconversion by blue electroluminescence,” Opt. Lett. 39, 1208–1211 (2014).
    [Crossref]
  28. X. Yuan, R. Ma, W. Zhang, J. Hua, X. Meng, X. Zhong, J. Zhang, J. Zhao, and H. Li, “Dual emissive manganese and copper co-doped Zn-In-S quantum dots as a single color-converter for high color rendering white-light-emitting diodes,” ACS Appl. Mater. Interface 7, 8659–8666 (2015).
    [Crossref]
  29. W. Liu, Y. Zhang, D. Wang, T. Zhang, Y. Feng, W. Gao, J. Yin, Y. Wang, A. P. Riley, M. Z. Hu, W. W. Yu, and C. Ruan, “ZnCuInS/ZnSe/ZnS quantum dot-based downconversion light-emitting diodes and their thermal effect,” J. Nanomater. 16, 298614 (2015).
    [Crossref]
  30. T.-L. Li, C.-D. Cai, T.-F. Yeh, and H. Teng, “Capped CuInS2 quantum dots for H2 evolution from water under visible light illumination,” J. Alloys Compd. 550, 326–330 (2013).
    [Crossref]
  31. F. E. Osterloh, “Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting,” Chem. Soc. Rev. 42, 2294–2320 (2013).
    [Crossref]
  32. F. Liu, J. Zhu, Y. Xu, L. Zhou, and S. Dai, “Scalable noninjection phosphine-free synthesis and optical properties of tetragonal-phase CuInSe2 quantum dots,” Nanoscale 8, 10021–10025 (2016).
    [Crossref]
  33. C. Coughlan, M. Ibanez, O. Dobrozhan, A. Singh, A. Cabot, and K. M. Ryan, “Compound copper chalcogenide nanocrystals,” Chem. Rev. 117, 5865–6109 (2017).
    [Crossref]
  34. P. Berini, “Surface plasmon photodetectors and their applications,” Laser Photon. Rev. 8, 197–220 (2014).
    [Crossref]
  35. A. Pescaglini and D. Iacopino, “Metal nanoparticle-semiconductor nanowire hybrid nanostructures for plasmon-enhanced optoelectronics and sensing,” J. Mater. Chem. C 3, 11785–11800 (2015).
    [Crossref]
  36. J.-A. Huang and L.-B. Luo, “Low-dimensional plasmonic photodetectors: recent progress and future opportunities,” Adv. Opt. Mater. 6, 1701282 (2018).
    [Crossref]
  37. C. C. Chang, Y. D. Sharma, Y. S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S. Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10, 1704–1709 (2010).
    [Crossref]
  38. S. Butun, N. A. Cinel, and E. Ozbay, “LSPR enhanced MSM UV photodetectors,” Nanotechnology 23, 444010 (2012).
    [Crossref]
  39. L. B. Luo, W. J. Xie, Y. F. Zou, Y. Q. Yu, F. X. Liang, Z. J. Huang, and K. Y. Zhou, “Surface plasmon propelled high-performance CdSe nanoribbons photodetector,” Opt. Express 23, 12979–12988 (2015).
    [Crossref]
  40. Y. Dong, Y. Gu, Y. Zou, J. Song, L. Xu, J. Li, J. Xue, X. Li, and H. Zeng, “Improving all-inorganic perovskite photodetectors by preferred orientation and plasmonic effect,” Small 12, 5622–5632 (2016).
    [Crossref]
  41. R. Guo, T. Shen, and J. Tian, “Broadband hybrid organic/CuInSe2 quantum dot photodetectors,” J. Mater. Chem. C 6, 2573–2579 (2018).
    [Crossref]
  42. Y. Yu, Y. Zhang, Z. Zhang, H. Zhang, X. Song, M. Cao, Y. Che, H. Dai, J. Yang, J. Wang, H. Zhang, and J. Yao, “Broadband phototransistor based on CH3NH3PbI3 perovskite and PbSe quantum dot heterojunction,” J. Phys. Chem. Lett. 8, 445–451 (2017).
    [Crossref]
  43. F. Gong, W. Luo, J. Wang, P. Wang, H. Fang, D. Zheng, N. Guo, J. Wang, M. Luo, J. C. Ho, X. Chen, W. Lu, L. Liao, and W. Hu, “High-sensitivity floating-gate phototransistors based on WS2 and MoS2,” Adv. Funct. Mater. 26, 6084–6090 (2016).
    [Crossref]
  44. J. Huang, Y. Yuan, Y. Shao, and Y. Yan, “Understanding the physical properties of hybrid perovskites for photovoltaic applications,” Nat. Rev. Mater. 2, 17042 (2017).
    [Crossref]
  45. F. Li, C. Ma, H. Wang, W. Hu, W. Yu, A. D. Sheikh, and T. Wu, “Ambipolar solution-processed hybrid perovskite phototransistors,” Nat. Commun. 6, 8238 (2015).
    [Crossref]
  46. H. Fang and W. Hu, “Photogating in low dimensional photodetectors,” Adv. Sci. 4, 1700323 (2017).
    [Crossref]
  47. D. Kufer and G. Konstantatos, “Photo-FETs: phototransistors enabled by 2D and 0D nanomaterials,” ACS Photon. 3, 2197–2210 (2016).
    [Crossref]
  48. J. H. Li, L. Y. Niu, Z. J. Zheng, and F. Yan, “Photosensitive graphene transistors,” Adv. Mater. 26, 5239–5273 (2014).
    [Crossref]
  49. Y. Yu, Y. Zhang, X. Song, H. Zhang, M. Cao, Y. Che, H. Dai, J. Yang, H. Zhang, and J. Yao, “PbS-decorated WS2 phototransistors with fast response,” ACS Photon. 4, 950–956 (2017).
    [Crossref]
  50. Y. Yu, Y. Zhang, X. Song, H. Zhang, M. Cao, Y. Che, H. Dai, J. Yang, H. Zhang, and J. Yao, “High performances for solution-processed 0D–0D heterojunction phototransistors,” Adv. Opt. Mater. 5, 1700565 (2017).
    [Crossref]

2018 (3)

S. F. Leung, K. T. Ho, P. K. Kung, V. K. S. Hsiao, H. N. Alshareef, Z. L. Wang, and J. H. He, “A self-powered and flexible organometallic halide perovskite photodetector with very high detectivity,” Adv. Mater. 30, 1704611 (2018).
[Crossref]

J.-A. Huang and L.-B. Luo, “Low-dimensional plasmonic photodetectors: recent progress and future opportunities,” Adv. Opt. Mater. 6, 1701282 (2018).
[Crossref]

R. Guo, T. Shen, and J. Tian, “Broadband hybrid organic/CuInSe2 quantum dot photodetectors,” J. Mater. Chem. C 6, 2573–2579 (2018).
[Crossref]

2017 (9)

Y. Yu, Y. Zhang, Z. Zhang, H. Zhang, X. Song, M. Cao, Y. Che, H. Dai, J. Yang, J. Wang, H. Zhang, and J. Yao, “Broadband phototransistor based on CH3NH3PbI3 perovskite and PbSe quantum dot heterojunction,” J. Phys. Chem. Lett. 8, 445–451 (2017).
[Crossref]

J. Huang, Y. Yuan, Y. Shao, and Y. Yan, “Understanding the physical properties of hybrid perovskites for photovoltaic applications,” Nat. Rev. Mater. 2, 17042 (2017).
[Crossref]

H. Fang and W. Hu, “Photogating in low dimensional photodetectors,” Adv. Sci. 4, 1700323 (2017).
[Crossref]

Y. Yu, Y. Zhang, X. Song, H. Zhang, M. Cao, Y. Che, H. Dai, J. Yang, H. Zhang, and J. Yao, “PbS-decorated WS2 phototransistors with fast response,” ACS Photon. 4, 950–956 (2017).
[Crossref]

Y. Yu, Y. Zhang, X. Song, H. Zhang, M. Cao, Y. Che, H. Dai, J. Yang, H. Zhang, and J. Yao, “High performances for solution-processed 0D–0D heterojunction phototransistors,” Adv. Opt. Mater. 5, 1700565 (2017).
[Crossref]

C. Coughlan, M. Ibanez, O. Dobrozhan, A. Singh, A. Cabot, and K. M. Ryan, “Compound copper chalcogenide nanocrystals,” Chem. Rev. 117, 5865–6109 (2017).
[Crossref]

Y. Kim, K. Bicanic, H. Tan, O. Ouellette, B. R. Sutherland, F. P. Garcia de Arquer, J. W. Jo, M. Liu, B. Sun, M. Liu, S. Hoogland, and E. H. Sargent, “Nanoimprint-transfer-patterned solids enhance light absorption in colloidal quantum dot solar cells,” Nano Lett. 17, 2349–2353 (2017).
[Crossref]

F. Fan, O. Voznyy, R. P. Sabatini, K. T. Bicanic, M. M. Adachi, J. R. McBride, K. R. Reid, Y. S. Park, X. Li, A. Jain, R. Quintero-Bermudez, M. Saravanapavanantham, M. Liu, M. Korkusinski, P. Hawrylak, V. I. Klimov, S. J. Rosenthal, S. Hoogland, and E. H. Sargent, “Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy,” Nature 544, 75–79 (2017).
[Crossref]

Z. Yang, O. Voznyy, G. Walters, J. Z. Fan, M. Liu, S. Kinge, S. Hoogland, and E. H. Sargent, “Quantum dots in two-dimensional perovskite matrices for efficient near-infrared light emission,” ACS Photon. 4, 830–836 (2017).
[Crossref]

2016 (8)

E. Lhuillier, M. Scarafagio, P. Hease, B. Nadal, H. Aubin, X. Z. Xu, N. Lequeux, G. Patriarche, S. Ithurria, and B. Dubertret, “Infrared photodetection based on colloidal quantum-dot films with high mobility and optical absorption up to THz,” Nano Lett. 16, 1282–1286 (2016).
[Crossref]

C. R. Kagan, E. Lifshitz, E. H. Sargent, and D. V. Talapin, “Building devices from colloidal quantum dots,” Science 353, aac5523 (2016).
[Crossref]

X. Lan, O. Voznyy, A. Kiani, F. Pelayo, G. de Arquer, A. S. Abbas, G.-H. Kim, M. Liu, Z. Yang, G. Walters, J. Xu, M. Yuan, Z. Ning, F. Fan, P. Kanjanaboos, I. Kramer, D. Zhitomirsky, P. Lee, A. Perelgut, S. Hoogland, and E. H. Sargent, “Passivation using molecular halides increases quantum dot solar cell performance,” Adv. Mater. 28, 299–304 (2016).
[Crossref]

J. Feng, M. Graf, K. Liu, D. Ovchinnikov, D. Dumcenco, M. Heiranian, V. Nandigana, N. R. Aluru, A. Kis, and A. Radenovic, “Single-layer MoS2 nanopores as nanopower generators,” Nature 536, 197–200 (2016).
[Crossref]

F. Liu, J. Zhu, Y. Xu, L. Zhou, and S. Dai, “Scalable noninjection phosphine-free synthesis and optical properties of tetragonal-phase CuInSe2 quantum dots,” Nanoscale 8, 10021–10025 (2016).
[Crossref]

D. Kufer and G. Konstantatos, “Photo-FETs: phototransistors enabled by 2D and 0D nanomaterials,” ACS Photon. 3, 2197–2210 (2016).
[Crossref]

F. Gong, W. Luo, J. Wang, P. Wang, H. Fang, D. Zheng, N. Guo, J. Wang, M. Luo, J. C. Ho, X. Chen, W. Lu, L. Liao, and W. Hu, “High-sensitivity floating-gate phototransistors based on WS2 and MoS2,” Adv. Funct. Mater. 26, 6084–6090 (2016).
[Crossref]

Y. Dong, Y. Gu, Y. Zou, J. Song, L. Xu, J. Li, J. Xue, X. Li, and H. Zeng, “Improving all-inorganic perovskite photodetectors by preferred orientation and plasmonic effect,” Small 12, 5622–5632 (2016).
[Crossref]

2015 (12)

F. Li, C. Ma, H. Wang, W. Hu, W. Yu, A. D. Sheikh, and T. Wu, “Ambipolar solution-processed hybrid perovskite phototransistors,” Nat. Commun. 6, 8238 (2015).
[Crossref]

L. B. Luo, W. J. Xie, Y. F. Zou, Y. Q. Yu, F. X. Liang, Z. J. Huang, and K. Y. Zhou, “Surface plasmon propelled high-performance CdSe nanoribbons photodetector,” Opt. Express 23, 12979–12988 (2015).
[Crossref]

A. Pescaglini and D. Iacopino, “Metal nanoparticle-semiconductor nanowire hybrid nanostructures for plasmon-enhanced optoelectronics and sensing,” J. Mater. Chem. C 3, 11785–11800 (2015).
[Crossref]

H. S. Choi, Y. Kim, J. C. Park, M. H. Oh, D. Y. Jeon, and Y. S. Nam, “Highly luminescent, off-stoichiometric CuxInyS2/ZnS quantum dots for near-infrared fluorescence bio-imaging,” RSC Adv. 5, 43449–43455 (2015).
[Crossref]

W. Yang, W. Guo, X. Gong, B. Zhang, S. Wang, N. Chen, W. Yang, Y. Tu, X. Fang, and J. Chang, “Facile synthesis of Gd-Cu-In-S/ZnS bimodal quantum dots with optimized properties for tumor targeted fluorescence/MR in vivo imaging,” ACS Appl. Mater. Interface 7, 18759–18768 (2015).
[Crossref]

V. G. Demillo, M. Liao, X. Zhu, D. Redelman, N. G. Publicover, and K. W. Hunter, “Fabrication of MnFe2O4–CuInS2/ZnS magnetofluorescent nanocomposites and their characterization,” Colloids Surf. A 464, 134–142 (2015).
[Crossref]

H. Liu, C. Gu, W. Xiong, and M. Zhang, “A sensitive hydrogen peroxide biosensor using ultra-small CuInS2 nanocrystals as peroxidase mimics,” Sens. Actuators B Chem. 209, 670–676 (2015).
[Crossref]

C. Dong, Z. Liu, L. Zhang, W. Guo, X. Li, J. Liu, H. Wang, and J. Chang, “pHe-induced charge-reversible NIR fluorescence nanoprobe for tumor-specific imaging,” ACS Appl. Mater. Interface 7, 7566–7575 (2015).
[Crossref]

X. Yuan, R. Ma, W. Zhang, J. Hua, X. Meng, X. Zhong, J. Zhang, J. Zhao, and H. Li, “Dual emissive manganese and copper co-doped Zn-In-S quantum dots as a single color-converter for high color rendering white-light-emitting diodes,” ACS Appl. Mater. Interface 7, 8659–8666 (2015).
[Crossref]

W. Liu, Y. Zhang, D. Wang, T. Zhang, Y. Feng, W. Gao, J. Yin, Y. Wang, A. P. Riley, M. Z. Hu, W. W. Yu, and C. Ruan, “ZnCuInS/ZnSe/ZnS quantum dot-based downconversion light-emitting diodes and their thermal effect,” J. Nanomater. 16, 298614 (2015).
[Crossref]

F. Zhang, Y. Zang, D. Huang, C. A. Di, and D. Zhu, “Flexible and self-powered temperature-pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials,” Nat. Commun. 6, 8356 (2015).
[Crossref]

Z. Wang, R. Yu, C. Pan, Z. Li, J. Yang, F. Yi, and Z. L. Wang, “Light-induced pyroelectric effect as an effective approach for ultrafast ultraviolet nanosensing,” Nat. Commun. 6, 8401 (2015).
[Crossref]

2014 (3)

P. Berini, “Surface plasmon photodetectors and their applications,” Laser Photon. Rev. 8, 197–220 (2014).
[Crossref]

K. H. Lee, J. H. Kim, H. S. Jang, Y. R. Do, and H. Yang, “Quantum-dot-based white lighting planar source through downconversion by blue electroluminescence,” Opt. Lett. 39, 1208–1211 (2014).
[Crossref]

J. H. Li, L. Y. Niu, Z. J. Zheng, and F. Yan, “Photosensitive graphene transistors,” Adv. Mater. 26, 5239–5273 (2014).
[Crossref]

2013 (3)

M. G. Panthani, C. J. Stolle, D. K. Reid, D. J. Rhee, T. B. Harvey, V. A. Akhavan, Y. Yu, and B. A. Korgel, “CuInSe2 quantum dot solar cells with high open-circuit voltage,” J. Phys. Chem. Lett. 4, 2030–2034 (2013).
[Crossref]

T.-L. Li, C.-D. Cai, T.-F. Yeh, and H. Teng, “Capped CuInS2 quantum dots for H2 evolution from water under visible light illumination,” J. Alloys Compd. 550, 326–330 (2013).
[Crossref]

F. E. Osterloh, “Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting,” Chem. Soc. Rev. 42, 2294–2320 (2013).
[Crossref]

2012 (4)

C. J. Stolle, M. G. Panthani, T. B. Harvey, V. A. Akhavan, and B. A. Korgel, “Comparison of the photovoltaic response of oleylamine and inorganic ligand-capped CuInSe2 nanocrystals,” ACS Appl. Mater. Interface 4, 2757–2761 (2012).
[Crossref]

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. J. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol. 7, 577–582 (2012).
[Crossref]

D. Y. Zhang, L. Gan, Y. Cao, Q. Wang, L. M. Qi, and X. F. Guo, “Understanding charge transfer at PbS-decorated graphene surfaces toward a tunable photosensor,” Adv. Mater. 24, 2715–2720 (2012).
[Crossref]

S. Butun, N. A. Cinel, and E. Ozbay, “LSPR enhanced MSM UV photodetectors,” Nanotechnology 23, 444010 (2012).
[Crossref]

2010 (5)

V. A. Akhavan, M. G. Panthani, B. W. Goodfellow, D. K. Reid, and B. A. Korgel, “Thickness-limited performance of CuInSe2 nanocrystal photovoltaic devices,” Opt. Express 18, A411–A420 (2010).
[Crossref]

V. A. Akhavan, B. W. Goodfellow, M. G. Panthani, D. K. Reid, D. J. Hellebusch, T. Adachi, and B. A. Korgel, “Spray-deposited CuInSe2 nanocrystal photovoltaics,” Energy Environ. Sci. 3, 1600–1606 (2010).
[Crossref]

G. Konstantatos and E. H. Sargent, “Nanostructured materials for photon detection,” Nat. Nanotechnol. 5, 391–400 (2010).
[Crossref]

S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang, and Z. L. Wang, “Self-powered nanowire devices,” Nat. Nanotechnol. 5, 366–373 (2010).
[Crossref]

C. C. Chang, Y. D. Sharma, Y. S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S. Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10, 1704–1709 (2010).
[Crossref]

2009 (1)

T. Rauch, M. Boberl, S. F. Tedde, J. Furst, M. V. Kovalenko, G. N. Hesser, U. Lemmer, W. Heiss, and O. Hayden, “Near-infrared imaging with quantum-dot-sensitized organic photodiodes,” Nat. Photonics 3, 332–336 (2009).
[Crossref]

2008 (1)

M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, P. F. Barbara, and B. A. Korgel, “Synthesis of CuInS2, CuInSe2, and Cu(InxGa1-x)Se2 (CIGS) nanocrystal ‘inks’ for printable photovoltaics,” J. Am. Chem. Soc. 130, 16770–16777 (2008).
[Crossref]

2005 (1)

S. A. McDonald, G. Konstantatos, S. G. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4, 138–142 (2005).
[Crossref]

Abbas, A. S.

X. Lan, O. Voznyy, A. Kiani, F. Pelayo, G. de Arquer, A. S. Abbas, G.-H. Kim, M. Liu, Z. Yang, G. Walters, J. Xu, M. Yuan, Z. Ning, F. Fan, P. Kanjanaboos, I. Kramer, D. Zhitomirsky, P. Lee, A. Perelgut, S. Hoogland, and E. H. Sargent, “Passivation using molecular halides increases quantum dot solar cell performance,” Adv. Mater. 28, 299–304 (2016).
[Crossref]

Adachi, M. M.

F. Fan, O. Voznyy, R. P. Sabatini, K. T. Bicanic, M. M. Adachi, J. R. McBride, K. R. Reid, Y. S. Park, X. Li, A. Jain, R. Quintero-Bermudez, M. Saravanapavanantham, M. Liu, M. Korkusinski, P. Hawrylak, V. I. Klimov, S. J. Rosenthal, S. Hoogland, and E. H. Sargent, “Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy,” Nature 544, 75–79 (2017).
[Crossref]

Adachi, T.

V. A. Akhavan, B. W. Goodfellow, M. G. Panthani, D. K. Reid, D. J. Hellebusch, T. Adachi, and B. A. Korgel, “Spray-deposited CuInSe2 nanocrystal photovoltaics,” Energy Environ. Sci. 3, 1600–1606 (2010).
[Crossref]

Akhavan, V.

M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, P. F. Barbara, and B. A. Korgel, “Synthesis of CuInS2, CuInSe2, and Cu(InxGa1-x)Se2 (CIGS) nanocrystal ‘inks’ for printable photovoltaics,” J. Am. Chem. Soc. 130, 16770–16777 (2008).
[Crossref]

Akhavan, V. A.

M. G. Panthani, C. J. Stolle, D. K. Reid, D. J. Rhee, T. B. Harvey, V. A. Akhavan, Y. Yu, and B. A. Korgel, “CuInSe2 quantum dot solar cells with high open-circuit voltage,” J. Phys. Chem. Lett. 4, 2030–2034 (2013).
[Crossref]

C. J. Stolle, M. G. Panthani, T. B. Harvey, V. A. Akhavan, and B. A. Korgel, “Comparison of the photovoltaic response of oleylamine and inorganic ligand-capped CuInSe2 nanocrystals,” ACS Appl. Mater. Interface 4, 2757–2761 (2012).
[Crossref]

V. A. Akhavan, B. W. Goodfellow, M. G. Panthani, D. K. Reid, D. J. Hellebusch, T. Adachi, and B. A. Korgel, “Spray-deposited CuInSe2 nanocrystal photovoltaics,” Energy Environ. Sci. 3, 1600–1606 (2010).
[Crossref]

V. A. Akhavan, M. G. Panthani, B. W. Goodfellow, D. K. Reid, and B. A. Korgel, “Thickness-limited performance of CuInSe2 nanocrystal photovoltaic devices,” Opt. Express 18, A411–A420 (2010).
[Crossref]

Alshareef, H. N.

S. F. Leung, K. T. Ho, P. K. Kung, V. K. S. Hsiao, H. N. Alshareef, Z. L. Wang, and J. H. He, “A self-powered and flexible organometallic halide perovskite photodetector with very high detectivity,” Adv. Mater. 30, 1704611 (2018).
[Crossref]

Aluru, N. R.

J. Feng, M. Graf, K. Liu, D. Ovchinnikov, D. Dumcenco, M. Heiranian, V. Nandigana, N. R. Aluru, A. Kis, and A. Radenovic, “Single-layer MoS2 nanopores as nanopower generators,” Nature 536, 197–200 (2016).
[Crossref]

Amassian, A.

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. J. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol. 7, 577–582 (2012).
[Crossref]

Aubin, H.

E. Lhuillier, M. Scarafagio, P. Hease, B. Nadal, H. Aubin, X. Z. Xu, N. Lequeux, G. Patriarche, S. Ithurria, and B. Dubertret, “Infrared photodetection based on colloidal quantum-dot films with high mobility and optical absorption up to THz,” Nano Lett. 16, 1282–1286 (2016).
[Crossref]

Barbara, P. F.

M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, P. F. Barbara, and B. A. Korgel, “Synthesis of CuInS2, CuInSe2, and Cu(InxGa1-x)Se2 (CIGS) nanocrystal ‘inks’ for printable photovoltaics,” J. Am. Chem. Soc. 130, 16770–16777 (2008).
[Crossref]

Berini, P.

P. Berini, “Surface plasmon photodetectors and their applications,” Laser Photon. Rev. 8, 197–220 (2014).
[Crossref]

Bicanic, K.

Y. Kim, K. Bicanic, H. Tan, O. Ouellette, B. R. Sutherland, F. P. Garcia de Arquer, J. W. Jo, M. Liu, B. Sun, M. Liu, S. Hoogland, and E. H. Sargent, “Nanoimprint-transfer-patterned solids enhance light absorption in colloidal quantum dot solar cells,” Nano Lett. 17, 2349–2353 (2017).
[Crossref]

Bicanic, K. T.

F. Fan, O. Voznyy, R. P. Sabatini, K. T. Bicanic, M. M. Adachi, J. R. McBride, K. R. Reid, Y. S. Park, X. Li, A. Jain, R. Quintero-Bermudez, M. Saravanapavanantham, M. Liu, M. Korkusinski, P. Hawrylak, V. I. Klimov, S. J. Rosenthal, S. Hoogland, and E. H. Sargent, “Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy,” Nature 544, 75–79 (2017).
[Crossref]

Boberl, M.

T. Rauch, M. Boberl, S. F. Tedde, J. Furst, M. V. Kovalenko, G. N. Hesser, U. Lemmer, W. Heiss, and O. Hayden, “Near-infrared imaging with quantum-dot-sensitized organic photodiodes,” Nat. Photonics 3, 332–336 (2009).
[Crossref]

Bur, J. A.

C. C. Chang, Y. D. Sharma, Y. S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S. Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10, 1704–1709 (2010).
[Crossref]

Butun, S.

S. Butun, N. A. Cinel, and E. Ozbay, “LSPR enhanced MSM UV photodetectors,” Nanotechnology 23, 444010 (2012).
[Crossref]

Cabot, A.

C. Coughlan, M. Ibanez, O. Dobrozhan, A. Singh, A. Cabot, and K. M. Ryan, “Compound copper chalcogenide nanocrystals,” Chem. Rev. 117, 5865–6109 (2017).
[Crossref]

Cai, C.-D.

T.-L. Li, C.-D. Cai, T.-F. Yeh, and H. Teng, “Capped CuInS2 quantum dots for H2 evolution from water under visible light illumination,” J. Alloys Compd. 550, 326–330 (2013).
[Crossref]

Cao, M.

Y. Yu, Y. Zhang, X. Song, H. Zhang, M. Cao, Y. Che, H. Dai, J. Yang, H. Zhang, and J. Yao, “High performances for solution-processed 0D–0D heterojunction phototransistors,” Adv. Opt. Mater. 5, 1700565 (2017).
[Crossref]

Y. Yu, Y. Zhang, X. Song, H. Zhang, M. Cao, Y. Che, H. Dai, J. Yang, H. Zhang, and J. Yao, “PbS-decorated WS2 phototransistors with fast response,” ACS Photon. 4, 950–956 (2017).
[Crossref]

Y. Yu, Y. Zhang, Z. Zhang, H. Zhang, X. Song, M. Cao, Y. Che, H. Dai, J. Yang, J. Wang, H. Zhang, and J. Yao, “Broadband phototransistor based on CH3NH3PbI3 perovskite and PbSe quantum dot heterojunction,” J. Phys. Chem. Lett. 8, 445–451 (2017).
[Crossref]

Cao, Y.

D. Y. Zhang, L. Gan, Y. Cao, Q. Wang, L. M. Qi, and X. F. Guo, “Understanding charge transfer at PbS-decorated graphene surfaces toward a tunable photosensor,” Adv. Mater. 24, 2715–2720 (2012).
[Crossref]

Carey, G. H.

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. J. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol. 7, 577–582 (2012).
[Crossref]

Chang, C. C.

C. C. Chang, Y. D. Sharma, Y. S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S. Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10, 1704–1709 (2010).
[Crossref]

Chang, J.

C. Dong, Z. Liu, L. Zhang, W. Guo, X. Li, J. Liu, H. Wang, and J. Chang, “pHe-induced charge-reversible NIR fluorescence nanoprobe for tumor-specific imaging,” ACS Appl. Mater. Interface 7, 7566–7575 (2015).
[Crossref]

W. Yang, W. Guo, X. Gong, B. Zhang, S. Wang, N. Chen, W. Yang, Y. Tu, X. Fang, and J. Chang, “Facile synthesis of Gd-Cu-In-S/ZnS bimodal quantum dots with optimized properties for tumor targeted fluorescence/MR in vivo imaging,” ACS Appl. Mater. Interface 7, 18759–18768 (2015).
[Crossref]

Che, Y.

Y. Yu, Y. Zhang, Z. Zhang, H. Zhang, X. Song, M. Cao, Y. Che, H. Dai, J. Yang, J. Wang, H. Zhang, and J. Yao, “Broadband phototransistor based on CH3NH3PbI3 perovskite and PbSe quantum dot heterojunction,” J. Phys. Chem. Lett. 8, 445–451 (2017).
[Crossref]

Y. Yu, Y. Zhang, X. Song, H. Zhang, M. Cao, Y. Che, H. Dai, J. Yang, H. Zhang, and J. Yao, “PbS-decorated WS2 phototransistors with fast response,” ACS Photon. 4, 950–956 (2017).
[Crossref]

Y. Yu, Y. Zhang, X. Song, H. Zhang, M. Cao, Y. Che, H. Dai, J. Yang, H. Zhang, and J. Yao, “High performances for solution-processed 0D–0D heterojunction phototransistors,” Adv. Opt. Mater. 5, 1700565 (2017).
[Crossref]

Chen, N.

W. Yang, W. Guo, X. Gong, B. Zhang, S. Wang, N. Chen, W. Yang, Y. Tu, X. Fang, and J. Chang, “Facile synthesis of Gd-Cu-In-S/ZnS bimodal quantum dots with optimized properties for tumor targeted fluorescence/MR in vivo imaging,” ACS Appl. Mater. Interface 7, 18759–18768 (2015).
[Crossref]

Chen, X.

F. Gong, W. Luo, J. Wang, P. Wang, H. Fang, D. Zheng, N. Guo, J. Wang, M. Luo, J. C. Ho, X. Chen, W. Lu, L. Liao, and W. Hu, “High-sensitivity floating-gate phototransistors based on WS2 and MoS2,” Adv. Funct. Mater. 26, 6084–6090 (2016).
[Crossref]

Choi, H. S.

H. S. Choi, Y. Kim, J. C. Park, M. H. Oh, D. Y. Jeon, and Y. S. Nam, “Highly luminescent, off-stoichiometric CuxInyS2/ZnS quantum dots for near-infrared fluorescence bio-imaging,” RSC Adv. 5, 43449–43455 (2015).
[Crossref]

Chou, K. W.

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. J. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol. 7, 577–582 (2012).
[Crossref]

Cinel, N. A.

S. Butun, N. A. Cinel, and E. Ozbay, “LSPR enhanced MSM UV photodetectors,” Nanotechnology 23, 444010 (2012).
[Crossref]

Coughlan, C.

C. Coughlan, M. Ibanez, O. Dobrozhan, A. Singh, A. Cabot, and K. M. Ryan, “Compound copper chalcogenide nanocrystals,” Chem. Rev. 117, 5865–6109 (2017).
[Crossref]

Cyr, P. W.

S. A. McDonald, G. Konstantatos, S. G. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4, 138–142 (2005).
[Crossref]

Dai, H.

Y. Yu, Y. Zhang, Z. Zhang, H. Zhang, X. Song, M. Cao, Y. Che, H. Dai, J. Yang, J. Wang, H. Zhang, and J. Yao, “Broadband phototransistor based on CH3NH3PbI3 perovskite and PbSe quantum dot heterojunction,” J. Phys. Chem. Lett. 8, 445–451 (2017).
[Crossref]

Y. Yu, Y. Zhang, X. Song, H. Zhang, M. Cao, Y. Che, H. Dai, J. Yang, H. Zhang, and J. Yao, “High performances for solution-processed 0D–0D heterojunction phototransistors,” Adv. Opt. Mater. 5, 1700565 (2017).
[Crossref]

Y. Yu, Y. Zhang, X. Song, H. Zhang, M. Cao, Y. Che, H. Dai, J. Yang, H. Zhang, and J. Yao, “PbS-decorated WS2 phototransistors with fast response,” ACS Photon. 4, 950–956 (2017).
[Crossref]

Dai, S.

F. Liu, J. Zhu, Y. Xu, L. Zhou, and S. Dai, “Scalable noninjection phosphine-free synthesis and optical properties of tetragonal-phase CuInSe2 quantum dots,” Nanoscale 8, 10021–10025 (2016).
[Crossref]

de Arquer, G.

X. Lan, O. Voznyy, A. Kiani, F. Pelayo, G. de Arquer, A. S. Abbas, G.-H. Kim, M. Liu, Z. Yang, G. Walters, J. Xu, M. Yuan, Z. Ning, F. Fan, P. Kanjanaboos, I. Kramer, D. Zhitomirsky, P. Lee, A. Perelgut, S. Hoogland, and E. H. Sargent, “Passivation using molecular halides increases quantum dot solar cell performance,” Adv. Mater. 28, 299–304 (2016).
[Crossref]

Debnath, R.

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. J. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol. 7, 577–582 (2012).
[Crossref]

Demillo, V. G.

V. G. Demillo, M. Liao, X. Zhu, D. Redelman, N. G. Publicover, and K. W. Hunter, “Fabrication of MnFe2O4–CuInS2/ZnS magnetofluorescent nanocomposites and their characterization,” Colloids Surf. A 464, 134–142 (2015).
[Crossref]

Di, C. A.

F. Zhang, Y. Zang, D. Huang, C. A. Di, and D. Zhu, “Flexible and self-powered temperature-pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials,” Nat. Commun. 6, 8356 (2015).
[Crossref]

Do, Y. R.

Dobrozhan, O.

C. Coughlan, M. Ibanez, O. Dobrozhan, A. Singh, A. Cabot, and K. M. Ryan, “Compound copper chalcogenide nanocrystals,” Chem. Rev. 117, 5865–6109 (2017).
[Crossref]

Dodabalapur, A.

M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, P. F. Barbara, and B. A. Korgel, “Synthesis of CuInS2, CuInSe2, and Cu(InxGa1-x)Se2 (CIGS) nanocrystal ‘inks’ for printable photovoltaics,” J. Am. Chem. Soc. 130, 16770–16777 (2008).
[Crossref]

Dong, C.

C. Dong, Z. Liu, L. Zhang, W. Guo, X. Li, J. Liu, H. Wang, and J. Chang, “pHe-induced charge-reversible NIR fluorescence nanoprobe for tumor-specific imaging,” ACS Appl. Mater. Interface 7, 7566–7575 (2015).
[Crossref]

Dong, Y.

Y. Dong, Y. Gu, Y. Zou, J. Song, L. Xu, J. Li, J. Xue, X. Li, and H. Zeng, “Improving all-inorganic perovskite photodetectors by preferred orientation and plasmonic effect,” Small 12, 5622–5632 (2016).
[Crossref]

Dubertret, B.

E. Lhuillier, M. Scarafagio, P. Hease, B. Nadal, H. Aubin, X. Z. Xu, N. Lequeux, G. Patriarche, S. Ithurria, and B. Dubertret, “Infrared photodetection based on colloidal quantum-dot films with high mobility and optical absorption up to THz,” Nano Lett. 16, 1282–1286 (2016).
[Crossref]

Dumcenco, D.

J. Feng, M. Graf, K. Liu, D. Ovchinnikov, D. Dumcenco, M. Heiranian, V. Nandigana, N. R. Aluru, A. Kis, and A. Radenovic, “Single-layer MoS2 nanopores as nanopower generators,” Nature 536, 197–200 (2016).
[Crossref]

Dunn, L.

M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, P. F. Barbara, and B. A. Korgel, “Synthesis of CuInS2, CuInSe2, and Cu(InxGa1-x)Se2 (CIGS) nanocrystal ‘inks’ for printable photovoltaics,” J. Am. Chem. Soc. 130, 16770–16777 (2008).
[Crossref]

Fan, F.

F. Fan, O. Voznyy, R. P. Sabatini, K. T. Bicanic, M. M. Adachi, J. R. McBride, K. R. Reid, Y. S. Park, X. Li, A. Jain, R. Quintero-Bermudez, M. Saravanapavanantham, M. Liu, M. Korkusinski, P. Hawrylak, V. I. Klimov, S. J. Rosenthal, S. Hoogland, and E. H. Sargent, “Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy,” Nature 544, 75–79 (2017).
[Crossref]

X. Lan, O. Voznyy, A. Kiani, F. Pelayo, G. de Arquer, A. S. Abbas, G.-H. Kim, M. Liu, Z. Yang, G. Walters, J. Xu, M. Yuan, Z. Ning, F. Fan, P. Kanjanaboos, I. Kramer, D. Zhitomirsky, P. Lee, A. Perelgut, S. Hoogland, and E. H. Sargent, “Passivation using molecular halides increases quantum dot solar cell performance,” Adv. Mater. 28, 299–304 (2016).
[Crossref]

Fan, J. Z.

Z. Yang, O. Voznyy, G. Walters, J. Z. Fan, M. Liu, S. Kinge, S. Hoogland, and E. H. Sargent, “Quantum dots in two-dimensional perovskite matrices for efficient near-infrared light emission,” ACS Photon. 4, 830–836 (2017).
[Crossref]

Fang, H.

H. Fang and W. Hu, “Photogating in low dimensional photodetectors,” Adv. Sci. 4, 1700323 (2017).
[Crossref]

F. Gong, W. Luo, J. Wang, P. Wang, H. Fang, D. Zheng, N. Guo, J. Wang, M. Luo, J. C. Ho, X. Chen, W. Lu, L. Liao, and W. Hu, “High-sensitivity floating-gate phototransistors based on WS2 and MoS2,” Adv. Funct. Mater. 26, 6084–6090 (2016).
[Crossref]

Fang, X.

W. Yang, W. Guo, X. Gong, B. Zhang, S. Wang, N. Chen, W. Yang, Y. Tu, X. Fang, and J. Chang, “Facile synthesis of Gd-Cu-In-S/ZnS bimodal quantum dots with optimized properties for tumor targeted fluorescence/MR in vivo imaging,” ACS Appl. Mater. Interface 7, 18759–18768 (2015).
[Crossref]

Feng, J.

J. Feng, M. Graf, K. Liu, D. Ovchinnikov, D. Dumcenco, M. Heiranian, V. Nandigana, N. R. Aluru, A. Kis, and A. Radenovic, “Single-layer MoS2 nanopores as nanopower generators,” Nature 536, 197–200 (2016).
[Crossref]

Feng, Y.

W. Liu, Y. Zhang, D. Wang, T. Zhang, Y. Feng, W. Gao, J. Yin, Y. Wang, A. P. Riley, M. Z. Hu, W. W. Yu, and C. Ruan, “ZnCuInS/ZnSe/ZnS quantum dot-based downconversion light-emitting diodes and their thermal effect,” J. Nanomater. 16, 298614 (2015).
[Crossref]

Fischer, A.

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. J. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol. 7, 577–582 (2012).
[Crossref]

Furst, J.

T. Rauch, M. Boberl, S. F. Tedde, J. Furst, M. V. Kovalenko, G. N. Hesser, U. Lemmer, W. Heiss, and O. Hayden, “Near-infrared imaging with quantum-dot-sensitized organic photodiodes,” Nat. Photonics 3, 332–336 (2009).
[Crossref]

Gan, L.

D. Y. Zhang, L. Gan, Y. Cao, Q. Wang, L. M. Qi, and X. F. Guo, “Understanding charge transfer at PbS-decorated graphene surfaces toward a tunable photosensor,” Adv. Mater. 24, 2715–2720 (2012).
[Crossref]

Gao, W.

W. Liu, Y. Zhang, D. Wang, T. Zhang, Y. Feng, W. Gao, J. Yin, Y. Wang, A. P. Riley, M. Z. Hu, W. W. Yu, and C. Ruan, “ZnCuInS/ZnSe/ZnS quantum dot-based downconversion light-emitting diodes and their thermal effect,” J. Nanomater. 16, 298614 (2015).
[Crossref]

Garcia de Arquer, F. P.

Y. Kim, K. Bicanic, H. Tan, O. Ouellette, B. R. Sutherland, F. P. Garcia de Arquer, J. W. Jo, M. Liu, B. Sun, M. Liu, S. Hoogland, and E. H. Sargent, “Nanoimprint-transfer-patterned solids enhance light absorption in colloidal quantum dot solar cells,” Nano Lett. 17, 2349–2353 (2017).
[Crossref]

Gong, F.

F. Gong, W. Luo, J. Wang, P. Wang, H. Fang, D. Zheng, N. Guo, J. Wang, M. Luo, J. C. Ho, X. Chen, W. Lu, L. Liao, and W. Hu, “High-sensitivity floating-gate phototransistors based on WS2 and MoS2,” Adv. Funct. Mater. 26, 6084–6090 (2016).
[Crossref]

Gong, X.

W. Yang, W. Guo, X. Gong, B. Zhang, S. Wang, N. Chen, W. Yang, Y. Tu, X. Fang, and J. Chang, “Facile synthesis of Gd-Cu-In-S/ZnS bimodal quantum dots with optimized properties for tumor targeted fluorescence/MR in vivo imaging,” ACS Appl. Mater. Interface 7, 18759–18768 (2015).
[Crossref]

Goodfellow, B.

M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, P. F. Barbara, and B. A. Korgel, “Synthesis of CuInS2, CuInSe2, and Cu(InxGa1-x)Se2 (CIGS) nanocrystal ‘inks’ for printable photovoltaics,” J. Am. Chem. Soc. 130, 16770–16777 (2008).
[Crossref]

Goodfellow, B. W.

V. A. Akhavan, B. W. Goodfellow, M. G. Panthani, D. K. Reid, D. J. Hellebusch, T. Adachi, and B. A. Korgel, “Spray-deposited CuInSe2 nanocrystal photovoltaics,” Energy Environ. Sci. 3, 1600–1606 (2010).
[Crossref]

V. A. Akhavan, M. G. Panthani, B. W. Goodfellow, D. K. Reid, and B. A. Korgel, “Thickness-limited performance of CuInSe2 nanocrystal photovoltaic devices,” Opt. Express 18, A411–A420 (2010).
[Crossref]

Graf, M.

J. Feng, M. Graf, K. Liu, D. Ovchinnikov, D. Dumcenco, M. Heiranian, V. Nandigana, N. R. Aluru, A. Kis, and A. Radenovic, “Single-layer MoS2 nanopores as nanopower generators,” Nature 536, 197–200 (2016).
[Crossref]

Gu, C.

H. Liu, C. Gu, W. Xiong, and M. Zhang, “A sensitive hydrogen peroxide biosensor using ultra-small CuInS2 nanocrystals as peroxidase mimics,” Sens. Actuators B Chem. 209, 670–676 (2015).
[Crossref]

Gu, Y.

Y. Dong, Y. Gu, Y. Zou, J. Song, L. Xu, J. Li, J. Xue, X. Li, and H. Zeng, “Improving all-inorganic perovskite photodetectors by preferred orientation and plasmonic effect,” Small 12, 5622–5632 (2016).
[Crossref]

Guo, N.

F. Gong, W. Luo, J. Wang, P. Wang, H. Fang, D. Zheng, N. Guo, J. Wang, M. Luo, J. C. Ho, X. Chen, W. Lu, L. Liao, and W. Hu, “High-sensitivity floating-gate phototransistors based on WS2 and MoS2,” Adv. Funct. Mater. 26, 6084–6090 (2016).
[Crossref]

Guo, R.

R. Guo, T. Shen, and J. Tian, “Broadband hybrid organic/CuInSe2 quantum dot photodetectors,” J. Mater. Chem. C 6, 2573–2579 (2018).
[Crossref]

Guo, W.

C. Dong, Z. Liu, L. Zhang, W. Guo, X. Li, J. Liu, H. Wang, and J. Chang, “pHe-induced charge-reversible NIR fluorescence nanoprobe for tumor-specific imaging,” ACS Appl. Mater. Interface 7, 7566–7575 (2015).
[Crossref]

W. Yang, W. Guo, X. Gong, B. Zhang, S. Wang, N. Chen, W. Yang, Y. Tu, X. Fang, and J. Chang, “Facile synthesis of Gd-Cu-In-S/ZnS bimodal quantum dots with optimized properties for tumor targeted fluorescence/MR in vivo imaging,” ACS Appl. Mater. Interface 7, 18759–18768 (2015).
[Crossref]

Guo, X. F.

D. Y. Zhang, L. Gan, Y. Cao, Q. Wang, L. M. Qi, and X. F. Guo, “Understanding charge transfer at PbS-decorated graphene surfaces toward a tunable photosensor,” Adv. Mater. 24, 2715–2720 (2012).
[Crossref]

Harvey, T. B.

M. G. Panthani, C. J. Stolle, D. K. Reid, D. J. Rhee, T. B. Harvey, V. A. Akhavan, Y. Yu, and B. A. Korgel, “CuInSe2 quantum dot solar cells with high open-circuit voltage,” J. Phys. Chem. Lett. 4, 2030–2034 (2013).
[Crossref]

C. J. Stolle, M. G. Panthani, T. B. Harvey, V. A. Akhavan, and B. A. Korgel, “Comparison of the photovoltaic response of oleylamine and inorganic ligand-capped CuInSe2 nanocrystals,” ACS Appl. Mater. Interface 4, 2757–2761 (2012).
[Crossref]

Hawrylak, P.

F. Fan, O. Voznyy, R. P. Sabatini, K. T. Bicanic, M. M. Adachi, J. R. McBride, K. R. Reid, Y. S. Park, X. Li, A. Jain, R. Quintero-Bermudez, M. Saravanapavanantham, M. Liu, M. Korkusinski, P. Hawrylak, V. I. Klimov, S. J. Rosenthal, S. Hoogland, and E. H. Sargent, “Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy,” Nature 544, 75–79 (2017).
[Crossref]

Hayden, O.

T. Rauch, M. Boberl, S. F. Tedde, J. Furst, M. V. Kovalenko, G. N. Hesser, U. Lemmer, W. Heiss, and O. Hayden, “Near-infrared imaging with quantum-dot-sensitized organic photodiodes,” Nat. Photonics 3, 332–336 (2009).
[Crossref]

He, J. H.

S. F. Leung, K. T. Ho, P. K. Kung, V. K. S. Hsiao, H. N. Alshareef, Z. L. Wang, and J. H. He, “A self-powered and flexible organometallic halide perovskite photodetector with very high detectivity,” Adv. Mater. 30, 1704611 (2018).
[Crossref]

Hease, P.

E. Lhuillier, M. Scarafagio, P. Hease, B. Nadal, H. Aubin, X. Z. Xu, N. Lequeux, G. Patriarche, S. Ithurria, and B. Dubertret, “Infrared photodetection based on colloidal quantum-dot films with high mobility and optical absorption up to THz,” Nano Lett. 16, 1282–1286 (2016).
[Crossref]

Heiranian, M.

J. Feng, M. Graf, K. Liu, D. Ovchinnikov, D. Dumcenco, M. Heiranian, V. Nandigana, N. R. Aluru, A. Kis, and A. Radenovic, “Single-layer MoS2 nanopores as nanopower generators,” Nature 536, 197–200 (2016).
[Crossref]

Heiss, W.

T. Rauch, M. Boberl, S. F. Tedde, J. Furst, M. V. Kovalenko, G. N. Hesser, U. Lemmer, W. Heiss, and O. Hayden, “Near-infrared imaging with quantum-dot-sensitized organic photodiodes,” Nat. Photonics 3, 332–336 (2009).
[Crossref]

Hellebusch, D. J.

V. A. Akhavan, B. W. Goodfellow, M. G. Panthani, D. K. Reid, D. J. Hellebusch, T. Adachi, and B. A. Korgel, “Spray-deposited CuInSe2 nanocrystal photovoltaics,” Energy Environ. Sci. 3, 1600–1606 (2010).
[Crossref]

Hesser, G. N.

T. Rauch, M. Boberl, S. F. Tedde, J. Furst, M. V. Kovalenko, G. N. Hesser, U. Lemmer, W. Heiss, and O. Hayden, “Near-infrared imaging with quantum-dot-sensitized organic photodiodes,” Nat. Photonics 3, 332–336 (2009).
[Crossref]

Ho, J. C.

F. Gong, W. Luo, J. Wang, P. Wang, H. Fang, D. Zheng, N. Guo, J. Wang, M. Luo, J. C. Ho, X. Chen, W. Lu, L. Liao, and W. Hu, “High-sensitivity floating-gate phototransistors based on WS2 and MoS2,” Adv. Funct. Mater. 26, 6084–6090 (2016).
[Crossref]

Ho, K. T.

S. F. Leung, K. T. Ho, P. K. Kung, V. K. S. Hsiao, H. N. Alshareef, Z. L. Wang, and J. H. He, “A self-powered and flexible organometallic halide perovskite photodetector with very high detectivity,” Adv. Mater. 30, 1704611 (2018).
[Crossref]

Hoogland, S.

Z. Yang, O. Voznyy, G. Walters, J. Z. Fan, M. Liu, S. Kinge, S. Hoogland, and E. H. Sargent, “Quantum dots in two-dimensional perovskite matrices for efficient near-infrared light emission,” ACS Photon. 4, 830–836 (2017).
[Crossref]

F. Fan, O. Voznyy, R. P. Sabatini, K. T. Bicanic, M. M. Adachi, J. R. McBride, K. R. Reid, Y. S. Park, X. Li, A. Jain, R. Quintero-Bermudez, M. Saravanapavanantham, M. Liu, M. Korkusinski, P. Hawrylak, V. I. Klimov, S. J. Rosenthal, S. Hoogland, and E. H. Sargent, “Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy,” Nature 544, 75–79 (2017).
[Crossref]

Y. Kim, K. Bicanic, H. Tan, O. Ouellette, B. R. Sutherland, F. P. Garcia de Arquer, J. W. Jo, M. Liu, B. Sun, M. Liu, S. Hoogland, and E. H. Sargent, “Nanoimprint-transfer-patterned solids enhance light absorption in colloidal quantum dot solar cells,” Nano Lett. 17, 2349–2353 (2017).
[Crossref]

X. Lan, O. Voznyy, A. Kiani, F. Pelayo, G. de Arquer, A. S. Abbas, G.-H. Kim, M. Liu, Z. Yang, G. Walters, J. Xu, M. Yuan, Z. Ning, F. Fan, P. Kanjanaboos, I. Kramer, D. Zhitomirsky, P. Lee, A. Perelgut, S. Hoogland, and E. H. Sargent, “Passivation using molecular halides increases quantum dot solar cell performance,” Adv. Mater. 28, 299–304 (2016).
[Crossref]

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. J. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol. 7, 577–582 (2012).
[Crossref]

Hsiao, V. K. S.

S. F. Leung, K. T. Ho, P. K. Kung, V. K. S. Hsiao, H. N. Alshareef, Z. L. Wang, and J. H. He, “A self-powered and flexible organometallic halide perovskite photodetector with very high detectivity,” Adv. Mater. 30, 1704611 (2018).
[Crossref]

Hu, M. Z.

W. Liu, Y. Zhang, D. Wang, T. Zhang, Y. Feng, W. Gao, J. Yin, Y. Wang, A. P. Riley, M. Z. Hu, W. W. Yu, and C. Ruan, “ZnCuInS/ZnSe/ZnS quantum dot-based downconversion light-emitting diodes and their thermal effect,” J. Nanomater. 16, 298614 (2015).
[Crossref]

Hu, W.

H. Fang and W. Hu, “Photogating in low dimensional photodetectors,” Adv. Sci. 4, 1700323 (2017).
[Crossref]

F. Gong, W. Luo, J. Wang, P. Wang, H. Fang, D. Zheng, N. Guo, J. Wang, M. Luo, J. C. Ho, X. Chen, W. Lu, L. Liao, and W. Hu, “High-sensitivity floating-gate phototransistors based on WS2 and MoS2,” Adv. Funct. Mater. 26, 6084–6090 (2016).
[Crossref]

F. Li, C. Ma, H. Wang, W. Hu, W. Yu, A. D. Sheikh, and T. Wu, “Ambipolar solution-processed hybrid perovskite phototransistors,” Nat. Commun. 6, 8238 (2015).
[Crossref]

Hua, J.

X. Yuan, R. Ma, W. Zhang, J. Hua, X. Meng, X. Zhong, J. Zhang, J. Zhao, and H. Li, “Dual emissive manganese and copper co-doped Zn-In-S quantum dots as a single color-converter for high color rendering white-light-emitting diodes,” ACS Appl. Mater. Interface 7, 8659–8666 (2015).
[Crossref]

Huang, D.

F. Zhang, Y. Zang, D. Huang, C. A. Di, and D. Zhu, “Flexible and self-powered temperature-pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials,” Nat. Commun. 6, 8356 (2015).
[Crossref]

C. C. Chang, Y. D. Sharma, Y. S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S. Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10, 1704–1709 (2010).
[Crossref]

Huang, J.

J. Huang, Y. Yuan, Y. Shao, and Y. Yan, “Understanding the physical properties of hybrid perovskites for photovoltaic applications,” Nat. Rev. Mater. 2, 17042 (2017).
[Crossref]

Huang, J.-A.

J.-A. Huang and L.-B. Luo, “Low-dimensional plasmonic photodetectors: recent progress and future opportunities,” Adv. Opt. Mater. 6, 1701282 (2018).
[Crossref]

Huang, Z. J.

Hunter, K. W.

V. G. Demillo, M. Liao, X. Zhu, D. Redelman, N. G. Publicover, and K. W. Hunter, “Fabrication of MnFe2O4–CuInS2/ZnS magnetofluorescent nanocomposites and their characterization,” Colloids Surf. A 464, 134–142 (2015).
[Crossref]

Iacopino, D.

A. Pescaglini and D. Iacopino, “Metal nanoparticle-semiconductor nanowire hybrid nanostructures for plasmon-enhanced optoelectronics and sensing,” J. Mater. Chem. C 3, 11785–11800 (2015).
[Crossref]

Ibanez, M.

C. Coughlan, M. Ibanez, O. Dobrozhan, A. Singh, A. Cabot, and K. M. Ryan, “Compound copper chalcogenide nanocrystals,” Chem. Rev. 117, 5865–6109 (2017).
[Crossref]

Ip, A. H.

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. J. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol. 7, 577–582 (2012).
[Crossref]

Ithurria, S.

E. Lhuillier, M. Scarafagio, P. Hease, B. Nadal, H. Aubin, X. Z. Xu, N. Lequeux, G. Patriarche, S. Ithurria, and B. Dubertret, “Infrared photodetection based on colloidal quantum-dot films with high mobility and optical absorption up to THz,” Nano Lett. 16, 1282–1286 (2016).
[Crossref]

Jain, A.

F. Fan, O. Voznyy, R. P. Sabatini, K. T. Bicanic, M. M. Adachi, J. R. McBride, K. R. Reid, Y. S. Park, X. Li, A. Jain, R. Quintero-Bermudez, M. Saravanapavanantham, M. Liu, M. Korkusinski, P. Hawrylak, V. I. Klimov, S. J. Rosenthal, S. Hoogland, and E. H. Sargent, “Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy,” Nature 544, 75–79 (2017).
[Crossref]

Jang, H. S.

Jeon, D. Y.

H. S. Choi, Y. Kim, J. C. Park, M. H. Oh, D. Y. Jeon, and Y. S. Nam, “Highly luminescent, off-stoichiometric CuxInyS2/ZnS quantum dots for near-infrared fluorescence bio-imaging,” RSC Adv. 5, 43449–43455 (2015).
[Crossref]

Jo, J. W.

Y. Kim, K. Bicanic, H. Tan, O. Ouellette, B. R. Sutherland, F. P. Garcia de Arquer, J. W. Jo, M. Liu, B. Sun, M. Liu, S. Hoogland, and E. H. Sargent, “Nanoimprint-transfer-patterned solids enhance light absorption in colloidal quantum dot solar cells,” Nano Lett. 17, 2349–2353 (2017).
[Crossref]

Kagan, C. R.

C. R. Kagan, E. Lifshitz, E. H. Sargent, and D. V. Talapin, “Building devices from colloidal quantum dots,” Science 353, aac5523 (2016).
[Crossref]

Kanjanaboos, P.

X. Lan, O. Voznyy, A. Kiani, F. Pelayo, G. de Arquer, A. S. Abbas, G.-H. Kim, M. Liu, Z. Yang, G. Walters, J. Xu, M. Yuan, Z. Ning, F. Fan, P. Kanjanaboos, I. Kramer, D. Zhitomirsky, P. Lee, A. Perelgut, S. Hoogland, and E. H. Sargent, “Passivation using molecular halides increases quantum dot solar cell performance,” Adv. Mater. 28, 299–304 (2016).
[Crossref]

Kemp, K. W.

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. J. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol. 7, 577–582 (2012).
[Crossref]

Kiani, A.

X. Lan, O. Voznyy, A. Kiani, F. Pelayo, G. de Arquer, A. S. Abbas, G.-H. Kim, M. Liu, Z. Yang, G. Walters, J. Xu, M. Yuan, Z. Ning, F. Fan, P. Kanjanaboos, I. Kramer, D. Zhitomirsky, P. Lee, A. Perelgut, S. Hoogland, and E. H. Sargent, “Passivation using molecular halides increases quantum dot solar cell performance,” Adv. Mater. 28, 299–304 (2016).
[Crossref]

Kim, G.-H.

X. Lan, O. Voznyy, A. Kiani, F. Pelayo, G. de Arquer, A. S. Abbas, G.-H. Kim, M. Liu, Z. Yang, G. Walters, J. Xu, M. Yuan, Z. Ning, F. Fan, P. Kanjanaboos, I. Kramer, D. Zhitomirsky, P. Lee, A. Perelgut, S. Hoogland, and E. H. Sargent, “Passivation using molecular halides increases quantum dot solar cell performance,” Adv. Mater. 28, 299–304 (2016).
[Crossref]

Kim, J. H.

Kim, Y.

Y. Kim, K. Bicanic, H. Tan, O. Ouellette, B. R. Sutherland, F. P. Garcia de Arquer, J. W. Jo, M. Liu, B. Sun, M. Liu, S. Hoogland, and E. H. Sargent, “Nanoimprint-transfer-patterned solids enhance light absorption in colloidal quantum dot solar cells,” Nano Lett. 17, 2349–2353 (2017).
[Crossref]

H. S. Choi, Y. Kim, J. C. Park, M. H. Oh, D. Y. Jeon, and Y. S. Nam, “Highly luminescent, off-stoichiometric CuxInyS2/ZnS quantum dots for near-infrared fluorescence bio-imaging,” RSC Adv. 5, 43449–43455 (2015).
[Crossref]

Kim, Y. S.

C. C. Chang, Y. D. Sharma, Y. S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S. Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10, 1704–1709 (2010).
[Crossref]

Kinge, S.

Z. Yang, O. Voznyy, G. Walters, J. Z. Fan, M. Liu, S. Kinge, S. Hoogland, and E. H. Sargent, “Quantum dots in two-dimensional perovskite matrices for efficient near-infrared light emission,” ACS Photon. 4, 830–836 (2017).
[Crossref]

Kis, A.

J. Feng, M. Graf, K. Liu, D. Ovchinnikov, D. Dumcenco, M. Heiranian, V. Nandigana, N. R. Aluru, A. Kis, and A. Radenovic, “Single-layer MoS2 nanopores as nanopower generators,” Nature 536, 197–200 (2016).
[Crossref]

Klem, E. J. D.

S. A. McDonald, G. Konstantatos, S. G. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4, 138–142 (2005).
[Crossref]

Klimov, V. I.

F. Fan, O. Voznyy, R. P. Sabatini, K. T. Bicanic, M. M. Adachi, J. R. McBride, K. R. Reid, Y. S. Park, X. Li, A. Jain, R. Quintero-Bermudez, M. Saravanapavanantham, M. Liu, M. Korkusinski, P. Hawrylak, V. I. Klimov, S. J. Rosenthal, S. Hoogland, and E. H. Sargent, “Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy,” Nature 544, 75–79 (2017).
[Crossref]

Konstantatos, G.

D. Kufer and G. Konstantatos, “Photo-FETs: phototransistors enabled by 2D and 0D nanomaterials,” ACS Photon. 3, 2197–2210 (2016).
[Crossref]

G. Konstantatos and E. H. Sargent, “Nanostructured materials for photon detection,” Nat. Nanotechnol. 5, 391–400 (2010).
[Crossref]

S. A. McDonald, G. Konstantatos, S. G. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4, 138–142 (2005).
[Crossref]

Korgel, B. A.

M. G. Panthani, C. J. Stolle, D. K. Reid, D. J. Rhee, T. B. Harvey, V. A. Akhavan, Y. Yu, and B. A. Korgel, “CuInSe2 quantum dot solar cells with high open-circuit voltage,” J. Phys. Chem. Lett. 4, 2030–2034 (2013).
[Crossref]

C. J. Stolle, M. G. Panthani, T. B. Harvey, V. A. Akhavan, and B. A. Korgel, “Comparison of the photovoltaic response of oleylamine and inorganic ligand-capped CuInSe2 nanocrystals,” ACS Appl. Mater. Interface 4, 2757–2761 (2012).
[Crossref]

V. A. Akhavan, B. W. Goodfellow, M. G. Panthani, D. K. Reid, D. J. Hellebusch, T. Adachi, and B. A. Korgel, “Spray-deposited CuInSe2 nanocrystal photovoltaics,” Energy Environ. Sci. 3, 1600–1606 (2010).
[Crossref]

V. A. Akhavan, M. G. Panthani, B. W. Goodfellow, D. K. Reid, and B. A. Korgel, “Thickness-limited performance of CuInSe2 nanocrystal photovoltaic devices,” Opt. Express 18, A411–A420 (2010).
[Crossref]

M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, P. F. Barbara, and B. A. Korgel, “Synthesis of CuInS2, CuInSe2, and Cu(InxGa1-x)Se2 (CIGS) nanocrystal ‘inks’ for printable photovoltaics,” J. Am. Chem. Soc. 130, 16770–16777 (2008).
[Crossref]

Korkusinski, M.

F. Fan, O. Voznyy, R. P. Sabatini, K. T. Bicanic, M. M. Adachi, J. R. McBride, K. R. Reid, Y. S. Park, X. Li, A. Jain, R. Quintero-Bermudez, M. Saravanapavanantham, M. Liu, M. Korkusinski, P. Hawrylak, V. I. Klimov, S. J. Rosenthal, S. Hoogland, and E. H. Sargent, “Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy,” Nature 544, 75–79 (2017).
[Crossref]

Kovalenko, M. V.

T. Rauch, M. Boberl, S. F. Tedde, J. Furst, M. V. Kovalenko, G. N. Hesser, U. Lemmer, W. Heiss, and O. Hayden, “Near-infrared imaging with quantum-dot-sensitized organic photodiodes,” Nat. Photonics 3, 332–336 (2009).
[Crossref]

Kramer, I.

X. Lan, O. Voznyy, A. Kiani, F. Pelayo, G. de Arquer, A. S. Abbas, G.-H. Kim, M. Liu, Z. Yang, G. Walters, J. Xu, M. Yuan, Z. Ning, F. Fan, P. Kanjanaboos, I. Kramer, D. Zhitomirsky, P. Lee, A. Perelgut, S. Hoogland, and E. H. Sargent, “Passivation using molecular halides increases quantum dot solar cell performance,” Adv. Mater. 28, 299–304 (2016).
[Crossref]

Kramer, I. J.

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. J. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol. 7, 577–582 (2012).
[Crossref]

Krishna, S.

C. C. Chang, Y. D. Sharma, Y. S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S. Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10, 1704–1709 (2010).
[Crossref]

Kufer, D.

D. Kufer and G. Konstantatos, “Photo-FETs: phototransistors enabled by 2D and 0D nanomaterials,” ACS Photon. 3, 2197–2210 (2016).
[Crossref]

Kung, P. K.

S. F. Leung, K. T. Ho, P. K. Kung, V. K. S. Hsiao, H. N. Alshareef, Z. L. Wang, and J. H. He, “A self-powered and flexible organometallic halide perovskite photodetector with very high detectivity,” Adv. Mater. 30, 1704611 (2018).
[Crossref]

Labelle, A. J.

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. J. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol. 7, 577–582 (2012).
[Crossref]

Lan, X.

X. Lan, O. Voznyy, A. Kiani, F. Pelayo, G. de Arquer, A. S. Abbas, G.-H. Kim, M. Liu, Z. Yang, G. Walters, J. Xu, M. Yuan, Z. Ning, F. Fan, P. Kanjanaboos, I. Kramer, D. Zhitomirsky, P. Lee, A. Perelgut, S. Hoogland, and E. H. Sargent, “Passivation using molecular halides increases quantum dot solar cell performance,” Adv. Mater. 28, 299–304 (2016).
[Crossref]

Lee, K. H.

Lee, P.

X. Lan, O. Voznyy, A. Kiani, F. Pelayo, G. de Arquer, A. S. Abbas, G.-H. Kim, M. Liu, Z. Yang, G. Walters, J. Xu, M. Yuan, Z. Ning, F. Fan, P. Kanjanaboos, I. Kramer, D. Zhitomirsky, P. Lee, A. Perelgut, S. Hoogland, and E. H. Sargent, “Passivation using molecular halides increases quantum dot solar cell performance,” Adv. Mater. 28, 299–304 (2016).
[Crossref]

Lemmer, U.

T. Rauch, M. Boberl, S. F. Tedde, J. Furst, M. V. Kovalenko, G. N. Hesser, U. Lemmer, W. Heiss, and O. Hayden, “Near-infrared imaging with quantum-dot-sensitized organic photodiodes,” Nat. Photonics 3, 332–336 (2009).
[Crossref]

Lequeux, N.

E. Lhuillier, M. Scarafagio, P. Hease, B. Nadal, H. Aubin, X. Z. Xu, N. Lequeux, G. Patriarche, S. Ithurria, and B. Dubertret, “Infrared photodetection based on colloidal quantum-dot films with high mobility and optical absorption up to THz,” Nano Lett. 16, 1282–1286 (2016).
[Crossref]

Leung, S. F.

S. F. Leung, K. T. Ho, P. K. Kung, V. K. S. Hsiao, H. N. Alshareef, Z. L. Wang, and J. H. He, “A self-powered and flexible organometallic halide perovskite photodetector with very high detectivity,” Adv. Mater. 30, 1704611 (2018).
[Crossref]

Levina, L.

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. J. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol. 7, 577–582 (2012).
[Crossref]

S. A. McDonald, G. Konstantatos, S. G. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4, 138–142 (2005).
[Crossref]

Lhuillier, E.

E. Lhuillier, M. Scarafagio, P. Hease, B. Nadal, H. Aubin, X. Z. Xu, N. Lequeux, G. Patriarche, S. Ithurria, and B. Dubertret, “Infrared photodetection based on colloidal quantum-dot films with high mobility and optical absorption up to THz,” Nano Lett. 16, 1282–1286 (2016).
[Crossref]

Li, F.

F. Li, C. Ma, H. Wang, W. Hu, W. Yu, A. D. Sheikh, and T. Wu, “Ambipolar solution-processed hybrid perovskite phototransistors,” Nat. Commun. 6, 8238 (2015).
[Crossref]

Li, H.

X. Yuan, R. Ma, W. Zhang, J. Hua, X. Meng, X. Zhong, J. Zhang, J. Zhao, and H. Li, “Dual emissive manganese and copper co-doped Zn-In-S quantum dots as a single color-converter for high color rendering white-light-emitting diodes,” ACS Appl. Mater. Interface 7, 8659–8666 (2015).
[Crossref]

Li, J.

Y. Dong, Y. Gu, Y. Zou, J. Song, L. Xu, J. Li, J. Xue, X. Li, and H. Zeng, “Improving all-inorganic perovskite photodetectors by preferred orientation and plasmonic effect,” Small 12, 5622–5632 (2016).
[Crossref]

Li, J. H.

J. H. Li, L. Y. Niu, Z. J. Zheng, and F. Yan, “Photosensitive graphene transistors,” Adv. Mater. 26, 5239–5273 (2014).
[Crossref]

Li, T.-L.

T.-L. Li, C.-D. Cai, T.-F. Yeh, and H. Teng, “Capped CuInS2 quantum dots for H2 evolution from water under visible light illumination,” J. Alloys Compd. 550, 326–330 (2013).
[Crossref]

Li, X.

F. Fan, O. Voznyy, R. P. Sabatini, K. T. Bicanic, M. M. Adachi, J. R. McBride, K. R. Reid, Y. S. Park, X. Li, A. Jain, R. Quintero-Bermudez, M. Saravanapavanantham, M. Liu, M. Korkusinski, P. Hawrylak, V. I. Klimov, S. J. Rosenthal, S. Hoogland, and E. H. Sargent, “Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy,” Nature 544, 75–79 (2017).
[Crossref]

Y. Dong, Y. Gu, Y. Zou, J. Song, L. Xu, J. Li, J. Xue, X. Li, and H. Zeng, “Improving all-inorganic perovskite photodetectors by preferred orientation and plasmonic effect,” Small 12, 5622–5632 (2016).
[Crossref]

C. Dong, Z. Liu, L. Zhang, W. Guo, X. Li, J. Liu, H. Wang, and J. Chang, “pHe-induced charge-reversible NIR fluorescence nanoprobe for tumor-specific imaging,” ACS Appl. Mater. Interface 7, 7566–7575 (2015).
[Crossref]

Li, Z.

Z. Wang, R. Yu, C. Pan, Z. Li, J. Yang, F. Yi, and Z. L. Wang, “Light-induced pyroelectric effect as an effective approach for ultrafast ultraviolet nanosensing,” Nat. Commun. 6, 8401 (2015).
[Crossref]

Liang, F. X.

Liao, L.

F. Gong, W. Luo, J. Wang, P. Wang, H. Fang, D. Zheng, N. Guo, J. Wang, M. Luo, J. C. Ho, X. Chen, W. Lu, L. Liao, and W. Hu, “High-sensitivity floating-gate phototransistors based on WS2 and MoS2,” Adv. Funct. Mater. 26, 6084–6090 (2016).
[Crossref]

Liao, M.

V. G. Demillo, M. Liao, X. Zhu, D. Redelman, N. G. Publicover, and K. W. Hunter, “Fabrication of MnFe2O4–CuInS2/ZnS magnetofluorescent nanocomposites and their characterization,” Colloids Surf. A 464, 134–142 (2015).
[Crossref]

Lifshitz, E.

C. R. Kagan, E. Lifshitz, E. H. Sargent, and D. V. Talapin, “Building devices from colloidal quantum dots,” Science 353, aac5523 (2016).
[Crossref]

Lin, S. Y.

C. C. Chang, Y. D. Sharma, Y. S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S. Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10, 1704–1709 (2010).
[Crossref]

Liu, F.

F. Liu, J. Zhu, Y. Xu, L. Zhou, and S. Dai, “Scalable noninjection phosphine-free synthesis and optical properties of tetragonal-phase CuInSe2 quantum dots,” Nanoscale 8, 10021–10025 (2016).
[Crossref]

Liu, H.

H. Liu, C. Gu, W. Xiong, and M. Zhang, “A sensitive hydrogen peroxide biosensor using ultra-small CuInS2 nanocrystals as peroxidase mimics,” Sens. Actuators B Chem. 209, 670–676 (2015).
[Crossref]

Liu, J.

C. Dong, Z. Liu, L. Zhang, W. Guo, X. Li, J. Liu, H. Wang, and J. Chang, “pHe-induced charge-reversible NIR fluorescence nanoprobe for tumor-specific imaging,” ACS Appl. Mater. Interface 7, 7566–7575 (2015).
[Crossref]

Liu, K.

J. Feng, M. Graf, K. Liu, D. Ovchinnikov, D. Dumcenco, M. Heiranian, V. Nandigana, N. R. Aluru, A. Kis, and A. Radenovic, “Single-layer MoS2 nanopores as nanopower generators,” Nature 536, 197–200 (2016).
[Crossref]

Liu, M.

Y. Kim, K. Bicanic, H. Tan, O. Ouellette, B. R. Sutherland, F. P. Garcia de Arquer, J. W. Jo, M. Liu, B. Sun, M. Liu, S. Hoogland, and E. H. Sargent, “Nanoimprint-transfer-patterned solids enhance light absorption in colloidal quantum dot solar cells,” Nano Lett. 17, 2349–2353 (2017).
[Crossref]

F. Fan, O. Voznyy, R. P. Sabatini, K. T. Bicanic, M. M. Adachi, J. R. McBride, K. R. Reid, Y. S. Park, X. Li, A. Jain, R. Quintero-Bermudez, M. Saravanapavanantham, M. Liu, M. Korkusinski, P. Hawrylak, V. I. Klimov, S. J. Rosenthal, S. Hoogland, and E. H. Sargent, “Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy,” Nature 544, 75–79 (2017).
[Crossref]

Y. Kim, K. Bicanic, H. Tan, O. Ouellette, B. R. Sutherland, F. P. Garcia de Arquer, J. W. Jo, M. Liu, B. Sun, M. Liu, S. Hoogland, and E. H. Sargent, “Nanoimprint-transfer-patterned solids enhance light absorption in colloidal quantum dot solar cells,” Nano Lett. 17, 2349–2353 (2017).
[Crossref]

Z. Yang, O. Voznyy, G. Walters, J. Z. Fan, M. Liu, S. Kinge, S. Hoogland, and E. H. Sargent, “Quantum dots in two-dimensional perovskite matrices for efficient near-infrared light emission,” ACS Photon. 4, 830–836 (2017).
[Crossref]

X. Lan, O. Voznyy, A. Kiani, F. Pelayo, G. de Arquer, A. S. Abbas, G.-H. Kim, M. Liu, Z. Yang, G. Walters, J. Xu, M. Yuan, Z. Ning, F. Fan, P. Kanjanaboos, I. Kramer, D. Zhitomirsky, P. Lee, A. Perelgut, S. Hoogland, and E. H. Sargent, “Passivation using molecular halides increases quantum dot solar cell performance,” Adv. Mater. 28, 299–304 (2016).
[Crossref]

Liu, W.

W. Liu, Y. Zhang, D. Wang, T. Zhang, Y. Feng, W. Gao, J. Yin, Y. Wang, A. P. Riley, M. Z. Hu, W. W. Yu, and C. Ruan, “ZnCuInS/ZnSe/ZnS quantum dot-based downconversion light-emitting diodes and their thermal effect,” J. Nanomater. 16, 298614 (2015).
[Crossref]

Liu, Z.

C. Dong, Z. Liu, L. Zhang, W. Guo, X. Li, J. Liu, H. Wang, and J. Chang, “pHe-induced charge-reversible NIR fluorescence nanoprobe for tumor-specific imaging,” ACS Appl. Mater. Interface 7, 7566–7575 (2015).
[Crossref]

Lu, W.

F. Gong, W. Luo, J. Wang, P. Wang, H. Fang, D. Zheng, N. Guo, J. Wang, M. Luo, J. C. Ho, X. Chen, W. Lu, L. Liao, and W. Hu, “High-sensitivity floating-gate phototransistors based on WS2 and MoS2,” Adv. Funct. Mater. 26, 6084–6090 (2016).
[Crossref]

Luo, L. B.

Luo, L.-B.

J.-A. Huang and L.-B. Luo, “Low-dimensional plasmonic photodetectors: recent progress and future opportunities,” Adv. Opt. Mater. 6, 1701282 (2018).
[Crossref]

Luo, M.

F. Gong, W. Luo, J. Wang, P. Wang, H. Fang, D. Zheng, N. Guo, J. Wang, M. Luo, J. C. Ho, X. Chen, W. Lu, L. Liao, and W. Hu, “High-sensitivity floating-gate phototransistors based on WS2 and MoS2,” Adv. Funct. Mater. 26, 6084–6090 (2016).
[Crossref]

Luo, W.

F. Gong, W. Luo, J. Wang, P. Wang, H. Fang, D. Zheng, N. Guo, J. Wang, M. Luo, J. C. Ho, X. Chen, W. Lu, L. Liao, and W. Hu, “High-sensitivity floating-gate phototransistors based on WS2 and MoS2,” Adv. Funct. Mater. 26, 6084–6090 (2016).
[Crossref]

Ma, C.

F. Li, C. Ma, H. Wang, W. Hu, W. Yu, A. D. Sheikh, and T. Wu, “Ambipolar solution-processed hybrid perovskite phototransistors,” Nat. Commun. 6, 8238 (2015).
[Crossref]

Ma, R.

X. Yuan, R. Ma, W. Zhang, J. Hua, X. Meng, X. Zhong, J. Zhang, J. Zhao, and H. Li, “Dual emissive manganese and copper co-doped Zn-In-S quantum dots as a single color-converter for high color rendering white-light-emitting diodes,” ACS Appl. Mater. Interface 7, 8659–8666 (2015).
[Crossref]

McBride, J. R.

F. Fan, O. Voznyy, R. P. Sabatini, K. T. Bicanic, M. M. Adachi, J. R. McBride, K. R. Reid, Y. S. Park, X. Li, A. Jain, R. Quintero-Bermudez, M. Saravanapavanantham, M. Liu, M. Korkusinski, P. Hawrylak, V. I. Klimov, S. J. Rosenthal, S. Hoogland, and E. H. Sargent, “Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy,” Nature 544, 75–79 (2017).
[Crossref]

McDonald, S. A.

S. A. McDonald, G. Konstantatos, S. G. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4, 138–142 (2005).
[Crossref]

Meng, X.

X. Yuan, R. Ma, W. Zhang, J. Hua, X. Meng, X. Zhong, J. Zhang, J. Zhao, and H. Li, “Dual emissive manganese and copper co-doped Zn-In-S quantum dots as a single color-converter for high color rendering white-light-emitting diodes,” ACS Appl. Mater. Interface 7, 8659–8666 (2015).
[Crossref]

Nadal, B.

E. Lhuillier, M. Scarafagio, P. Hease, B. Nadal, H. Aubin, X. Z. Xu, N. Lequeux, G. Patriarche, S. Ithurria, and B. Dubertret, “Infrared photodetection based on colloidal quantum-dot films with high mobility and optical absorption up to THz,” Nano Lett. 16, 1282–1286 (2016).
[Crossref]

Nam, Y. S.

H. S. Choi, Y. Kim, J. C. Park, M. H. Oh, D. Y. Jeon, and Y. S. Nam, “Highly luminescent, off-stoichiometric CuxInyS2/ZnS quantum dots for near-infrared fluorescence bio-imaging,” RSC Adv. 5, 43449–43455 (2015).
[Crossref]

Nandigana, V.

J. Feng, M. Graf, K. Liu, D. Ovchinnikov, D. Dumcenco, M. Heiranian, V. Nandigana, N. R. Aluru, A. Kis, and A. Radenovic, “Single-layer MoS2 nanopores as nanopower generators,” Nature 536, 197–200 (2016).
[Crossref]

Ning, Z.

X. Lan, O. Voznyy, A. Kiani, F. Pelayo, G. de Arquer, A. S. Abbas, G.-H. Kim, M. Liu, Z. Yang, G. Walters, J. Xu, M. Yuan, Z. Ning, F. Fan, P. Kanjanaboos, I. Kramer, D. Zhitomirsky, P. Lee, A. Perelgut, S. Hoogland, and E. H. Sargent, “Passivation using molecular halides increases quantum dot solar cell performance,” Adv. Mater. 28, 299–304 (2016).
[Crossref]

Ning, Z. J.

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. J. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol. 7, 577–582 (2012).
[Crossref]

Niu, L. Y.

J. H. Li, L. Y. Niu, Z. J. Zheng, and F. Yan, “Photosensitive graphene transistors,” Adv. Mater. 26, 5239–5273 (2014).
[Crossref]

Oh, M. H.

H. S. Choi, Y. Kim, J. C. Park, M. H. Oh, D. Y. Jeon, and Y. S. Nam, “Highly luminescent, off-stoichiometric CuxInyS2/ZnS quantum dots for near-infrared fluorescence bio-imaging,” RSC Adv. 5, 43449–43455 (2015).
[Crossref]

Osterloh, F. E.

F. E. Osterloh, “Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting,” Chem. Soc. Rev. 42, 2294–2320 (2013).
[Crossref]

Ouellette, O.

Y. Kim, K. Bicanic, H. Tan, O. Ouellette, B. R. Sutherland, F. P. Garcia de Arquer, J. W. Jo, M. Liu, B. Sun, M. Liu, S. Hoogland, and E. H. Sargent, “Nanoimprint-transfer-patterned solids enhance light absorption in colloidal quantum dot solar cells,” Nano Lett. 17, 2349–2353 (2017).
[Crossref]

Ovchinnikov, D.

J. Feng, M. Graf, K. Liu, D. Ovchinnikov, D. Dumcenco, M. Heiranian, V. Nandigana, N. R. Aluru, A. Kis, and A. Radenovic, “Single-layer MoS2 nanopores as nanopower generators,” Nature 536, 197–200 (2016).
[Crossref]

Ozbay, E.

S. Butun, N. A. Cinel, and E. Ozbay, “LSPR enhanced MSM UV photodetectors,” Nanotechnology 23, 444010 (2012).
[Crossref]

Pan, C.

Z. Wang, R. Yu, C. Pan, Z. Li, J. Yang, F. Yi, and Z. L. Wang, “Light-induced pyroelectric effect as an effective approach for ultrafast ultraviolet nanosensing,” Nat. Commun. 6, 8401 (2015).
[Crossref]

Panthani, M. G.

M. G. Panthani, C. J. Stolle, D. K. Reid, D. J. Rhee, T. B. Harvey, V. A. Akhavan, Y. Yu, and B. A. Korgel, “CuInSe2 quantum dot solar cells with high open-circuit voltage,” J. Phys. Chem. Lett. 4, 2030–2034 (2013).
[Crossref]

C. J. Stolle, M. G. Panthani, T. B. Harvey, V. A. Akhavan, and B. A. Korgel, “Comparison of the photovoltaic response of oleylamine and inorganic ligand-capped CuInSe2 nanocrystals,” ACS Appl. Mater. Interface 4, 2757–2761 (2012).
[Crossref]

V. A. Akhavan, B. W. Goodfellow, M. G. Panthani, D. K. Reid, D. J. Hellebusch, T. Adachi, and B. A. Korgel, “Spray-deposited CuInSe2 nanocrystal photovoltaics,” Energy Environ. Sci. 3, 1600–1606 (2010).
[Crossref]

V. A. Akhavan, M. G. Panthani, B. W. Goodfellow, D. K. Reid, and B. A. Korgel, “Thickness-limited performance of CuInSe2 nanocrystal photovoltaic devices,” Opt. Express 18, A411–A420 (2010).
[Crossref]

M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, P. F. Barbara, and B. A. Korgel, “Synthesis of CuInS2, CuInSe2, and Cu(InxGa1-x)Se2 (CIGS) nanocrystal ‘inks’ for printable photovoltaics,” J. Am. Chem. Soc. 130, 16770–16777 (2008).
[Crossref]

Park, J. C.

H. S. Choi, Y. Kim, J. C. Park, M. H. Oh, D. Y. Jeon, and Y. S. Nam, “Highly luminescent, off-stoichiometric CuxInyS2/ZnS quantum dots for near-infrared fluorescence bio-imaging,” RSC Adv. 5, 43449–43455 (2015).
[Crossref]

Park, Y. S.

F. Fan, O. Voznyy, R. P. Sabatini, K. T. Bicanic, M. M. Adachi, J. R. McBride, K. R. Reid, Y. S. Park, X. Li, A. Jain, R. Quintero-Bermudez, M. Saravanapavanantham, M. Liu, M. Korkusinski, P. Hawrylak, V. I. Klimov, S. J. Rosenthal, S. Hoogland, and E. H. Sargent, “Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy,” Nature 544, 75–79 (2017).
[Crossref]

Patriarche, G.

E. Lhuillier, M. Scarafagio, P. Hease, B. Nadal, H. Aubin, X. Z. Xu, N. Lequeux, G. Patriarche, S. Ithurria, and B. Dubertret, “Infrared photodetection based on colloidal quantum-dot films with high mobility and optical absorption up to THz,” Nano Lett. 16, 1282–1286 (2016).
[Crossref]

Pelayo, F.

X. Lan, O. Voznyy, A. Kiani, F. Pelayo, G. de Arquer, A. S. Abbas, G.-H. Kim, M. Liu, Z. Yang, G. Walters, J. Xu, M. Yuan, Z. Ning, F. Fan, P. Kanjanaboos, I. Kramer, D. Zhitomirsky, P. Lee, A. Perelgut, S. Hoogland, and E. H. Sargent, “Passivation using molecular halides increases quantum dot solar cell performance,” Adv. Mater. 28, 299–304 (2016).
[Crossref]

Perelgut, A.

X. Lan, O. Voznyy, A. Kiani, F. Pelayo, G. de Arquer, A. S. Abbas, G.-H. Kim, M. Liu, Z. Yang, G. Walters, J. Xu, M. Yuan, Z. Ning, F. Fan, P. Kanjanaboos, I. Kramer, D. Zhitomirsky, P. Lee, A. Perelgut, S. Hoogland, and E. H. Sargent, “Passivation using molecular halides increases quantum dot solar cell performance,” Adv. Mater. 28, 299–304 (2016).
[Crossref]

Pescaglini, A.

A. Pescaglini and D. Iacopino, “Metal nanoparticle-semiconductor nanowire hybrid nanostructures for plasmon-enhanced optoelectronics and sensing,” J. Mater. Chem. C 3, 11785–11800 (2015).
[Crossref]

Publicover, N. G.

V. G. Demillo, M. Liao, X. Zhu, D. Redelman, N. G. Publicover, and K. W. Hunter, “Fabrication of MnFe2O4–CuInS2/ZnS magnetofluorescent nanocomposites and their characterization,” Colloids Surf. A 464, 134–142 (2015).
[Crossref]

Qi, L. M.

D. Y. Zhang, L. Gan, Y. Cao, Q. Wang, L. M. Qi, and X. F. Guo, “Understanding charge transfer at PbS-decorated graphene surfaces toward a tunable photosensor,” Adv. Mater. 24, 2715–2720 (2012).
[Crossref]

Qin, Y.

S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang, and Z. L. Wang, “Self-powered nanowire devices,” Nat. Nanotechnol. 5, 366–373 (2010).
[Crossref]

Quintero-Bermudez, R.

F. Fan, O. Voznyy, R. P. Sabatini, K. T. Bicanic, M. M. Adachi, J. R. McBride, K. R. Reid, Y. S. Park, X. Li, A. Jain, R. Quintero-Bermudez, M. Saravanapavanantham, M. Liu, M. Korkusinski, P. Hawrylak, V. I. Klimov, S. J. Rosenthal, S. Hoogland, and E. H. Sargent, “Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy,” Nature 544, 75–79 (2017).
[Crossref]

Radenovic, A.

J. Feng, M. Graf, K. Liu, D. Ovchinnikov, D. Dumcenco, M. Heiranian, V. Nandigana, N. R. Aluru, A. Kis, and A. Radenovic, “Single-layer MoS2 nanopores as nanopower generators,” Nature 536, 197–200 (2016).
[Crossref]

Rauch, T.

T. Rauch, M. Boberl, S. F. Tedde, J. Furst, M. V. Kovalenko, G. N. Hesser, U. Lemmer, W. Heiss, and O. Hayden, “Near-infrared imaging with quantum-dot-sensitized organic photodiodes,” Nat. Photonics 3, 332–336 (2009).
[Crossref]

Redelman, D.

V. G. Demillo, M. Liao, X. Zhu, D. Redelman, N. G. Publicover, and K. W. Hunter, “Fabrication of MnFe2O4–CuInS2/ZnS magnetofluorescent nanocomposites and their characterization,” Colloids Surf. A 464, 134–142 (2015).
[Crossref]

Reid, D. K.

M. G. Panthani, C. J. Stolle, D. K. Reid, D. J. Rhee, T. B. Harvey, V. A. Akhavan, Y. Yu, and B. A. Korgel, “CuInSe2 quantum dot solar cells with high open-circuit voltage,” J. Phys. Chem. Lett. 4, 2030–2034 (2013).
[Crossref]

V. A. Akhavan, B. W. Goodfellow, M. G. Panthani, D. K. Reid, D. J. Hellebusch, T. Adachi, and B. A. Korgel, “Spray-deposited CuInSe2 nanocrystal photovoltaics,” Energy Environ. Sci. 3, 1600–1606 (2010).
[Crossref]

V. A. Akhavan, M. G. Panthani, B. W. Goodfellow, D. K. Reid, and B. A. Korgel, “Thickness-limited performance of CuInSe2 nanocrystal photovoltaic devices,” Opt. Express 18, A411–A420 (2010).
[Crossref]

Reid, K. R.

F. Fan, O. Voznyy, R. P. Sabatini, K. T. Bicanic, M. M. Adachi, J. R. McBride, K. R. Reid, Y. S. Park, X. Li, A. Jain, R. Quintero-Bermudez, M. Saravanapavanantham, M. Liu, M. Korkusinski, P. Hawrylak, V. I. Klimov, S. J. Rosenthal, S. Hoogland, and E. H. Sargent, “Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy,” Nature 544, 75–79 (2017).
[Crossref]

Rhee, D. J.

M. G. Panthani, C. J. Stolle, D. K. Reid, D. J. Rhee, T. B. Harvey, V. A. Akhavan, Y. Yu, and B. A. Korgel, “CuInSe2 quantum dot solar cells with high open-circuit voltage,” J. Phys. Chem. Lett. 4, 2030–2034 (2013).
[Crossref]

Riley, A. P.

W. Liu, Y. Zhang, D. Wang, T. Zhang, Y. Feng, W. Gao, J. Yin, Y. Wang, A. P. Riley, M. Z. Hu, W. W. Yu, and C. Ruan, “ZnCuInS/ZnSe/ZnS quantum dot-based downconversion light-emitting diodes and their thermal effect,” J. Nanomater. 16, 298614 (2015).
[Crossref]

Rollny, L. R.

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. J. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol. 7, 577–582 (2012).
[Crossref]

Rosenthal, S. J.

F. Fan, O. Voznyy, R. P. Sabatini, K. T. Bicanic, M. M. Adachi, J. R. McBride, K. R. Reid, Y. S. Park, X. Li, A. Jain, R. Quintero-Bermudez, M. Saravanapavanantham, M. Liu, M. Korkusinski, P. Hawrylak, V. I. Klimov, S. J. Rosenthal, S. Hoogland, and E. H. Sargent, “Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy,” Nature 544, 75–79 (2017).
[Crossref]

Ruan, C.

W. Liu, Y. Zhang, D. Wang, T. Zhang, Y. Feng, W. Gao, J. Yin, Y. Wang, A. P. Riley, M. Z. Hu, W. W. Yu, and C. Ruan, “ZnCuInS/ZnSe/ZnS quantum dot-based downconversion light-emitting diodes and their thermal effect,” J. Nanomater. 16, 298614 (2015).
[Crossref]

Ryan, K. M.

C. Coughlan, M. Ibanez, O. Dobrozhan, A. Singh, A. Cabot, and K. M. Ryan, “Compound copper chalcogenide nanocrystals,” Chem. Rev. 117, 5865–6109 (2017).
[Crossref]

Sabatini, R. P.

F. Fan, O. Voznyy, R. P. Sabatini, K. T. Bicanic, M. M. Adachi, J. R. McBride, K. R. Reid, Y. S. Park, X. Li, A. Jain, R. Quintero-Bermudez, M. Saravanapavanantham, M. Liu, M. Korkusinski, P. Hawrylak, V. I. Klimov, S. J. Rosenthal, S. Hoogland, and E. H. Sargent, “Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy,” Nature 544, 75–79 (2017).
[Crossref]

Saravanapavanantham, M.

F. Fan, O. Voznyy, R. P. Sabatini, K. T. Bicanic, M. M. Adachi, J. R. McBride, K. R. Reid, Y. S. Park, X. Li, A. Jain, R. Quintero-Bermudez, M. Saravanapavanantham, M. Liu, M. Korkusinski, P. Hawrylak, V. I. Klimov, S. J. Rosenthal, S. Hoogland, and E. H. Sargent, “Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy,” Nature 544, 75–79 (2017).
[Crossref]

Sargent, E. H.

Y. Kim, K. Bicanic, H. Tan, O. Ouellette, B. R. Sutherland, F. P. Garcia de Arquer, J. W. Jo, M. Liu, B. Sun, M. Liu, S. Hoogland, and E. H. Sargent, “Nanoimprint-transfer-patterned solids enhance light absorption in colloidal quantum dot solar cells,” Nano Lett. 17, 2349–2353 (2017).
[Crossref]

Z. Yang, O. Voznyy, G. Walters, J. Z. Fan, M. Liu, S. Kinge, S. Hoogland, and E. H. Sargent, “Quantum dots in two-dimensional perovskite matrices for efficient near-infrared light emission,” ACS Photon. 4, 830–836 (2017).
[Crossref]

F. Fan, O. Voznyy, R. P. Sabatini, K. T. Bicanic, M. M. Adachi, J. R. McBride, K. R. Reid, Y. S. Park, X. Li, A. Jain, R. Quintero-Bermudez, M. Saravanapavanantham, M. Liu, M. Korkusinski, P. Hawrylak, V. I. Klimov, S. J. Rosenthal, S. Hoogland, and E. H. Sargent, “Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy,” Nature 544, 75–79 (2017).
[Crossref]

X. Lan, O. Voznyy, A. Kiani, F. Pelayo, G. de Arquer, A. S. Abbas, G.-H. Kim, M. Liu, Z. Yang, G. Walters, J. Xu, M. Yuan, Z. Ning, F. Fan, P. Kanjanaboos, I. Kramer, D. Zhitomirsky, P. Lee, A. Perelgut, S. Hoogland, and E. H. Sargent, “Passivation using molecular halides increases quantum dot solar cell performance,” Adv. Mater. 28, 299–304 (2016).
[Crossref]

C. R. Kagan, E. Lifshitz, E. H. Sargent, and D. V. Talapin, “Building devices from colloidal quantum dots,” Science 353, aac5523 (2016).
[Crossref]

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. J. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol. 7, 577–582 (2012).
[Crossref]

G. Konstantatos and E. H. Sargent, “Nanostructured materials for photon detection,” Nat. Nanotechnol. 5, 391–400 (2010).
[Crossref]

S. A. McDonald, G. Konstantatos, S. G. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4, 138–142 (2005).
[Crossref]

Scarafagio, M.

E. Lhuillier, M. Scarafagio, P. Hease, B. Nadal, H. Aubin, X. Z. Xu, N. Lequeux, G. Patriarche, S. Ithurria, and B. Dubertret, “Infrared photodetection based on colloidal quantum-dot films with high mobility and optical absorption up to THz,” Nano Lett. 16, 1282–1286 (2016).
[Crossref]

Schmidtke, J. P.

M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, P. F. Barbara, and B. A. Korgel, “Synthesis of CuInS2, CuInSe2, and Cu(InxGa1-x)Se2 (CIGS) nanocrystal ‘inks’ for printable photovoltaics,” J. Am. Chem. Soc. 130, 16770–16777 (2008).
[Crossref]

Shao, Y.

J. Huang, Y. Yuan, Y. Shao, and Y. Yan, “Understanding the physical properties of hybrid perovskites for photovoltaic applications,” Nat. Rev. Mater. 2, 17042 (2017).
[Crossref]

Sharma, Y. D.

C. C. Chang, Y. D. Sharma, Y. S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S. Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10, 1704–1709 (2010).
[Crossref]

Sheikh, A. D.

F. Li, C. Ma, H. Wang, W. Hu, W. Yu, A. D. Sheikh, and T. Wu, “Ambipolar solution-processed hybrid perovskite phototransistors,” Nat. Commun. 6, 8238 (2015).
[Crossref]

Shen, T.

R. Guo, T. Shen, and J. Tian, “Broadband hybrid organic/CuInSe2 quantum dot photodetectors,” J. Mater. Chem. C 6, 2573–2579 (2018).
[Crossref]

Shenoi, R. V.

C. C. Chang, Y. D. Sharma, Y. S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S. Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10, 1704–1709 (2010).
[Crossref]

Singh, A.

C. Coughlan, M. Ibanez, O. Dobrozhan, A. Singh, A. Cabot, and K. M. Ryan, “Compound copper chalcogenide nanocrystals,” Chem. Rev. 117, 5865–6109 (2017).
[Crossref]

Song, J.

Y. Dong, Y. Gu, Y. Zou, J. Song, L. Xu, J. Li, J. Xue, X. Li, and H. Zeng, “Improving all-inorganic perovskite photodetectors by preferred orientation and plasmonic effect,” Small 12, 5622–5632 (2016).
[Crossref]

Song, X.

Y. Yu, Y. Zhang, Z. Zhang, H. Zhang, X. Song, M. Cao, Y. Che, H. Dai, J. Yang, J. Wang, H. Zhang, and J. Yao, “Broadband phototransistor based on CH3NH3PbI3 perovskite and PbSe quantum dot heterojunction,” J. Phys. Chem. Lett. 8, 445–451 (2017).
[Crossref]

Y. Yu, Y. Zhang, X. Song, H. Zhang, M. Cao, Y. Che, H. Dai, J. Yang, H. Zhang, and J. Yao, “PbS-decorated WS2 phototransistors with fast response,” ACS Photon. 4, 950–956 (2017).
[Crossref]

Y. Yu, Y. Zhang, X. Song, H. Zhang, M. Cao, Y. Che, H. Dai, J. Yang, H. Zhang, and J. Yao, “High performances for solution-processed 0D–0D heterojunction phototransistors,” Adv. Opt. Mater. 5, 1700565 (2017).
[Crossref]

Stolle, C. J.

M. G. Panthani, C. J. Stolle, D. K. Reid, D. J. Rhee, T. B. Harvey, V. A. Akhavan, Y. Yu, and B. A. Korgel, “CuInSe2 quantum dot solar cells with high open-circuit voltage,” J. Phys. Chem. Lett. 4, 2030–2034 (2013).
[Crossref]

C. J. Stolle, M. G. Panthani, T. B. Harvey, V. A. Akhavan, and B. A. Korgel, “Comparison of the photovoltaic response of oleylamine and inorganic ligand-capped CuInSe2 nanocrystals,” ACS Appl. Mater. Interface 4, 2757–2761 (2012).
[Crossref]

Sun, B.

Y. Kim, K. Bicanic, H. Tan, O. Ouellette, B. R. Sutherland, F. P. Garcia de Arquer, J. W. Jo, M. Liu, B. Sun, M. Liu, S. Hoogland, and E. H. Sargent, “Nanoimprint-transfer-patterned solids enhance light absorption in colloidal quantum dot solar cells,” Nano Lett. 17, 2349–2353 (2017).
[Crossref]

Sutherland, B. R.

Y. Kim, K. Bicanic, H. Tan, O. Ouellette, B. R. Sutherland, F. P. Garcia de Arquer, J. W. Jo, M. Liu, B. Sun, M. Liu, S. Hoogland, and E. H. Sargent, “Nanoimprint-transfer-patterned solids enhance light absorption in colloidal quantum dot solar cells,” Nano Lett. 17, 2349–2353 (2017).
[Crossref]

Talapin, D. V.

C. R. Kagan, E. Lifshitz, E. H. Sargent, and D. V. Talapin, “Building devices from colloidal quantum dots,” Science 353, aac5523 (2016).
[Crossref]

Tan, H.

Y. Kim, K. Bicanic, H. Tan, O. Ouellette, B. R. Sutherland, F. P. Garcia de Arquer, J. W. Jo, M. Liu, B. Sun, M. Liu, S. Hoogland, and E. H. Sargent, “Nanoimprint-transfer-patterned solids enhance light absorption in colloidal quantum dot solar cells,” Nano Lett. 17, 2349–2353 (2017).
[Crossref]

Tedde, S. F.

T. Rauch, M. Boberl, S. F. Tedde, J. Furst, M. V. Kovalenko, G. N. Hesser, U. Lemmer, W. Heiss, and O. Hayden, “Near-infrared imaging with quantum-dot-sensitized organic photodiodes,” Nat. Photonics 3, 332–336 (2009).
[Crossref]

Teng, H.

T.-L. Li, C.-D. Cai, T.-F. Yeh, and H. Teng, “Capped CuInS2 quantum dots for H2 evolution from water under visible light illumination,” J. Alloys Compd. 550, 326–330 (2013).
[Crossref]

Thon, S. M.

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. J. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol. 7, 577–582 (2012).
[Crossref]

Tian, J.

R. Guo, T. Shen, and J. Tian, “Broadband hybrid organic/CuInSe2 quantum dot photodetectors,” J. Mater. Chem. C 6, 2573–2579 (2018).
[Crossref]

Tu, Y.

W. Yang, W. Guo, X. Gong, B. Zhang, S. Wang, N. Chen, W. Yang, Y. Tu, X. Fang, and J. Chang, “Facile synthesis of Gd-Cu-In-S/ZnS bimodal quantum dots with optimized properties for tumor targeted fluorescence/MR in vivo imaging,” ACS Appl. Mater. Interface 7, 18759–18768 (2015).
[Crossref]

Voznyy, O.

F. Fan, O. Voznyy, R. P. Sabatini, K. T. Bicanic, M. M. Adachi, J. R. McBride, K. R. Reid, Y. S. Park, X. Li, A. Jain, R. Quintero-Bermudez, M. Saravanapavanantham, M. Liu, M. Korkusinski, P. Hawrylak, V. I. Klimov, S. J. Rosenthal, S. Hoogland, and E. H. Sargent, “Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy,” Nature 544, 75–79 (2017).
[Crossref]

Z. Yang, O. Voznyy, G. Walters, J. Z. Fan, M. Liu, S. Kinge, S. Hoogland, and E. H. Sargent, “Quantum dots in two-dimensional perovskite matrices for efficient near-infrared light emission,” ACS Photon. 4, 830–836 (2017).
[Crossref]

X. Lan, O. Voznyy, A. Kiani, F. Pelayo, G. de Arquer, A. S. Abbas, G.-H. Kim, M. Liu, Z. Yang, G. Walters, J. Xu, M. Yuan, Z. Ning, F. Fan, P. Kanjanaboos, I. Kramer, D. Zhitomirsky, P. Lee, A. Perelgut, S. Hoogland, and E. H. Sargent, “Passivation using molecular halides increases quantum dot solar cell performance,” Adv. Mater. 28, 299–304 (2016).
[Crossref]

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. J. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol. 7, 577–582 (2012).
[Crossref]

Walters, G.

Z. Yang, O. Voznyy, G. Walters, J. Z. Fan, M. Liu, S. Kinge, S. Hoogland, and E. H. Sargent, “Quantum dots in two-dimensional perovskite matrices for efficient near-infrared light emission,” ACS Photon. 4, 830–836 (2017).
[Crossref]

X. Lan, O. Voznyy, A. Kiani, F. Pelayo, G. de Arquer, A. S. Abbas, G.-H. Kim, M. Liu, Z. Yang, G. Walters, J. Xu, M. Yuan, Z. Ning, F. Fan, P. Kanjanaboos, I. Kramer, D. Zhitomirsky, P. Lee, A. Perelgut, S. Hoogland, and E. H. Sargent, “Passivation using molecular halides increases quantum dot solar cell performance,” Adv. Mater. 28, 299–304 (2016).
[Crossref]

Wang, D.

W. Liu, Y. Zhang, D. Wang, T. Zhang, Y. Feng, W. Gao, J. Yin, Y. Wang, A. P. Riley, M. Z. Hu, W. W. Yu, and C. Ruan, “ZnCuInS/ZnSe/ZnS quantum dot-based downconversion light-emitting diodes and their thermal effect,” J. Nanomater. 16, 298614 (2015).
[Crossref]

Wang, H.

C. Dong, Z. Liu, L. Zhang, W. Guo, X. Li, J. Liu, H. Wang, and J. Chang, “pHe-induced charge-reversible NIR fluorescence nanoprobe for tumor-specific imaging,” ACS Appl. Mater. Interface 7, 7566–7575 (2015).
[Crossref]

F. Li, C. Ma, H. Wang, W. Hu, W. Yu, A. D. Sheikh, and T. Wu, “Ambipolar solution-processed hybrid perovskite phototransistors,” Nat. Commun. 6, 8238 (2015).
[Crossref]

Wang, J.

Y. Yu, Y. Zhang, Z. Zhang, H. Zhang, X. Song, M. Cao, Y. Che, H. Dai, J. Yang, J. Wang, H. Zhang, and J. Yao, “Broadband phototransistor based on CH3NH3PbI3 perovskite and PbSe quantum dot heterojunction,” J. Phys. Chem. Lett. 8, 445–451 (2017).
[Crossref]

F. Gong, W. Luo, J. Wang, P. Wang, H. Fang, D. Zheng, N. Guo, J. Wang, M. Luo, J. C. Ho, X. Chen, W. Lu, L. Liao, and W. Hu, “High-sensitivity floating-gate phototransistors based on WS2 and MoS2,” Adv. Funct. Mater. 26, 6084–6090 (2016).
[Crossref]

F. Gong, W. Luo, J. Wang, P. Wang, H. Fang, D. Zheng, N. Guo, J. Wang, M. Luo, J. C. Ho, X. Chen, W. Lu, L. Liao, and W. Hu, “High-sensitivity floating-gate phototransistors based on WS2 and MoS2,” Adv. Funct. Mater. 26, 6084–6090 (2016).
[Crossref]

Wang, P.

F. Gong, W. Luo, J. Wang, P. Wang, H. Fang, D. Zheng, N. Guo, J. Wang, M. Luo, J. C. Ho, X. Chen, W. Lu, L. Liao, and W. Hu, “High-sensitivity floating-gate phototransistors based on WS2 and MoS2,” Adv. Funct. Mater. 26, 6084–6090 (2016).
[Crossref]

Wang, Q.

D. Y. Zhang, L. Gan, Y. Cao, Q. Wang, L. M. Qi, and X. F. Guo, “Understanding charge transfer at PbS-decorated graphene surfaces toward a tunable photosensor,” Adv. Mater. 24, 2715–2720 (2012).
[Crossref]

Wang, S.

W. Yang, W. Guo, X. Gong, B. Zhang, S. Wang, N. Chen, W. Yang, Y. Tu, X. Fang, and J. Chang, “Facile synthesis of Gd-Cu-In-S/ZnS bimodal quantum dots with optimized properties for tumor targeted fluorescence/MR in vivo imaging,” ACS Appl. Mater. Interface 7, 18759–18768 (2015).
[Crossref]

Wang, Y.

W. Liu, Y. Zhang, D. Wang, T. Zhang, Y. Feng, W. Gao, J. Yin, Y. Wang, A. P. Riley, M. Z. Hu, W. W. Yu, and C. Ruan, “ZnCuInS/ZnSe/ZnS quantum dot-based downconversion light-emitting diodes and their thermal effect,” J. Nanomater. 16, 298614 (2015).
[Crossref]

Wang, Z.

Z. Wang, R. Yu, C. Pan, Z. Li, J. Yang, F. Yi, and Z. L. Wang, “Light-induced pyroelectric effect as an effective approach for ultrafast ultraviolet nanosensing,” Nat. Commun. 6, 8401 (2015).
[Crossref]

Wang, Z. L.

S. F. Leung, K. T. Ho, P. K. Kung, V. K. S. Hsiao, H. N. Alshareef, Z. L. Wang, and J. H. He, “A self-powered and flexible organometallic halide perovskite photodetector with very high detectivity,” Adv. Mater. 30, 1704611 (2018).
[Crossref]

Z. Wang, R. Yu, C. Pan, Z. Li, J. Yang, F. Yi, and Z. L. Wang, “Light-induced pyroelectric effect as an effective approach for ultrafast ultraviolet nanosensing,” Nat. Commun. 6, 8401 (2015).
[Crossref]

S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang, and Z. L. Wang, “Self-powered nanowire devices,” Nat. Nanotechnol. 5, 366–373 (2010).
[Crossref]

Wei, Y.

S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang, and Z. L. Wang, “Self-powered nanowire devices,” Nat. Nanotechnol. 5, 366–373 (2010).
[Crossref]

Wu, T.

F. Li, C. Ma, H. Wang, W. Hu, W. Yu, A. D. Sheikh, and T. Wu, “Ambipolar solution-processed hybrid perovskite phototransistors,” Nat. Commun. 6, 8238 (2015).
[Crossref]

Xie, W. J.

Xiong, W.

H. Liu, C. Gu, W. Xiong, and M. Zhang, “A sensitive hydrogen peroxide biosensor using ultra-small CuInS2 nanocrystals as peroxidase mimics,” Sens. Actuators B Chem. 209, 670–676 (2015).
[Crossref]

Xu, C.

S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang, and Z. L. Wang, “Self-powered nanowire devices,” Nat. Nanotechnol. 5, 366–373 (2010).
[Crossref]

Xu, J.

X. Lan, O. Voznyy, A. Kiani, F. Pelayo, G. de Arquer, A. S. Abbas, G.-H. Kim, M. Liu, Z. Yang, G. Walters, J. Xu, M. Yuan, Z. Ning, F. Fan, P. Kanjanaboos, I. Kramer, D. Zhitomirsky, P. Lee, A. Perelgut, S. Hoogland, and E. H. Sargent, “Passivation using molecular halides increases quantum dot solar cell performance,” Adv. Mater. 28, 299–304 (2016).
[Crossref]

Xu, L.

Y. Dong, Y. Gu, Y. Zou, J. Song, L. Xu, J. Li, J. Xue, X. Li, and H. Zeng, “Improving all-inorganic perovskite photodetectors by preferred orientation and plasmonic effect,” Small 12, 5622–5632 (2016).
[Crossref]

Xu, S.

S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang, and Z. L. Wang, “Self-powered nanowire devices,” Nat. Nanotechnol. 5, 366–373 (2010).
[Crossref]

Xu, X. Z.

E. Lhuillier, M. Scarafagio, P. Hease, B. Nadal, H. Aubin, X. Z. Xu, N. Lequeux, G. Patriarche, S. Ithurria, and B. Dubertret, “Infrared photodetection based on colloidal quantum-dot films with high mobility and optical absorption up to THz,” Nano Lett. 16, 1282–1286 (2016).
[Crossref]

Xu, Y.

F. Liu, J. Zhu, Y. Xu, L. Zhou, and S. Dai, “Scalable noninjection phosphine-free synthesis and optical properties of tetragonal-phase CuInSe2 quantum dots,” Nanoscale 8, 10021–10025 (2016).
[Crossref]

Xue, J.

Y. Dong, Y. Gu, Y. Zou, J. Song, L. Xu, J. Li, J. Xue, X. Li, and H. Zeng, “Improving all-inorganic perovskite photodetectors by preferred orientation and plasmonic effect,” Small 12, 5622–5632 (2016).
[Crossref]

Yan, F.

J. H. Li, L. Y. Niu, Z. J. Zheng, and F. Yan, “Photosensitive graphene transistors,” Adv. Mater. 26, 5239–5273 (2014).
[Crossref]

Yan, Y.

J. Huang, Y. Yuan, Y. Shao, and Y. Yan, “Understanding the physical properties of hybrid perovskites for photovoltaic applications,” Nat. Rev. Mater. 2, 17042 (2017).
[Crossref]

Yang, H.

Yang, J.

Y. Yu, Y. Zhang, X. Song, H. Zhang, M. Cao, Y. Che, H. Dai, J. Yang, H. Zhang, and J. Yao, “High performances for solution-processed 0D–0D heterojunction phototransistors,” Adv. Opt. Mater. 5, 1700565 (2017).
[Crossref]

Y. Yu, Y. Zhang, X. Song, H. Zhang, M. Cao, Y. Che, H. Dai, J. Yang, H. Zhang, and J. Yao, “PbS-decorated WS2 phototransistors with fast response,” ACS Photon. 4, 950–956 (2017).
[Crossref]

Y. Yu, Y. Zhang, Z. Zhang, H. Zhang, X. Song, M. Cao, Y. Che, H. Dai, J. Yang, J. Wang, H. Zhang, and J. Yao, “Broadband phototransistor based on CH3NH3PbI3 perovskite and PbSe quantum dot heterojunction,” J. Phys. Chem. Lett. 8, 445–451 (2017).
[Crossref]

Z. Wang, R. Yu, C. Pan, Z. Li, J. Yang, F. Yi, and Z. L. Wang, “Light-induced pyroelectric effect as an effective approach for ultrafast ultraviolet nanosensing,” Nat. Commun. 6, 8401 (2015).
[Crossref]

Yang, R.

S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang, and Z. L. Wang, “Self-powered nanowire devices,” Nat. Nanotechnol. 5, 366–373 (2010).
[Crossref]

Yang, W.

W. Yang, W. Guo, X. Gong, B. Zhang, S. Wang, N. Chen, W. Yang, Y. Tu, X. Fang, and J. Chang, “Facile synthesis of Gd-Cu-In-S/ZnS bimodal quantum dots with optimized properties for tumor targeted fluorescence/MR in vivo imaging,” ACS Appl. Mater. Interface 7, 18759–18768 (2015).
[Crossref]

W. Yang, W. Guo, X. Gong, B. Zhang, S. Wang, N. Chen, W. Yang, Y. Tu, X. Fang, and J. Chang, “Facile synthesis of Gd-Cu-In-S/ZnS bimodal quantum dots with optimized properties for tumor targeted fluorescence/MR in vivo imaging,” ACS Appl. Mater. Interface 7, 18759–18768 (2015).
[Crossref]

Yang, Z.

Z. Yang, O. Voznyy, G. Walters, J. Z. Fan, M. Liu, S. Kinge, S. Hoogland, and E. H. Sargent, “Quantum dots in two-dimensional perovskite matrices for efficient near-infrared light emission,” ACS Photon. 4, 830–836 (2017).
[Crossref]

X. Lan, O. Voznyy, A. Kiani, F. Pelayo, G. de Arquer, A. S. Abbas, G.-H. Kim, M. Liu, Z. Yang, G. Walters, J. Xu, M. Yuan, Z. Ning, F. Fan, P. Kanjanaboos, I. Kramer, D. Zhitomirsky, P. Lee, A. Perelgut, S. Hoogland, and E. H. Sargent, “Passivation using molecular halides increases quantum dot solar cell performance,” Adv. Mater. 28, 299–304 (2016).
[Crossref]

Yao, J.

Y. Yu, Y. Zhang, Z. Zhang, H. Zhang, X. Song, M. Cao, Y. Che, H. Dai, J. Yang, J. Wang, H. Zhang, and J. Yao, “Broadband phototransistor based on CH3NH3PbI3 perovskite and PbSe quantum dot heterojunction,” J. Phys. Chem. Lett. 8, 445–451 (2017).
[Crossref]

Y. Yu, Y. Zhang, X. Song, H. Zhang, M. Cao, Y. Che, H. Dai, J. Yang, H. Zhang, and J. Yao, “PbS-decorated WS2 phototransistors with fast response,” ACS Photon. 4, 950–956 (2017).
[Crossref]

Y. Yu, Y. Zhang, X. Song, H. Zhang, M. Cao, Y. Che, H. Dai, J. Yang, H. Zhang, and J. Yao, “High performances for solution-processed 0D–0D heterojunction phototransistors,” Adv. Opt. Mater. 5, 1700565 (2017).
[Crossref]

Yeh, T.-F.

T.-L. Li, C.-D. Cai, T.-F. Yeh, and H. Teng, “Capped CuInS2 quantum dots for H2 evolution from water under visible light illumination,” J. Alloys Compd. 550, 326–330 (2013).
[Crossref]

Yi, F.

Z. Wang, R. Yu, C. Pan, Z. Li, J. Yang, F. Yi, and Z. L. Wang, “Light-induced pyroelectric effect as an effective approach for ultrafast ultraviolet nanosensing,” Nat. Commun. 6, 8401 (2015).
[Crossref]

Yin, J.

W. Liu, Y. Zhang, D. Wang, T. Zhang, Y. Feng, W. Gao, J. Yin, Y. Wang, A. P. Riley, M. Z. Hu, W. W. Yu, and C. Ruan, “ZnCuInS/ZnSe/ZnS quantum dot-based downconversion light-emitting diodes and their thermal effect,” J. Nanomater. 16, 298614 (2015).
[Crossref]

Yu, R.

Z. Wang, R. Yu, C. Pan, Z. Li, J. Yang, F. Yi, and Z. L. Wang, “Light-induced pyroelectric effect as an effective approach for ultrafast ultraviolet nanosensing,” Nat. Commun. 6, 8401 (2015).
[Crossref]

Yu, W.

F. Li, C. Ma, H. Wang, W. Hu, W. Yu, A. D. Sheikh, and T. Wu, “Ambipolar solution-processed hybrid perovskite phototransistors,” Nat. Commun. 6, 8238 (2015).
[Crossref]

Yu, W. W.

W. Liu, Y. Zhang, D. Wang, T. Zhang, Y. Feng, W. Gao, J. Yin, Y. Wang, A. P. Riley, M. Z. Hu, W. W. Yu, and C. Ruan, “ZnCuInS/ZnSe/ZnS quantum dot-based downconversion light-emitting diodes and their thermal effect,” J. Nanomater. 16, 298614 (2015).
[Crossref]

Yu, Y.

Y. Yu, Y. Zhang, Z. Zhang, H. Zhang, X. Song, M. Cao, Y. Che, H. Dai, J. Yang, J. Wang, H. Zhang, and J. Yao, “Broadband phototransistor based on CH3NH3PbI3 perovskite and PbSe quantum dot heterojunction,” J. Phys. Chem. Lett. 8, 445–451 (2017).
[Crossref]

Y. Yu, Y. Zhang, X. Song, H. Zhang, M. Cao, Y. Che, H. Dai, J. Yang, H. Zhang, and J. Yao, “High performances for solution-processed 0D–0D heterojunction phototransistors,” Adv. Opt. Mater. 5, 1700565 (2017).
[Crossref]

Y. Yu, Y. Zhang, X. Song, H. Zhang, M. Cao, Y. Che, H. Dai, J. Yang, H. Zhang, and J. Yao, “PbS-decorated WS2 phototransistors with fast response,” ACS Photon. 4, 950–956 (2017).
[Crossref]

M. G. Panthani, C. J. Stolle, D. K. Reid, D. J. Rhee, T. B. Harvey, V. A. Akhavan, Y. Yu, and B. A. Korgel, “CuInSe2 quantum dot solar cells with high open-circuit voltage,” J. Phys. Chem. Lett. 4, 2030–2034 (2013).
[Crossref]

Yu, Y. Q.

Yuan, M.

X. Lan, O. Voznyy, A. Kiani, F. Pelayo, G. de Arquer, A. S. Abbas, G.-H. Kim, M. Liu, Z. Yang, G. Walters, J. Xu, M. Yuan, Z. Ning, F. Fan, P. Kanjanaboos, I. Kramer, D. Zhitomirsky, P. Lee, A. Perelgut, S. Hoogland, and E. H. Sargent, “Passivation using molecular halides increases quantum dot solar cell performance,” Adv. Mater. 28, 299–304 (2016).
[Crossref]

Yuan, X.

X. Yuan, R. Ma, W. Zhang, J. Hua, X. Meng, X. Zhong, J. Zhang, J. Zhao, and H. Li, “Dual emissive manganese and copper co-doped Zn-In-S quantum dots as a single color-converter for high color rendering white-light-emitting diodes,” ACS Appl. Mater. Interface 7, 8659–8666 (2015).
[Crossref]

Yuan, Y.

J. Huang, Y. Yuan, Y. Shao, and Y. Yan, “Understanding the physical properties of hybrid perovskites for photovoltaic applications,” Nat. Rev. Mater. 2, 17042 (2017).
[Crossref]

Zang, Y.

F. Zhang, Y. Zang, D. Huang, C. A. Di, and D. Zhu, “Flexible and self-powered temperature-pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials,” Nat. Commun. 6, 8356 (2015).
[Crossref]

Zeng, H.

Y. Dong, Y. Gu, Y. Zou, J. Song, L. Xu, J. Li, J. Xue, X. Li, and H. Zeng, “Improving all-inorganic perovskite photodetectors by preferred orientation and plasmonic effect,” Small 12, 5622–5632 (2016).
[Crossref]

Zhang, B.

W. Yang, W. Guo, X. Gong, B. Zhang, S. Wang, N. Chen, W. Yang, Y. Tu, X. Fang, and J. Chang, “Facile synthesis of Gd-Cu-In-S/ZnS bimodal quantum dots with optimized properties for tumor targeted fluorescence/MR in vivo imaging,” ACS Appl. Mater. Interface 7, 18759–18768 (2015).
[Crossref]

Zhang, D. Y.

D. Y. Zhang, L. Gan, Y. Cao, Q. Wang, L. M. Qi, and X. F. Guo, “Understanding charge transfer at PbS-decorated graphene surfaces toward a tunable photosensor,” Adv. Mater. 24, 2715–2720 (2012).
[Crossref]

Zhang, F.

F. Zhang, Y. Zang, D. Huang, C. A. Di, and D. Zhu, “Flexible and self-powered temperature-pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials,” Nat. Commun. 6, 8356 (2015).
[Crossref]

Zhang, H.

Y. Yu, Y. Zhang, Z. Zhang, H. Zhang, X. Song, M. Cao, Y. Che, H. Dai, J. Yang, J. Wang, H. Zhang, and J. Yao, “Broadband phototransistor based on CH3NH3PbI3 perovskite and PbSe quantum dot heterojunction,” J. Phys. Chem. Lett. 8, 445–451 (2017).
[Crossref]

Y. Yu, Y. Zhang, Z. Zhang, H. Zhang, X. Song, M. Cao, Y. Che, H. Dai, J. Yang, J. Wang, H. Zhang, and J. Yao, “Broadband phototransistor based on CH3NH3PbI3 perovskite and PbSe quantum dot heterojunction,” J. Phys. Chem. Lett. 8, 445–451 (2017).
[Crossref]

Y. Yu, Y. Zhang, X. Song, H. Zhang, M. Cao, Y. Che, H. Dai, J. Yang, H. Zhang, and J. Yao, “PbS-decorated WS2 phototransistors with fast response,” ACS Photon. 4, 950–956 (2017).
[Crossref]

Y. Yu, Y. Zhang, X. Song, H. Zhang, M. Cao, Y. Che, H. Dai, J. Yang, H. Zhang, and J. Yao, “High performances for solution-processed 0D–0D heterojunction phototransistors,” Adv. Opt. Mater. 5, 1700565 (2017).
[Crossref]

Y. Yu, Y. Zhang, X. Song, H. Zhang, M. Cao, Y. Che, H. Dai, J. Yang, H. Zhang, and J. Yao, “PbS-decorated WS2 phototransistors with fast response,” ACS Photon. 4, 950–956 (2017).
[Crossref]

Y. Yu, Y. Zhang, X. Song, H. Zhang, M. Cao, Y. Che, H. Dai, J. Yang, H. Zhang, and J. Yao, “High performances for solution-processed 0D–0D heterojunction phototransistors,” Adv. Opt. Mater. 5, 1700565 (2017).
[Crossref]

Zhang, J.

X. Yuan, R. Ma, W. Zhang, J. Hua, X. Meng, X. Zhong, J. Zhang, J. Zhao, and H. Li, “Dual emissive manganese and copper co-doped Zn-In-S quantum dots as a single color-converter for high color rendering white-light-emitting diodes,” ACS Appl. Mater. Interface 7, 8659–8666 (2015).
[Crossref]

Zhang, L.

C. Dong, Z. Liu, L. Zhang, W. Guo, X. Li, J. Liu, H. Wang, and J. Chang, “pHe-induced charge-reversible NIR fluorescence nanoprobe for tumor-specific imaging,” ACS Appl. Mater. Interface 7, 7566–7575 (2015).
[Crossref]

Zhang, M.

H. Liu, C. Gu, W. Xiong, and M. Zhang, “A sensitive hydrogen peroxide biosensor using ultra-small CuInS2 nanocrystals as peroxidase mimics,” Sens. Actuators B Chem. 209, 670–676 (2015).
[Crossref]

Zhang, S. G.

S. A. McDonald, G. Konstantatos, S. G. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4, 138–142 (2005).
[Crossref]

Zhang, T.

W. Liu, Y. Zhang, D. Wang, T. Zhang, Y. Feng, W. Gao, J. Yin, Y. Wang, A. P. Riley, M. Z. Hu, W. W. Yu, and C. Ruan, “ZnCuInS/ZnSe/ZnS quantum dot-based downconversion light-emitting diodes and their thermal effect,” J. Nanomater. 16, 298614 (2015).
[Crossref]

Zhang, W.

X. Yuan, R. Ma, W. Zhang, J. Hua, X. Meng, X. Zhong, J. Zhang, J. Zhao, and H. Li, “Dual emissive manganese and copper co-doped Zn-In-S quantum dots as a single color-converter for high color rendering white-light-emitting diodes,” ACS Appl. Mater. Interface 7, 8659–8666 (2015).
[Crossref]

Zhang, Y.

Y. Yu, Y. Zhang, Z. Zhang, H. Zhang, X. Song, M. Cao, Y. Che, H. Dai, J. Yang, J. Wang, H. Zhang, and J. Yao, “Broadband phototransistor based on CH3NH3PbI3 perovskite and PbSe quantum dot heterojunction,” J. Phys. Chem. Lett. 8, 445–451 (2017).
[Crossref]

Y. Yu, Y. Zhang, X. Song, H. Zhang, M. Cao, Y. Che, H. Dai, J. Yang, H. Zhang, and J. Yao, “High performances for solution-processed 0D–0D heterojunction phototransistors,” Adv. Opt. Mater. 5, 1700565 (2017).
[Crossref]

Y. Yu, Y. Zhang, X. Song, H. Zhang, M. Cao, Y. Che, H. Dai, J. Yang, H. Zhang, and J. Yao, “PbS-decorated WS2 phototransistors with fast response,” ACS Photon. 4, 950–956 (2017).
[Crossref]

W. Liu, Y. Zhang, D. Wang, T. Zhang, Y. Feng, W. Gao, J. Yin, Y. Wang, A. P. Riley, M. Z. Hu, W. W. Yu, and C. Ruan, “ZnCuInS/ZnSe/ZnS quantum dot-based downconversion light-emitting diodes and their thermal effect,” J. Nanomater. 16, 298614 (2015).
[Crossref]

Zhang, Z.

Y. Yu, Y. Zhang, Z. Zhang, H. Zhang, X. Song, M. Cao, Y. Che, H. Dai, J. Yang, J. Wang, H. Zhang, and J. Yao, “Broadband phototransistor based on CH3NH3PbI3 perovskite and PbSe quantum dot heterojunction,” J. Phys. Chem. Lett. 8, 445–451 (2017).
[Crossref]

Zhao, J.

X. Yuan, R. Ma, W. Zhang, J. Hua, X. Meng, X. Zhong, J. Zhang, J. Zhao, and H. Li, “Dual emissive manganese and copper co-doped Zn-In-S quantum dots as a single color-converter for high color rendering white-light-emitting diodes,” ACS Appl. Mater. Interface 7, 8659–8666 (2015).
[Crossref]

Zheng, D.

F. Gong, W. Luo, J. Wang, P. Wang, H. Fang, D. Zheng, N. Guo, J. Wang, M. Luo, J. C. Ho, X. Chen, W. Lu, L. Liao, and W. Hu, “High-sensitivity floating-gate phototransistors based on WS2 and MoS2,” Adv. Funct. Mater. 26, 6084–6090 (2016).
[Crossref]

Zheng, Z. J.

J. H. Li, L. Y. Niu, Z. J. Zheng, and F. Yan, “Photosensitive graphene transistors,” Adv. Mater. 26, 5239–5273 (2014).
[Crossref]

Zhitomirsky, D.

X. Lan, O. Voznyy, A. Kiani, F. Pelayo, G. de Arquer, A. S. Abbas, G.-H. Kim, M. Liu, Z. Yang, G. Walters, J. Xu, M. Yuan, Z. Ning, F. Fan, P. Kanjanaboos, I. Kramer, D. Zhitomirsky, P. Lee, A. Perelgut, S. Hoogland, and E. H. Sargent, “Passivation using molecular halides increases quantum dot solar cell performance,” Adv. Mater. 28, 299–304 (2016).
[Crossref]

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. J. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol. 7, 577–582 (2012).
[Crossref]

Zhong, X.

X. Yuan, R. Ma, W. Zhang, J. Hua, X. Meng, X. Zhong, J. Zhang, J. Zhao, and H. Li, “Dual emissive manganese and copper co-doped Zn-In-S quantum dots as a single color-converter for high color rendering white-light-emitting diodes,” ACS Appl. Mater. Interface 7, 8659–8666 (2015).
[Crossref]

Zhou, K. Y.

Zhou, L.

F. Liu, J. Zhu, Y. Xu, L. Zhou, and S. Dai, “Scalable noninjection phosphine-free synthesis and optical properties of tetragonal-phase CuInSe2 quantum dots,” Nanoscale 8, 10021–10025 (2016).
[Crossref]

Zhu, D.

F. Zhang, Y. Zang, D. Huang, C. A. Di, and D. Zhu, “Flexible and self-powered temperature-pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials,” Nat. Commun. 6, 8356 (2015).
[Crossref]

Zhu, J.

F. Liu, J. Zhu, Y. Xu, L. Zhou, and S. Dai, “Scalable noninjection phosphine-free synthesis and optical properties of tetragonal-phase CuInSe2 quantum dots,” Nanoscale 8, 10021–10025 (2016).
[Crossref]

Zhu, X.

V. G. Demillo, M. Liao, X. Zhu, D. Redelman, N. G. Publicover, and K. W. Hunter, “Fabrication of MnFe2O4–CuInS2/ZnS magnetofluorescent nanocomposites and their characterization,” Colloids Surf. A 464, 134–142 (2015).
[Crossref]

Zou, Y.

Y. Dong, Y. Gu, Y. Zou, J. Song, L. Xu, J. Li, J. Xue, X. Li, and H. Zeng, “Improving all-inorganic perovskite photodetectors by preferred orientation and plasmonic effect,” Small 12, 5622–5632 (2016).
[Crossref]

Zou, Y. F.

ACS Appl. Mater. Interface (4)

C. J. Stolle, M. G. Panthani, T. B. Harvey, V. A. Akhavan, and B. A. Korgel, “Comparison of the photovoltaic response of oleylamine and inorganic ligand-capped CuInSe2 nanocrystals,” ACS Appl. Mater. Interface 4, 2757–2761 (2012).
[Crossref]

W. Yang, W. Guo, X. Gong, B. Zhang, S. Wang, N. Chen, W. Yang, Y. Tu, X. Fang, and J. Chang, “Facile synthesis of Gd-Cu-In-S/ZnS bimodal quantum dots with optimized properties for tumor targeted fluorescence/MR in vivo imaging,” ACS Appl. Mater. Interface 7, 18759–18768 (2015).
[Crossref]

C. Dong, Z. Liu, L. Zhang, W. Guo, X. Li, J. Liu, H. Wang, and J. Chang, “pHe-induced charge-reversible NIR fluorescence nanoprobe for tumor-specific imaging,” ACS Appl. Mater. Interface 7, 7566–7575 (2015).
[Crossref]

X. Yuan, R. Ma, W. Zhang, J. Hua, X. Meng, X. Zhong, J. Zhang, J. Zhao, and H. Li, “Dual emissive manganese and copper co-doped Zn-In-S quantum dots as a single color-converter for high color rendering white-light-emitting diodes,” ACS Appl. Mater. Interface 7, 8659–8666 (2015).
[Crossref]

ACS Photon. (3)

Z. Yang, O. Voznyy, G. Walters, J. Z. Fan, M. Liu, S. Kinge, S. Hoogland, and E. H. Sargent, “Quantum dots in two-dimensional perovskite matrices for efficient near-infrared light emission,” ACS Photon. 4, 830–836 (2017).
[Crossref]

D. Kufer and G. Konstantatos, “Photo-FETs: phototransistors enabled by 2D and 0D nanomaterials,” ACS Photon. 3, 2197–2210 (2016).
[Crossref]

Y. Yu, Y. Zhang, X. Song, H. Zhang, M. Cao, Y. Che, H. Dai, J. Yang, H. Zhang, and J. Yao, “PbS-decorated WS2 phototransistors with fast response,” ACS Photon. 4, 950–956 (2017).
[Crossref]

Adv. Funct. Mater. (1)

F. Gong, W. Luo, J. Wang, P. Wang, H. Fang, D. Zheng, N. Guo, J. Wang, M. Luo, J. C. Ho, X. Chen, W. Lu, L. Liao, and W. Hu, “High-sensitivity floating-gate phototransistors based on WS2 and MoS2,” Adv. Funct. Mater. 26, 6084–6090 (2016).
[Crossref]

Adv. Mater. (4)

J. H. Li, L. Y. Niu, Z. J. Zheng, and F. Yan, “Photosensitive graphene transistors,” Adv. Mater. 26, 5239–5273 (2014).
[Crossref]

S. F. Leung, K. T. Ho, P. K. Kung, V. K. S. Hsiao, H. N. Alshareef, Z. L. Wang, and J. H. He, “A self-powered and flexible organometallic halide perovskite photodetector with very high detectivity,” Adv. Mater. 30, 1704611 (2018).
[Crossref]

D. Y. Zhang, L. Gan, Y. Cao, Q. Wang, L. M. Qi, and X. F. Guo, “Understanding charge transfer at PbS-decorated graphene surfaces toward a tunable photosensor,” Adv. Mater. 24, 2715–2720 (2012).
[Crossref]

X. Lan, O. Voznyy, A. Kiani, F. Pelayo, G. de Arquer, A. S. Abbas, G.-H. Kim, M. Liu, Z. Yang, G. Walters, J. Xu, M. Yuan, Z. Ning, F. Fan, P. Kanjanaboos, I. Kramer, D. Zhitomirsky, P. Lee, A. Perelgut, S. Hoogland, and E. H. Sargent, “Passivation using molecular halides increases quantum dot solar cell performance,” Adv. Mater. 28, 299–304 (2016).
[Crossref]

Adv. Opt. Mater. (2)

Y. Yu, Y. Zhang, X. Song, H. Zhang, M. Cao, Y. Che, H. Dai, J. Yang, H. Zhang, and J. Yao, “High performances for solution-processed 0D–0D heterojunction phototransistors,” Adv. Opt. Mater. 5, 1700565 (2017).
[Crossref]

J.-A. Huang and L.-B. Luo, “Low-dimensional plasmonic photodetectors: recent progress and future opportunities,” Adv. Opt. Mater. 6, 1701282 (2018).
[Crossref]

Adv. Sci. (1)

H. Fang and W. Hu, “Photogating in low dimensional photodetectors,” Adv. Sci. 4, 1700323 (2017).
[Crossref]

Chem. Rev. (1)

C. Coughlan, M. Ibanez, O. Dobrozhan, A. Singh, A. Cabot, and K. M. Ryan, “Compound copper chalcogenide nanocrystals,” Chem. Rev. 117, 5865–6109 (2017).
[Crossref]

Chem. Soc. Rev. (1)

F. E. Osterloh, “Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting,” Chem. Soc. Rev. 42, 2294–2320 (2013).
[Crossref]

Colloids Surf. A (1)

V. G. Demillo, M. Liao, X. Zhu, D. Redelman, N. G. Publicover, and K. W. Hunter, “Fabrication of MnFe2O4–CuInS2/ZnS magnetofluorescent nanocomposites and their characterization,” Colloids Surf. A 464, 134–142 (2015).
[Crossref]

Energy Environ. Sci. (1)

V. A. Akhavan, B. W. Goodfellow, M. G. Panthani, D. K. Reid, D. J. Hellebusch, T. Adachi, and B. A. Korgel, “Spray-deposited CuInSe2 nanocrystal photovoltaics,” Energy Environ. Sci. 3, 1600–1606 (2010).
[Crossref]

J. Alloys Compd. (1)

T.-L. Li, C.-D. Cai, T.-F. Yeh, and H. Teng, “Capped CuInS2 quantum dots for H2 evolution from water under visible light illumination,” J. Alloys Compd. 550, 326–330 (2013).
[Crossref]

J. Am. Chem. Soc. (1)

M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, P. F. Barbara, and B. A. Korgel, “Synthesis of CuInS2, CuInSe2, and Cu(InxGa1-x)Se2 (CIGS) nanocrystal ‘inks’ for printable photovoltaics,” J. Am. Chem. Soc. 130, 16770–16777 (2008).
[Crossref]

J. Mater. Chem. C (2)

A. Pescaglini and D. Iacopino, “Metal nanoparticle-semiconductor nanowire hybrid nanostructures for plasmon-enhanced optoelectronics and sensing,” J. Mater. Chem. C 3, 11785–11800 (2015).
[Crossref]

R. Guo, T. Shen, and J. Tian, “Broadband hybrid organic/CuInSe2 quantum dot photodetectors,” J. Mater. Chem. C 6, 2573–2579 (2018).
[Crossref]

J. Nanomater. (1)

W. Liu, Y. Zhang, D. Wang, T. Zhang, Y. Feng, W. Gao, J. Yin, Y. Wang, A. P. Riley, M. Z. Hu, W. W. Yu, and C. Ruan, “ZnCuInS/ZnSe/ZnS quantum dot-based downconversion light-emitting diodes and their thermal effect,” J. Nanomater. 16, 298614 (2015).
[Crossref]

J. Phys. Chem. Lett. (2)

M. G. Panthani, C. J. Stolle, D. K. Reid, D. J. Rhee, T. B. Harvey, V. A. Akhavan, Y. Yu, and B. A. Korgel, “CuInSe2 quantum dot solar cells with high open-circuit voltage,” J. Phys. Chem. Lett. 4, 2030–2034 (2013).
[Crossref]

Y. Yu, Y. Zhang, Z. Zhang, H. Zhang, X. Song, M. Cao, Y. Che, H. Dai, J. Yang, J. Wang, H. Zhang, and J. Yao, “Broadband phototransistor based on CH3NH3PbI3 perovskite and PbSe quantum dot heterojunction,” J. Phys. Chem. Lett. 8, 445–451 (2017).
[Crossref]

Laser Photon. Rev. (1)

P. Berini, “Surface plasmon photodetectors and their applications,” Laser Photon. Rev. 8, 197–220 (2014).
[Crossref]

Nano Lett. (3)

Y. Kim, K. Bicanic, H. Tan, O. Ouellette, B. R. Sutherland, F. P. Garcia de Arquer, J. W. Jo, M. Liu, B. Sun, M. Liu, S. Hoogland, and E. H. Sargent, “Nanoimprint-transfer-patterned solids enhance light absorption in colloidal quantum dot solar cells,” Nano Lett. 17, 2349–2353 (2017).
[Crossref]

E. Lhuillier, M. Scarafagio, P. Hease, B. Nadal, H. Aubin, X. Z. Xu, N. Lequeux, G. Patriarche, S. Ithurria, and B. Dubertret, “Infrared photodetection based on colloidal quantum-dot films with high mobility and optical absorption up to THz,” Nano Lett. 16, 1282–1286 (2016).
[Crossref]

C. C. Chang, Y. D. Sharma, Y. S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S. Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10, 1704–1709 (2010).
[Crossref]

Nanoscale (1)

F. Liu, J. Zhu, Y. Xu, L. Zhou, and S. Dai, “Scalable noninjection phosphine-free synthesis and optical properties of tetragonal-phase CuInSe2 quantum dots,” Nanoscale 8, 10021–10025 (2016).
[Crossref]

Nanotechnology (1)

S. Butun, N. A. Cinel, and E. Ozbay, “LSPR enhanced MSM UV photodetectors,” Nanotechnology 23, 444010 (2012).
[Crossref]

Nat. Commun. (3)

F. Li, C. Ma, H. Wang, W. Hu, W. Yu, A. D. Sheikh, and T. Wu, “Ambipolar solution-processed hybrid perovskite phototransistors,” Nat. Commun. 6, 8238 (2015).
[Crossref]

F. Zhang, Y. Zang, D. Huang, C. A. Di, and D. Zhu, “Flexible and self-powered temperature-pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials,” Nat. Commun. 6, 8356 (2015).
[Crossref]

Z. Wang, R. Yu, C. Pan, Z. Li, J. Yang, F. Yi, and Z. L. Wang, “Light-induced pyroelectric effect as an effective approach for ultrafast ultraviolet nanosensing,” Nat. Commun. 6, 8401 (2015).
[Crossref]

Nat. Mater. (1)

S. A. McDonald, G. Konstantatos, S. G. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4, 138–142 (2005).
[Crossref]

Nat. Nanotechnol. (3)

G. Konstantatos and E. H. Sargent, “Nanostructured materials for photon detection,” Nat. Nanotechnol. 5, 391–400 (2010).
[Crossref]

S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang, and Z. L. Wang, “Self-powered nanowire devices,” Nat. Nanotechnol. 5, 366–373 (2010).
[Crossref]

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. J. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, “Hybrid passivated colloidal quantum dot solids,” Nat. Nanotechnol. 7, 577–582 (2012).
[Crossref]

Nat. Photonics (1)

T. Rauch, M. Boberl, S. F. Tedde, J. Furst, M. V. Kovalenko, G. N. Hesser, U. Lemmer, W. Heiss, and O. Hayden, “Near-infrared imaging with quantum-dot-sensitized organic photodiodes,” Nat. Photonics 3, 332–336 (2009).
[Crossref]

Nat. Rev. Mater. (1)

J. Huang, Y. Yuan, Y. Shao, and Y. Yan, “Understanding the physical properties of hybrid perovskites for photovoltaic applications,” Nat. Rev. Mater. 2, 17042 (2017).
[Crossref]

Nature (2)

F. Fan, O. Voznyy, R. P. Sabatini, K. T. Bicanic, M. M. Adachi, J. R. McBride, K. R. Reid, Y. S. Park, X. Li, A. Jain, R. Quintero-Bermudez, M. Saravanapavanantham, M. Liu, M. Korkusinski, P. Hawrylak, V. I. Klimov, S. J. Rosenthal, S. Hoogland, and E. H. Sargent, “Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy,” Nature 544, 75–79 (2017).
[Crossref]

J. Feng, M. Graf, K. Liu, D. Ovchinnikov, D. Dumcenco, M. Heiranian, V. Nandigana, N. R. Aluru, A. Kis, and A. Radenovic, “Single-layer MoS2 nanopores as nanopower generators,” Nature 536, 197–200 (2016).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

RSC Adv. (1)

H. S. Choi, Y. Kim, J. C. Park, M. H. Oh, D. Y. Jeon, and Y. S. Nam, “Highly luminescent, off-stoichiometric CuxInyS2/ZnS quantum dots for near-infrared fluorescence bio-imaging,” RSC Adv. 5, 43449–43455 (2015).
[Crossref]

Science (1)

C. R. Kagan, E. Lifshitz, E. H. Sargent, and D. V. Talapin, “Building devices from colloidal quantum dots,” Science 353, aac5523 (2016).
[Crossref]

Sens. Actuators B Chem. (1)

H. Liu, C. Gu, W. Xiong, and M. Zhang, “A sensitive hydrogen peroxide biosensor using ultra-small CuInS2 nanocrystals as peroxidase mimics,” Sens. Actuators B Chem. 209, 670–676 (2015).
[Crossref]

Small (1)

Y. Dong, Y. Gu, Y. Zou, J. Song, L. Xu, J. Li, J. Xue, X. Li, and H. Zeng, “Improving all-inorganic perovskite photodetectors by preferred orientation and plasmonic effect,” Small 12, 5622–5632 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Schematic diagram of plasmonic CuInSe2 QD FEpT architecture. (b) Cross-sectional SEM image of composite film between CuInSe2 and Au NPs (inset: TEM image of pristine CuInSe2 QDs). (c) AFM image of Au NPs on silicon substrate. (d) Optical absorption spectra of CuInSe2 QDs with (red line) and without (black line) deposited Au NPs on glass substrate.
Fig. 2.
Fig. 2. Photoelectronic properties of the device. (a) Output characteristics (IDSVDS curves) under different VGS (1 V increment) of plasmonic FEpT (dashed lines, in darkness; solid lines, under illumination of 700  mW·cm2 of a 405 nm laser). (b) Transfer characteristics of typical CuInSe2 FEpTs, after Au NP deposition (black line, in darkness; red line, under illumination of an 845  mW·cm2 of 808 nm laser) and before Au NPs deposition (blue line, in darkness; green line, under illumination of 845  mW·cm2 of an 808 nm laser) with applied bias voltage VDS=1.2  V.
Fig. 3.
Fig. 3. Time-dependent response of the device at zero bias with different wavelengths and irradiation intensities. (a), (d) 405 nm; (b), (e) 532 nm; (c), (f) 808 nm.
Fig. 4.
Fig. 4. Photoresponsivity (R) of the device with or without deposited Au NPs as a function of irradiance under different wavelengths with chopper frequency of 3944 Hz at a bias of 0 V: (a) 405 nm, (b) 532 nm, and (c) 808 nm.
Fig. 5.
Fig. 5. Time-dependent response of the device with or without deposited Au NPs as a function of irradiance under different wavelengths with chopper frequency of 3944 Hz at a bias of 0 V: (a) 405 nm, (b) 532 nm, and (c) 808 nm.
Fig. 6.
Fig. 6. (a) Structure diagram of FDTD simulation. The field distributions in the x–y plane under (b) 405 nm, (c) 532 nm, and (d) 808 nm light illumination.
Fig. 7.
Fig. 7. Electronic band structure and working principle of the CuInSe2 QD FEpTs with Au NPs.

Tables (1)

Tables Icon

Table 1. Comparison in Device Performance of CuInSe2 FEpTs with or without Au NPs at the Strongest Enhancement with Wavelength of 405 nm

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R=ΔIDSP=IilluIdarkEe×S,

Metrics