Abstract

We explore the mechanisms of voltage-induced textural switching and the corresponding electro-optical responses of a binary cholesteric liquid crystal (CLC) composed of the rod-like nematic LC E7 with positive dielectric anisotropy and the bent-core LC dimer CB7CB with large flexoelectric coefficients. Our results indicate that the minimal voltage (VH) required for retaining the CLC in the homeotropic state and the optical transparency of the CLC after treating with decreasing voltage (from VH to zero) are dependent on the voltage frequency. The observed frequency modulated electro-optical properties are characterized by the frequency regimes separated by the critical frequencies of flexoelectric polarization and dielectric relaxation in dielectric dispersion. These unusual features, specific to the CB7CB-doped CLC, are explained by the dielectric and frequency-dependent flexoelectric responses of LC molecules to an external AC voltage. Accordingly, in addition to the known Grandjean planar and focal conic states, the uniform lying helix as a third stable state can be feasibly generated in the binary CLC with 45 wt% CB7CB by two pathways. The first one is to treat the cell directly with a sufficient voltage lower than VH; the other is to decrease the voltage gradually from VH to zero in the low-frequency regime, where the flexoelectric strength is significant. Manifested by its optical tristability, frequency-controllable optical transparency, and fast flexoelectro-optical response, the proposed binary rod-like/bent-core CLC system is promising for developing a variety of memory- and dynamic-mode photonic and optoelectronic devices.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Suppressed ionic effect and low-frequency texture transitions in a cholesteric liquid crystal doped with graphene nanoplatelets

Po-Chang Wu, Longin N. Lisetski, and Wei Lee
Opt. Express 23(9) 11195-11204 (2015)

Optimized frequency regime for the electrohydrodynamic induction of a uniformly lying helix structure

Yu-Lin Nian, Po-Chang Wu, and Wei Lee
Photon. Res. 4(6) 227-232 (2016)

Electro-thermally tunable reflective colors in a self-organized cholesteric helical superstructure

Po-Chang Wu, Guan-Wei Wu, Ivan V. Timofeev, Victor Ya. Zyryanov, and Wei Lee
Photon. Res. 6(12) 1094-1100 (2018)

References

  • View by:
  • |
  • |
  • |

  1. T. J. White, M. E. McConney, and T. J. Bunning, “Dynamic color in stimuli-responsive cholesteric liquid crystals,” J. Mater. Chem. 20, 9832–9847 (2010).
    [Crossref]
  2. P.-C. Wu, G.-W. Wu, I. V. Timofeev, V. Ya. Zyryanov, and W. Lee, “Electro-thermally tunable reflective colors in a self-organized cholesteric helical superstructure,” Photon. Res. 6, 1094–1100 (2018).
    [Crossref]
  3. Y.-C. Hsiao, C.-Y. Wu, C.-H. Chen, V. Ya. Zyryanov, and W. Lee, “Electro-optical device based on photonic structure with a dual-frequency cholesteric liquid crystal,” Opt. Lett. 36, 2632–2634 (2011).
    [Crossref]
  4. R. Bao, C.-M. Liu, and D.-K. Yang, “Smart bistable polymer stabilized cholesteric texture light shutter,” Appl. Phys. Express 2, 112401 (2009).
    [Crossref]
  5. G. Chen, L. Wang, Q. Wang, J. Sun, P. Song, X. Chen, X. Liu, S. Guan, X. Zhang, L. Wang, H. Yang, and H. Yu, “Photoinduced hyper-reflective laminated liquid crystal film with simultaneous multicolor reflection,” ACS Appl. Mater. Interfaces 6, 1380–1384 (2014).
    [Crossref]
  6. G. Chilaya, “Cholesteric liquid crystals: optics, electro-optics, and photo-optics,” in Chirality in Liquid Crystals, H. Kitzerow and C. Bahr, eds. (Springer, 2001), pp. 159–185.
  7. Y.-C. Hsiao, C.-Y. Tang, and W. Lee, “Fast-switching bistable cholesteric intensity modulator,” Opt. Express 19, 9744–9749 (2011).
    [Crossref]
  8. A. Moheghi, H. Nemati, Y. Li, Q. Li, and D.-K. Yang, “Bistable salt doped cholesteric liquid crystals light shutter,” Opt. Mater. 52, 219–223 (2016).
    [Crossref]
  9. Z. Lan, Y. Li, H. Dai, and D. Luo, “Bistable smart window based on ionic liquid doped cholesteric liquid crystal,” IEEE Photon. J. 9, 2200307 (2017).
    [Crossref]
  10. H. Lu, W. Xu, Z. Song, S. Zhang, L. Qiu, X. Wang, G. Zhang, J. Hu, and G. Lv, “Electrically switchable multi-stable cholesteric liquid crystal based on chiral ionic liquid,” Opt. Lett. 39, 6795–6798 (2014).
    [Crossref]
  11. S.-S. Li, Y. Shen, Z.-N. Chang, W.-S. Li, Y.-C. Xu, X.-Y. Fan, and L.-J. Chen, “Dynamic cholesteric liquid crystal superstructures photoaligned by one-step polarization holography,” Appl. Phys. Lett. 111, 231109 (2017).
    [Crossref]
  12. L.-L. Ma, S.-S. Li, W.-S. Li, W. Ji, B. Luo, Z.-G. Zheng, Z.-P. Cai, V. Chigrinov, Y.-Q. Lu, W. Hu, and L.-J. Chen, “Rationally designed dynamic superstructures enabled by photoaligning cholesteric liquid crystals,” Adv. Opt. Mater. 3, 1691–1696 (2015).
    [Crossref]
  13. Y. Shen, Y.-C. Xu, Y.-H. Ge, R.-G. Jiang, X.-Z. Wang, S.-S. Li, and L.-J. Chen, “Photoalignment of dye-doped cholesteric liquid crystals for electrically tunable patterns with fingerprint textures,” Opt. Express 26, 1422–1432 (2018).
    [Crossref]
  14. J. S. Patel and R. B. Meyer, “Flexoelectric electro-optics of a cholesteric liquid crystal,” Phys. Rev. Lett. 58, 1538–1540 (1987).
    [Crossref]
  15. P. Rudquist, L. Komitov, and S. T. Lagerwall, “Volume-stabilized ULH structure for the flexoelectro-optic effect and the phase-shift effect in cholesterics,” Liq. Cryst. 24, 329–334 (1998).
    [Crossref]
  16. P. S. Salter, S. J. Elston, P. Raynes, and L. A. Parry-Jones, “Alignment of the uniform lying helix structure in cholesteric liquid crystals,” Jpn. J. Appl. Phys. 48, 101302 (2009).
    [Crossref]
  17. C.-T. Wang, W.-Y. Wang, and T.-H. Lin, “A stable and switchable uniform lying helix structure in cholesteric liquid crystals,” Appl. Phys. Lett. 99, 041108 (2011).
    [Crossref]
  18. Y. Inoue and H. Moritake, “Formation of a defect-free uniform lying helix in a thick cholesteric liquid crystal cell,” Appl. Phys. Express 8, 071701 (2015).
    [Crossref]
  19. Y.-L. Nian, P.-C. Wu, and W. Lee, “Optimized frequency regime for the electrohydrodynamic induction of a uniformly lying helix structure,” Photon. Res. 4, 227–232 (2016).
    [Crossref]
  20. C.-H. Yu, P.-C. Wu, and W. Lee, “Alternative generation of well-aligned uniform lying helix texture in a cholesteric liquid crystal cell,” AIP Adv. 7, 105107 (2017).
    [Crossref]
  21. C.-H. Yu, P.-C. Wu, and W. Lee, “Electro-thermal formation of uniform lying helix alignment in a cholesteric liquid crystal cell,” Crystals 9, 183 (2019).
    [Crossref]
  22. G. Hegde and L. Komitov, “Periodic anchoring condition for alignment of a short pitch cholesteric liquid crystal in uniform lying helix texture,” Appl. Phys. Lett. 96, 113503 (2010).
    [Crossref]
  23. B. I. Outram and S. J. Elston, “Spontaneous and stable uniform lying helix liquid-crystal alignment,” J. Appl. Phys. 113, 043103 (2013).
    [Crossref]
  24. L. Komitov, G. P. B. Brown, E. L. Wood, and A. B. J. Smout, “Alignment of cholesteric liquid crystals using periodic anchoring,” J. Appl. Phys. 86, 3508–3511 (1999).
    [Crossref]
  25. G. Carbone, P. Salter, P. S. J. Elston, P. Raynes, L. De Sio, S. Ferjani, G. Strangi, C. Umeton, and R. Bartolino, “Short pitch cholesteric electro-optical device based on periodic polymer structures,” Appl. Phy. Lett. 95, 011102 (2009).
    [Crossref]
  26. B. I. Outram, S. J. Elston, R. Tuffin, S. Siemianowski, and B. Snow, “The use of mould-templated surface structures for high-quality uniform-lying-helix liquid-crystal alignment,” J. Appl. Phys. 113, 213111 (2013).
    [Crossref]
  27. J.-W. Kim, T.-H. Choi, T.-H. Yoon, E.-J. Choi, and J.-H. Lee, “Elimination of image flicker in fringe-field switching liquid crystal display driven with low frequency electric field,” Opt. Express 22, 30586–30591 (2014).
    [Crossref]
  28. X. Zhou, Y. Jiang, G. Qin, X. Xu, and D.-K. Yang, “Static and dynamic properties of hybridly aligned flexoelectric in-plane-switching liquid crystal display,” Phys. Rev. Appl. 8, 054033 (2017).
    [Crossref]
  29. A. Varanytsia and L.-C. Chien, “Bimesogen-enhanced flexoelectro-optic behavior of polymer stabilized cholesteric liquid crystal,” J. Appl. Phys. 119, 014502 (2016).
    [Crossref]
  30. G. Tan, Y.-H. Lee, F. Gou, M. Hu, Y.-F. Lan, C.-Y. Tsai, and S.-T. Wu, “Macroscopic model for analyzing the electro-optics of uniform lying helix cholesteric liquid crystals,” J. Appl. Phys. 121, 173102 (2017).
    [Crossref]
  31. B. I. Outram and S. J. Elston, “Frequency-dependent dielectric contribution of flexoelectricity allowing control of state switching in helicoidal liquid crystals,” Phys. Rev. E 88, 012506 (2013).
    [Crossref]
  32. B. I. Outram and S. J. Elston, “Alignment of cholesteric liquid crystals using the macroscopic flexoelectric polarization contribution to dielectric properties,” Appl. Phys. Lett. 103, 141111 (2013).
    [Crossref]
  33. C. Meyer, G. R. Luckhurst, and I. Dozov, “The temperature dependence of the heliconical tilt angle in the twist-bend nematic phase of the odd dimer CB7CB,” J. Mater. Chem. C 3, 318–328 (2015).
    [Crossref]
  34. A. Varanytsia and L.-C. Chien, “Giant flexoelectro-optic effect with liquid crystal dimer CB7CB,” Sci. Rep. 7, 41333 (2017).
    [Crossref]
  35. P.-C. Wu, L. N. Lisetski, and W. Lee, “Suppressed ionic effect and low-frequency texture transitions in a cholesteric liquid crystal doped with graphene nanoplatelets,” Opt. Express 23, 11195–11204 (2015).
    [Crossref]
  36. H. J. Coles and S. M. Morris, “Flexoelectro-optic liquid crystal displays,” in Handbook of Visual Display Technology, J. Chen, W. Cranton, and M. Fihn, eds. (Springer, 2012), pp. 1681–1694.

2019 (1)

C.-H. Yu, P.-C. Wu, and W. Lee, “Electro-thermal formation of uniform lying helix alignment in a cholesteric liquid crystal cell,” Crystals 9, 183 (2019).
[Crossref]

2018 (2)

2017 (6)

S.-S. Li, Y. Shen, Z.-N. Chang, W.-S. Li, Y.-C. Xu, X.-Y. Fan, and L.-J. Chen, “Dynamic cholesteric liquid crystal superstructures photoaligned by one-step polarization holography,” Appl. Phys. Lett. 111, 231109 (2017).
[Crossref]

Z. Lan, Y. Li, H. Dai, and D. Luo, “Bistable smart window based on ionic liquid doped cholesteric liquid crystal,” IEEE Photon. J. 9, 2200307 (2017).
[Crossref]

C.-H. Yu, P.-C. Wu, and W. Lee, “Alternative generation of well-aligned uniform lying helix texture in a cholesteric liquid crystal cell,” AIP Adv. 7, 105107 (2017).
[Crossref]

X. Zhou, Y. Jiang, G. Qin, X. Xu, and D.-K. Yang, “Static and dynamic properties of hybridly aligned flexoelectric in-plane-switching liquid crystal display,” Phys. Rev. Appl. 8, 054033 (2017).
[Crossref]

G. Tan, Y.-H. Lee, F. Gou, M. Hu, Y.-F. Lan, C.-Y. Tsai, and S.-T. Wu, “Macroscopic model for analyzing the electro-optics of uniform lying helix cholesteric liquid crystals,” J. Appl. Phys. 121, 173102 (2017).
[Crossref]

A. Varanytsia and L.-C. Chien, “Giant flexoelectro-optic effect with liquid crystal dimer CB7CB,” Sci. Rep. 7, 41333 (2017).
[Crossref]

2016 (3)

A. Varanytsia and L.-C. Chien, “Bimesogen-enhanced flexoelectro-optic behavior of polymer stabilized cholesteric liquid crystal,” J. Appl. Phys. 119, 014502 (2016).
[Crossref]

Y.-L. Nian, P.-C. Wu, and W. Lee, “Optimized frequency regime for the electrohydrodynamic induction of a uniformly lying helix structure,” Photon. Res. 4, 227–232 (2016).
[Crossref]

A. Moheghi, H. Nemati, Y. Li, Q. Li, and D.-K. Yang, “Bistable salt doped cholesteric liquid crystals light shutter,” Opt. Mater. 52, 219–223 (2016).
[Crossref]

2015 (4)

L.-L. Ma, S.-S. Li, W.-S. Li, W. Ji, B. Luo, Z.-G. Zheng, Z.-P. Cai, V. Chigrinov, Y.-Q. Lu, W. Hu, and L.-J. Chen, “Rationally designed dynamic superstructures enabled by photoaligning cholesteric liquid crystals,” Adv. Opt. Mater. 3, 1691–1696 (2015).
[Crossref]

Y. Inoue and H. Moritake, “Formation of a defect-free uniform lying helix in a thick cholesteric liquid crystal cell,” Appl. Phys. Express 8, 071701 (2015).
[Crossref]

P.-C. Wu, L. N. Lisetski, and W. Lee, “Suppressed ionic effect and low-frequency texture transitions in a cholesteric liquid crystal doped with graphene nanoplatelets,” Opt. Express 23, 11195–11204 (2015).
[Crossref]

C. Meyer, G. R. Luckhurst, and I. Dozov, “The temperature dependence of the heliconical tilt angle in the twist-bend nematic phase of the odd dimer CB7CB,” J. Mater. Chem. C 3, 318–328 (2015).
[Crossref]

2014 (3)

2013 (4)

B. I. Outram and S. J. Elston, “Frequency-dependent dielectric contribution of flexoelectricity allowing control of state switching in helicoidal liquid crystals,” Phys. Rev. E 88, 012506 (2013).
[Crossref]

B. I. Outram and S. J. Elston, “Alignment of cholesteric liquid crystals using the macroscopic flexoelectric polarization contribution to dielectric properties,” Appl. Phys. Lett. 103, 141111 (2013).
[Crossref]

B. I. Outram and S. J. Elston, “Spontaneous and stable uniform lying helix liquid-crystal alignment,” J. Appl. Phys. 113, 043103 (2013).
[Crossref]

B. I. Outram, S. J. Elston, R. Tuffin, S. Siemianowski, and B. Snow, “The use of mould-templated surface structures for high-quality uniform-lying-helix liquid-crystal alignment,” J. Appl. Phys. 113, 213111 (2013).
[Crossref]

2011 (3)

2010 (2)

T. J. White, M. E. McConney, and T. J. Bunning, “Dynamic color in stimuli-responsive cholesteric liquid crystals,” J. Mater. Chem. 20, 9832–9847 (2010).
[Crossref]

G. Hegde and L. Komitov, “Periodic anchoring condition for alignment of a short pitch cholesteric liquid crystal in uniform lying helix texture,” Appl. Phys. Lett. 96, 113503 (2010).
[Crossref]

2009 (3)

G. Carbone, P. Salter, P. S. J. Elston, P. Raynes, L. De Sio, S. Ferjani, G. Strangi, C. Umeton, and R. Bartolino, “Short pitch cholesteric electro-optical device based on periodic polymer structures,” Appl. Phy. Lett. 95, 011102 (2009).
[Crossref]

R. Bao, C.-M. Liu, and D.-K. Yang, “Smart bistable polymer stabilized cholesteric texture light shutter,” Appl. Phys. Express 2, 112401 (2009).
[Crossref]

P. S. Salter, S. J. Elston, P. Raynes, and L. A. Parry-Jones, “Alignment of the uniform lying helix structure in cholesteric liquid crystals,” Jpn. J. Appl. Phys. 48, 101302 (2009).
[Crossref]

1999 (1)

L. Komitov, G. P. B. Brown, E. L. Wood, and A. B. J. Smout, “Alignment of cholesteric liquid crystals using periodic anchoring,” J. Appl. Phys. 86, 3508–3511 (1999).
[Crossref]

1998 (1)

P. Rudquist, L. Komitov, and S. T. Lagerwall, “Volume-stabilized ULH structure for the flexoelectro-optic effect and the phase-shift effect in cholesterics,” Liq. Cryst. 24, 329–334 (1998).
[Crossref]

1987 (1)

J. S. Patel and R. B. Meyer, “Flexoelectric electro-optics of a cholesteric liquid crystal,” Phys. Rev. Lett. 58, 1538–1540 (1987).
[Crossref]

Bao, R.

R. Bao, C.-M. Liu, and D.-K. Yang, “Smart bistable polymer stabilized cholesteric texture light shutter,” Appl. Phys. Express 2, 112401 (2009).
[Crossref]

Bartolino, R.

G. Carbone, P. Salter, P. S. J. Elston, P. Raynes, L. De Sio, S. Ferjani, G. Strangi, C. Umeton, and R. Bartolino, “Short pitch cholesteric electro-optical device based on periodic polymer structures,” Appl. Phy. Lett. 95, 011102 (2009).
[Crossref]

Brown, G. P. B.

L. Komitov, G. P. B. Brown, E. L. Wood, and A. B. J. Smout, “Alignment of cholesteric liquid crystals using periodic anchoring,” J. Appl. Phys. 86, 3508–3511 (1999).
[Crossref]

Bunning, T. J.

T. J. White, M. E. McConney, and T. J. Bunning, “Dynamic color in stimuli-responsive cholesteric liquid crystals,” J. Mater. Chem. 20, 9832–9847 (2010).
[Crossref]

Cai, Z.-P.

L.-L. Ma, S.-S. Li, W.-S. Li, W. Ji, B. Luo, Z.-G. Zheng, Z.-P. Cai, V. Chigrinov, Y.-Q. Lu, W. Hu, and L.-J. Chen, “Rationally designed dynamic superstructures enabled by photoaligning cholesteric liquid crystals,” Adv. Opt. Mater. 3, 1691–1696 (2015).
[Crossref]

Carbone, G.

G. Carbone, P. Salter, P. S. J. Elston, P. Raynes, L. De Sio, S. Ferjani, G. Strangi, C. Umeton, and R. Bartolino, “Short pitch cholesteric electro-optical device based on periodic polymer structures,” Appl. Phy. Lett. 95, 011102 (2009).
[Crossref]

Chang, Z.-N.

S.-S. Li, Y. Shen, Z.-N. Chang, W.-S. Li, Y.-C. Xu, X.-Y. Fan, and L.-J. Chen, “Dynamic cholesteric liquid crystal superstructures photoaligned by one-step polarization holography,” Appl. Phys. Lett. 111, 231109 (2017).
[Crossref]

Chen, C.-H.

Chen, G.

G. Chen, L. Wang, Q. Wang, J. Sun, P. Song, X. Chen, X. Liu, S. Guan, X. Zhang, L. Wang, H. Yang, and H. Yu, “Photoinduced hyper-reflective laminated liquid crystal film with simultaneous multicolor reflection,” ACS Appl. Mater. Interfaces 6, 1380–1384 (2014).
[Crossref]

Chen, L.-J.

Y. Shen, Y.-C. Xu, Y.-H. Ge, R.-G. Jiang, X.-Z. Wang, S.-S. Li, and L.-J. Chen, “Photoalignment of dye-doped cholesteric liquid crystals for electrically tunable patterns with fingerprint textures,” Opt. Express 26, 1422–1432 (2018).
[Crossref]

S.-S. Li, Y. Shen, Z.-N. Chang, W.-S. Li, Y.-C. Xu, X.-Y. Fan, and L.-J. Chen, “Dynamic cholesteric liquid crystal superstructures photoaligned by one-step polarization holography,” Appl. Phys. Lett. 111, 231109 (2017).
[Crossref]

L.-L. Ma, S.-S. Li, W.-S. Li, W. Ji, B. Luo, Z.-G. Zheng, Z.-P. Cai, V. Chigrinov, Y.-Q. Lu, W. Hu, and L.-J. Chen, “Rationally designed dynamic superstructures enabled by photoaligning cholesteric liquid crystals,” Adv. Opt. Mater. 3, 1691–1696 (2015).
[Crossref]

Chen, X.

G. Chen, L. Wang, Q. Wang, J. Sun, P. Song, X. Chen, X. Liu, S. Guan, X. Zhang, L. Wang, H. Yang, and H. Yu, “Photoinduced hyper-reflective laminated liquid crystal film with simultaneous multicolor reflection,” ACS Appl. Mater. Interfaces 6, 1380–1384 (2014).
[Crossref]

Chien, L.-C.

A. Varanytsia and L.-C. Chien, “Giant flexoelectro-optic effect with liquid crystal dimer CB7CB,” Sci. Rep. 7, 41333 (2017).
[Crossref]

A. Varanytsia and L.-C. Chien, “Bimesogen-enhanced flexoelectro-optic behavior of polymer stabilized cholesteric liquid crystal,” J. Appl. Phys. 119, 014502 (2016).
[Crossref]

Chigrinov, V.

L.-L. Ma, S.-S. Li, W.-S. Li, W. Ji, B. Luo, Z.-G. Zheng, Z.-P. Cai, V. Chigrinov, Y.-Q. Lu, W. Hu, and L.-J. Chen, “Rationally designed dynamic superstructures enabled by photoaligning cholesteric liquid crystals,” Adv. Opt. Mater. 3, 1691–1696 (2015).
[Crossref]

Chilaya, G.

G. Chilaya, “Cholesteric liquid crystals: optics, electro-optics, and photo-optics,” in Chirality in Liquid Crystals, H. Kitzerow and C. Bahr, eds. (Springer, 2001), pp. 159–185.

Choi, E.-J.

Choi, T.-H.

Coles, H. J.

H. J. Coles and S. M. Morris, “Flexoelectro-optic liquid crystal displays,” in Handbook of Visual Display Technology, J. Chen, W. Cranton, and M. Fihn, eds. (Springer, 2012), pp. 1681–1694.

Dai, H.

Z. Lan, Y. Li, H. Dai, and D. Luo, “Bistable smart window based on ionic liquid doped cholesteric liquid crystal,” IEEE Photon. J. 9, 2200307 (2017).
[Crossref]

De Sio, L.

G. Carbone, P. Salter, P. S. J. Elston, P. Raynes, L. De Sio, S. Ferjani, G. Strangi, C. Umeton, and R. Bartolino, “Short pitch cholesteric electro-optical device based on periodic polymer structures,” Appl. Phy. Lett. 95, 011102 (2009).
[Crossref]

Dozov, I.

C. Meyer, G. R. Luckhurst, and I. Dozov, “The temperature dependence of the heliconical tilt angle in the twist-bend nematic phase of the odd dimer CB7CB,” J. Mater. Chem. C 3, 318–328 (2015).
[Crossref]

Elston, P. S. J.

G. Carbone, P. Salter, P. S. J. Elston, P. Raynes, L. De Sio, S. Ferjani, G. Strangi, C. Umeton, and R. Bartolino, “Short pitch cholesteric electro-optical device based on periodic polymer structures,” Appl. Phy. Lett. 95, 011102 (2009).
[Crossref]

Elston, S. J.

B. I. Outram and S. J. Elston, “Spontaneous and stable uniform lying helix liquid-crystal alignment,” J. Appl. Phys. 113, 043103 (2013).
[Crossref]

B. I. Outram, S. J. Elston, R. Tuffin, S. Siemianowski, and B. Snow, “The use of mould-templated surface structures for high-quality uniform-lying-helix liquid-crystal alignment,” J. Appl. Phys. 113, 213111 (2013).
[Crossref]

B. I. Outram and S. J. Elston, “Frequency-dependent dielectric contribution of flexoelectricity allowing control of state switching in helicoidal liquid crystals,” Phys. Rev. E 88, 012506 (2013).
[Crossref]

B. I. Outram and S. J. Elston, “Alignment of cholesteric liquid crystals using the macroscopic flexoelectric polarization contribution to dielectric properties,” Appl. Phys. Lett. 103, 141111 (2013).
[Crossref]

P. S. Salter, S. J. Elston, P. Raynes, and L. A. Parry-Jones, “Alignment of the uniform lying helix structure in cholesteric liquid crystals,” Jpn. J. Appl. Phys. 48, 101302 (2009).
[Crossref]

Fan, X.-Y.

S.-S. Li, Y. Shen, Z.-N. Chang, W.-S. Li, Y.-C. Xu, X.-Y. Fan, and L.-J. Chen, “Dynamic cholesteric liquid crystal superstructures photoaligned by one-step polarization holography,” Appl. Phys. Lett. 111, 231109 (2017).
[Crossref]

Ferjani, S.

G. Carbone, P. Salter, P. S. J. Elston, P. Raynes, L. De Sio, S. Ferjani, G. Strangi, C. Umeton, and R. Bartolino, “Short pitch cholesteric electro-optical device based on periodic polymer structures,” Appl. Phy. Lett. 95, 011102 (2009).
[Crossref]

Ge, Y.-H.

Gou, F.

G. Tan, Y.-H. Lee, F. Gou, M. Hu, Y.-F. Lan, C.-Y. Tsai, and S.-T. Wu, “Macroscopic model for analyzing the electro-optics of uniform lying helix cholesteric liquid crystals,” J. Appl. Phys. 121, 173102 (2017).
[Crossref]

Guan, S.

G. Chen, L. Wang, Q. Wang, J. Sun, P. Song, X. Chen, X. Liu, S. Guan, X. Zhang, L. Wang, H. Yang, and H. Yu, “Photoinduced hyper-reflective laminated liquid crystal film with simultaneous multicolor reflection,” ACS Appl. Mater. Interfaces 6, 1380–1384 (2014).
[Crossref]

Hegde, G.

G. Hegde and L. Komitov, “Periodic anchoring condition for alignment of a short pitch cholesteric liquid crystal in uniform lying helix texture,” Appl. Phys. Lett. 96, 113503 (2010).
[Crossref]

Hsiao, Y.-C.

Hu, J.

Hu, M.

G. Tan, Y.-H. Lee, F. Gou, M. Hu, Y.-F. Lan, C.-Y. Tsai, and S.-T. Wu, “Macroscopic model for analyzing the electro-optics of uniform lying helix cholesteric liquid crystals,” J. Appl. Phys. 121, 173102 (2017).
[Crossref]

Hu, W.

L.-L. Ma, S.-S. Li, W.-S. Li, W. Ji, B. Luo, Z.-G. Zheng, Z.-P. Cai, V. Chigrinov, Y.-Q. Lu, W. Hu, and L.-J. Chen, “Rationally designed dynamic superstructures enabled by photoaligning cholesteric liquid crystals,” Adv. Opt. Mater. 3, 1691–1696 (2015).
[Crossref]

Inoue, Y.

Y. Inoue and H. Moritake, “Formation of a defect-free uniform lying helix in a thick cholesteric liquid crystal cell,” Appl. Phys. Express 8, 071701 (2015).
[Crossref]

Ji, W.

L.-L. Ma, S.-S. Li, W.-S. Li, W. Ji, B. Luo, Z.-G. Zheng, Z.-P. Cai, V. Chigrinov, Y.-Q. Lu, W. Hu, and L.-J. Chen, “Rationally designed dynamic superstructures enabled by photoaligning cholesteric liquid crystals,” Adv. Opt. Mater. 3, 1691–1696 (2015).
[Crossref]

Jiang, R.-G.

Jiang, Y.

X. Zhou, Y. Jiang, G. Qin, X. Xu, and D.-K. Yang, “Static and dynamic properties of hybridly aligned flexoelectric in-plane-switching liquid crystal display,” Phys. Rev. Appl. 8, 054033 (2017).
[Crossref]

Kim, J.-W.

Komitov, L.

G. Hegde and L. Komitov, “Periodic anchoring condition for alignment of a short pitch cholesteric liquid crystal in uniform lying helix texture,” Appl. Phys. Lett. 96, 113503 (2010).
[Crossref]

L. Komitov, G. P. B. Brown, E. L. Wood, and A. B. J. Smout, “Alignment of cholesteric liquid crystals using periodic anchoring,” J. Appl. Phys. 86, 3508–3511 (1999).
[Crossref]

P. Rudquist, L. Komitov, and S. T. Lagerwall, “Volume-stabilized ULH structure for the flexoelectro-optic effect and the phase-shift effect in cholesterics,” Liq. Cryst. 24, 329–334 (1998).
[Crossref]

Lagerwall, S. T.

P. Rudquist, L. Komitov, and S. T. Lagerwall, “Volume-stabilized ULH structure for the flexoelectro-optic effect and the phase-shift effect in cholesterics,” Liq. Cryst. 24, 329–334 (1998).
[Crossref]

Lan, Y.-F.

G. Tan, Y.-H. Lee, F. Gou, M. Hu, Y.-F. Lan, C.-Y. Tsai, and S.-T. Wu, “Macroscopic model for analyzing the electro-optics of uniform lying helix cholesteric liquid crystals,” J. Appl. Phys. 121, 173102 (2017).
[Crossref]

Lan, Z.

Z. Lan, Y. Li, H. Dai, and D. Luo, “Bistable smart window based on ionic liquid doped cholesteric liquid crystal,” IEEE Photon. J. 9, 2200307 (2017).
[Crossref]

Lee, J.-H.

Lee, W.

Lee, Y.-H.

G. Tan, Y.-H. Lee, F. Gou, M. Hu, Y.-F. Lan, C.-Y. Tsai, and S.-T. Wu, “Macroscopic model for analyzing the electro-optics of uniform lying helix cholesteric liquid crystals,” J. Appl. Phys. 121, 173102 (2017).
[Crossref]

Li, Q.

A. Moheghi, H. Nemati, Y. Li, Q. Li, and D.-K. Yang, “Bistable salt doped cholesteric liquid crystals light shutter,” Opt. Mater. 52, 219–223 (2016).
[Crossref]

Li, S.-S.

Y. Shen, Y.-C. Xu, Y.-H. Ge, R.-G. Jiang, X.-Z. Wang, S.-S. Li, and L.-J. Chen, “Photoalignment of dye-doped cholesteric liquid crystals for electrically tunable patterns with fingerprint textures,” Opt. Express 26, 1422–1432 (2018).
[Crossref]

S.-S. Li, Y. Shen, Z.-N. Chang, W.-S. Li, Y.-C. Xu, X.-Y. Fan, and L.-J. Chen, “Dynamic cholesteric liquid crystal superstructures photoaligned by one-step polarization holography,” Appl. Phys. Lett. 111, 231109 (2017).
[Crossref]

L.-L. Ma, S.-S. Li, W.-S. Li, W. Ji, B. Luo, Z.-G. Zheng, Z.-P. Cai, V. Chigrinov, Y.-Q. Lu, W. Hu, and L.-J. Chen, “Rationally designed dynamic superstructures enabled by photoaligning cholesteric liquid crystals,” Adv. Opt. Mater. 3, 1691–1696 (2015).
[Crossref]

Li, W.-S.

S.-S. Li, Y. Shen, Z.-N. Chang, W.-S. Li, Y.-C. Xu, X.-Y. Fan, and L.-J. Chen, “Dynamic cholesteric liquid crystal superstructures photoaligned by one-step polarization holography,” Appl. Phys. Lett. 111, 231109 (2017).
[Crossref]

L.-L. Ma, S.-S. Li, W.-S. Li, W. Ji, B. Luo, Z.-G. Zheng, Z.-P. Cai, V. Chigrinov, Y.-Q. Lu, W. Hu, and L.-J. Chen, “Rationally designed dynamic superstructures enabled by photoaligning cholesteric liquid crystals,” Adv. Opt. Mater. 3, 1691–1696 (2015).
[Crossref]

Li, Y.

Z. Lan, Y. Li, H. Dai, and D. Luo, “Bistable smart window based on ionic liquid doped cholesteric liquid crystal,” IEEE Photon. J. 9, 2200307 (2017).
[Crossref]

A. Moheghi, H. Nemati, Y. Li, Q. Li, and D.-K. Yang, “Bistable salt doped cholesteric liquid crystals light shutter,” Opt. Mater. 52, 219–223 (2016).
[Crossref]

Lin, T.-H.

C.-T. Wang, W.-Y. Wang, and T.-H. Lin, “A stable and switchable uniform lying helix structure in cholesteric liquid crystals,” Appl. Phys. Lett. 99, 041108 (2011).
[Crossref]

Lisetski, L. N.

Liu, C.-M.

R. Bao, C.-M. Liu, and D.-K. Yang, “Smart bistable polymer stabilized cholesteric texture light shutter,” Appl. Phys. Express 2, 112401 (2009).
[Crossref]

Liu, X.

G. Chen, L. Wang, Q. Wang, J. Sun, P. Song, X. Chen, X. Liu, S. Guan, X. Zhang, L. Wang, H. Yang, and H. Yu, “Photoinduced hyper-reflective laminated liquid crystal film with simultaneous multicolor reflection,” ACS Appl. Mater. Interfaces 6, 1380–1384 (2014).
[Crossref]

Lu, H.

Lu, Y.-Q.

L.-L. Ma, S.-S. Li, W.-S. Li, W. Ji, B. Luo, Z.-G. Zheng, Z.-P. Cai, V. Chigrinov, Y.-Q. Lu, W. Hu, and L.-J. Chen, “Rationally designed dynamic superstructures enabled by photoaligning cholesteric liquid crystals,” Adv. Opt. Mater. 3, 1691–1696 (2015).
[Crossref]

Luckhurst, G. R.

C. Meyer, G. R. Luckhurst, and I. Dozov, “The temperature dependence of the heliconical tilt angle in the twist-bend nematic phase of the odd dimer CB7CB,” J. Mater. Chem. C 3, 318–328 (2015).
[Crossref]

Luo, B.

L.-L. Ma, S.-S. Li, W.-S. Li, W. Ji, B. Luo, Z.-G. Zheng, Z.-P. Cai, V. Chigrinov, Y.-Q. Lu, W. Hu, and L.-J. Chen, “Rationally designed dynamic superstructures enabled by photoaligning cholesteric liquid crystals,” Adv. Opt. Mater. 3, 1691–1696 (2015).
[Crossref]

Luo, D.

Z. Lan, Y. Li, H. Dai, and D. Luo, “Bistable smart window based on ionic liquid doped cholesteric liquid crystal,” IEEE Photon. J. 9, 2200307 (2017).
[Crossref]

Lv, G.

Ma, L.-L.

L.-L. Ma, S.-S. Li, W.-S. Li, W. Ji, B. Luo, Z.-G. Zheng, Z.-P. Cai, V. Chigrinov, Y.-Q. Lu, W. Hu, and L.-J. Chen, “Rationally designed dynamic superstructures enabled by photoaligning cholesteric liquid crystals,” Adv. Opt. Mater. 3, 1691–1696 (2015).
[Crossref]

McConney, M. E.

T. J. White, M. E. McConney, and T. J. Bunning, “Dynamic color in stimuli-responsive cholesteric liquid crystals,” J. Mater. Chem. 20, 9832–9847 (2010).
[Crossref]

Meyer, C.

C. Meyer, G. R. Luckhurst, and I. Dozov, “The temperature dependence of the heliconical tilt angle in the twist-bend nematic phase of the odd dimer CB7CB,” J. Mater. Chem. C 3, 318–328 (2015).
[Crossref]

Meyer, R. B.

J. S. Patel and R. B. Meyer, “Flexoelectric electro-optics of a cholesteric liquid crystal,” Phys. Rev. Lett. 58, 1538–1540 (1987).
[Crossref]

Moheghi, A.

A. Moheghi, H. Nemati, Y. Li, Q. Li, and D.-K. Yang, “Bistable salt doped cholesteric liquid crystals light shutter,” Opt. Mater. 52, 219–223 (2016).
[Crossref]

Moritake, H.

Y. Inoue and H. Moritake, “Formation of a defect-free uniform lying helix in a thick cholesteric liquid crystal cell,” Appl. Phys. Express 8, 071701 (2015).
[Crossref]

Morris, S. M.

H. J. Coles and S. M. Morris, “Flexoelectro-optic liquid crystal displays,” in Handbook of Visual Display Technology, J. Chen, W. Cranton, and M. Fihn, eds. (Springer, 2012), pp. 1681–1694.

Nemati, H.

A. Moheghi, H. Nemati, Y. Li, Q. Li, and D.-K. Yang, “Bistable salt doped cholesteric liquid crystals light shutter,” Opt. Mater. 52, 219–223 (2016).
[Crossref]

Nian, Y.-L.

Outram, B. I.

B. I. Outram and S. J. Elston, “Spontaneous and stable uniform lying helix liquid-crystal alignment,” J. Appl. Phys. 113, 043103 (2013).
[Crossref]

B. I. Outram and S. J. Elston, “Alignment of cholesteric liquid crystals using the macroscopic flexoelectric polarization contribution to dielectric properties,” Appl. Phys. Lett. 103, 141111 (2013).
[Crossref]

B. I. Outram and S. J. Elston, “Frequency-dependent dielectric contribution of flexoelectricity allowing control of state switching in helicoidal liquid crystals,” Phys. Rev. E 88, 012506 (2013).
[Crossref]

B. I. Outram, S. J. Elston, R. Tuffin, S. Siemianowski, and B. Snow, “The use of mould-templated surface structures for high-quality uniform-lying-helix liquid-crystal alignment,” J. Appl. Phys. 113, 213111 (2013).
[Crossref]

Parry-Jones, L. A.

P. S. Salter, S. J. Elston, P. Raynes, and L. A. Parry-Jones, “Alignment of the uniform lying helix structure in cholesteric liquid crystals,” Jpn. J. Appl. Phys. 48, 101302 (2009).
[Crossref]

Patel, J. S.

J. S. Patel and R. B. Meyer, “Flexoelectric electro-optics of a cholesteric liquid crystal,” Phys. Rev. Lett. 58, 1538–1540 (1987).
[Crossref]

Qin, G.

X. Zhou, Y. Jiang, G. Qin, X. Xu, and D.-K. Yang, “Static and dynamic properties of hybridly aligned flexoelectric in-plane-switching liquid crystal display,” Phys. Rev. Appl. 8, 054033 (2017).
[Crossref]

Qiu, L.

Raynes, P.

P. S. Salter, S. J. Elston, P. Raynes, and L. A. Parry-Jones, “Alignment of the uniform lying helix structure in cholesteric liquid crystals,” Jpn. J. Appl. Phys. 48, 101302 (2009).
[Crossref]

G. Carbone, P. Salter, P. S. J. Elston, P. Raynes, L. De Sio, S. Ferjani, G. Strangi, C. Umeton, and R. Bartolino, “Short pitch cholesteric electro-optical device based on periodic polymer structures,” Appl. Phy. Lett. 95, 011102 (2009).
[Crossref]

Rudquist, P.

P. Rudquist, L. Komitov, and S. T. Lagerwall, “Volume-stabilized ULH structure for the flexoelectro-optic effect and the phase-shift effect in cholesterics,” Liq. Cryst. 24, 329–334 (1998).
[Crossref]

Salter, P.

G. Carbone, P. Salter, P. S. J. Elston, P. Raynes, L. De Sio, S. Ferjani, G. Strangi, C. Umeton, and R. Bartolino, “Short pitch cholesteric electro-optical device based on periodic polymer structures,” Appl. Phy. Lett. 95, 011102 (2009).
[Crossref]

Salter, P. S.

P. S. Salter, S. J. Elston, P. Raynes, and L. A. Parry-Jones, “Alignment of the uniform lying helix structure in cholesteric liquid crystals,” Jpn. J. Appl. Phys. 48, 101302 (2009).
[Crossref]

Shen, Y.

Y. Shen, Y.-C. Xu, Y.-H. Ge, R.-G. Jiang, X.-Z. Wang, S.-S. Li, and L.-J. Chen, “Photoalignment of dye-doped cholesteric liquid crystals for electrically tunable patterns with fingerprint textures,” Opt. Express 26, 1422–1432 (2018).
[Crossref]

S.-S. Li, Y. Shen, Z.-N. Chang, W.-S. Li, Y.-C. Xu, X.-Y. Fan, and L.-J. Chen, “Dynamic cholesteric liquid crystal superstructures photoaligned by one-step polarization holography,” Appl. Phys. Lett. 111, 231109 (2017).
[Crossref]

Siemianowski, S.

B. I. Outram, S. J. Elston, R. Tuffin, S. Siemianowski, and B. Snow, “The use of mould-templated surface structures for high-quality uniform-lying-helix liquid-crystal alignment,” J. Appl. Phys. 113, 213111 (2013).
[Crossref]

Smout, A. B. J.

L. Komitov, G. P. B. Brown, E. L. Wood, and A. B. J. Smout, “Alignment of cholesteric liquid crystals using periodic anchoring,” J. Appl. Phys. 86, 3508–3511 (1999).
[Crossref]

Snow, B.

B. I. Outram, S. J. Elston, R. Tuffin, S. Siemianowski, and B. Snow, “The use of mould-templated surface structures for high-quality uniform-lying-helix liquid-crystal alignment,” J. Appl. Phys. 113, 213111 (2013).
[Crossref]

Song, P.

G. Chen, L. Wang, Q. Wang, J. Sun, P. Song, X. Chen, X. Liu, S. Guan, X. Zhang, L. Wang, H. Yang, and H. Yu, “Photoinduced hyper-reflective laminated liquid crystal film with simultaneous multicolor reflection,” ACS Appl. Mater. Interfaces 6, 1380–1384 (2014).
[Crossref]

Song, Z.

Strangi, G.

G. Carbone, P. Salter, P. S. J. Elston, P. Raynes, L. De Sio, S. Ferjani, G. Strangi, C. Umeton, and R. Bartolino, “Short pitch cholesteric electro-optical device based on periodic polymer structures,” Appl. Phy. Lett. 95, 011102 (2009).
[Crossref]

Sun, J.

G. Chen, L. Wang, Q. Wang, J. Sun, P. Song, X. Chen, X. Liu, S. Guan, X. Zhang, L. Wang, H. Yang, and H. Yu, “Photoinduced hyper-reflective laminated liquid crystal film with simultaneous multicolor reflection,” ACS Appl. Mater. Interfaces 6, 1380–1384 (2014).
[Crossref]

Tan, G.

G. Tan, Y.-H. Lee, F. Gou, M. Hu, Y.-F. Lan, C.-Y. Tsai, and S.-T. Wu, “Macroscopic model for analyzing the electro-optics of uniform lying helix cholesteric liquid crystals,” J. Appl. Phys. 121, 173102 (2017).
[Crossref]

Tang, C.-Y.

Timofeev, I. V.

Tsai, C.-Y.

G. Tan, Y.-H. Lee, F. Gou, M. Hu, Y.-F. Lan, C.-Y. Tsai, and S.-T. Wu, “Macroscopic model for analyzing the electro-optics of uniform lying helix cholesteric liquid crystals,” J. Appl. Phys. 121, 173102 (2017).
[Crossref]

Tuffin, R.

B. I. Outram, S. J. Elston, R. Tuffin, S. Siemianowski, and B. Snow, “The use of mould-templated surface structures for high-quality uniform-lying-helix liquid-crystal alignment,” J. Appl. Phys. 113, 213111 (2013).
[Crossref]

Umeton, C.

G. Carbone, P. Salter, P. S. J. Elston, P. Raynes, L. De Sio, S. Ferjani, G. Strangi, C. Umeton, and R. Bartolino, “Short pitch cholesteric electro-optical device based on periodic polymer structures,” Appl. Phy. Lett. 95, 011102 (2009).
[Crossref]

Varanytsia, A.

A. Varanytsia and L.-C. Chien, “Giant flexoelectro-optic effect with liquid crystal dimer CB7CB,” Sci. Rep. 7, 41333 (2017).
[Crossref]

A. Varanytsia and L.-C. Chien, “Bimesogen-enhanced flexoelectro-optic behavior of polymer stabilized cholesteric liquid crystal,” J. Appl. Phys. 119, 014502 (2016).
[Crossref]

Wang, C.-T.

C.-T. Wang, W.-Y. Wang, and T.-H. Lin, “A stable and switchable uniform lying helix structure in cholesteric liquid crystals,” Appl. Phys. Lett. 99, 041108 (2011).
[Crossref]

Wang, L.

G. Chen, L. Wang, Q. Wang, J. Sun, P. Song, X. Chen, X. Liu, S. Guan, X. Zhang, L. Wang, H. Yang, and H. Yu, “Photoinduced hyper-reflective laminated liquid crystal film with simultaneous multicolor reflection,” ACS Appl. Mater. Interfaces 6, 1380–1384 (2014).
[Crossref]

G. Chen, L. Wang, Q. Wang, J. Sun, P. Song, X. Chen, X. Liu, S. Guan, X. Zhang, L. Wang, H. Yang, and H. Yu, “Photoinduced hyper-reflective laminated liquid crystal film with simultaneous multicolor reflection,” ACS Appl. Mater. Interfaces 6, 1380–1384 (2014).
[Crossref]

Wang, Q.

G. Chen, L. Wang, Q. Wang, J. Sun, P. Song, X. Chen, X. Liu, S. Guan, X. Zhang, L. Wang, H. Yang, and H. Yu, “Photoinduced hyper-reflective laminated liquid crystal film with simultaneous multicolor reflection,” ACS Appl. Mater. Interfaces 6, 1380–1384 (2014).
[Crossref]

Wang, W.-Y.

C.-T. Wang, W.-Y. Wang, and T.-H. Lin, “A stable and switchable uniform lying helix structure in cholesteric liquid crystals,” Appl. Phys. Lett. 99, 041108 (2011).
[Crossref]

Wang, X.

Wang, X.-Z.

White, T. J.

T. J. White, M. E. McConney, and T. J. Bunning, “Dynamic color in stimuli-responsive cholesteric liquid crystals,” J. Mater. Chem. 20, 9832–9847 (2010).
[Crossref]

Wood, E. L.

L. Komitov, G. P. B. Brown, E. L. Wood, and A. B. J. Smout, “Alignment of cholesteric liquid crystals using periodic anchoring,” J. Appl. Phys. 86, 3508–3511 (1999).
[Crossref]

Wu, C.-Y.

Wu, G.-W.

Wu, P.-C.

Wu, S.-T.

G. Tan, Y.-H. Lee, F. Gou, M. Hu, Y.-F. Lan, C.-Y. Tsai, and S.-T. Wu, “Macroscopic model for analyzing the electro-optics of uniform lying helix cholesteric liquid crystals,” J. Appl. Phys. 121, 173102 (2017).
[Crossref]

Xu, W.

Xu, X.

X. Zhou, Y. Jiang, G. Qin, X. Xu, and D.-K. Yang, “Static and dynamic properties of hybridly aligned flexoelectric in-plane-switching liquid crystal display,” Phys. Rev. Appl. 8, 054033 (2017).
[Crossref]

Xu, Y.-C.

Y. Shen, Y.-C. Xu, Y.-H. Ge, R.-G. Jiang, X.-Z. Wang, S.-S. Li, and L.-J. Chen, “Photoalignment of dye-doped cholesteric liquid crystals for electrically tunable patterns with fingerprint textures,” Opt. Express 26, 1422–1432 (2018).
[Crossref]

S.-S. Li, Y. Shen, Z.-N. Chang, W.-S. Li, Y.-C. Xu, X.-Y. Fan, and L.-J. Chen, “Dynamic cholesteric liquid crystal superstructures photoaligned by one-step polarization holography,” Appl. Phys. Lett. 111, 231109 (2017).
[Crossref]

Yang, D.-K.

X. Zhou, Y. Jiang, G. Qin, X. Xu, and D.-K. Yang, “Static and dynamic properties of hybridly aligned flexoelectric in-plane-switching liquid crystal display,” Phys. Rev. Appl. 8, 054033 (2017).
[Crossref]

A. Moheghi, H. Nemati, Y. Li, Q. Li, and D.-K. Yang, “Bistable salt doped cholesteric liquid crystals light shutter,” Opt. Mater. 52, 219–223 (2016).
[Crossref]

R. Bao, C.-M. Liu, and D.-K. Yang, “Smart bistable polymer stabilized cholesteric texture light shutter,” Appl. Phys. Express 2, 112401 (2009).
[Crossref]

Yang, H.

G. Chen, L. Wang, Q. Wang, J. Sun, P. Song, X. Chen, X. Liu, S. Guan, X. Zhang, L. Wang, H. Yang, and H. Yu, “Photoinduced hyper-reflective laminated liquid crystal film with simultaneous multicolor reflection,” ACS Appl. Mater. Interfaces 6, 1380–1384 (2014).
[Crossref]

Yoon, T.-H.

Yu, C.-H.

C.-H. Yu, P.-C. Wu, and W. Lee, “Electro-thermal formation of uniform lying helix alignment in a cholesteric liquid crystal cell,” Crystals 9, 183 (2019).
[Crossref]

C.-H. Yu, P.-C. Wu, and W. Lee, “Alternative generation of well-aligned uniform lying helix texture in a cholesteric liquid crystal cell,” AIP Adv. 7, 105107 (2017).
[Crossref]

Yu, H.

G. Chen, L. Wang, Q. Wang, J. Sun, P. Song, X. Chen, X. Liu, S. Guan, X. Zhang, L. Wang, H. Yang, and H. Yu, “Photoinduced hyper-reflective laminated liquid crystal film with simultaneous multicolor reflection,” ACS Appl. Mater. Interfaces 6, 1380–1384 (2014).
[Crossref]

Zhang, G.

Zhang, S.

Zhang, X.

G. Chen, L. Wang, Q. Wang, J. Sun, P. Song, X. Chen, X. Liu, S. Guan, X. Zhang, L. Wang, H. Yang, and H. Yu, “Photoinduced hyper-reflective laminated liquid crystal film with simultaneous multicolor reflection,” ACS Appl. Mater. Interfaces 6, 1380–1384 (2014).
[Crossref]

Zheng, Z.-G.

L.-L. Ma, S.-S. Li, W.-S. Li, W. Ji, B. Luo, Z.-G. Zheng, Z.-P. Cai, V. Chigrinov, Y.-Q. Lu, W. Hu, and L.-J. Chen, “Rationally designed dynamic superstructures enabled by photoaligning cholesteric liquid crystals,” Adv. Opt. Mater. 3, 1691–1696 (2015).
[Crossref]

Zhou, X.

X. Zhou, Y. Jiang, G. Qin, X. Xu, and D.-K. Yang, “Static and dynamic properties of hybridly aligned flexoelectric in-plane-switching liquid crystal display,” Phys. Rev. Appl. 8, 054033 (2017).
[Crossref]

Zyryanov, V. Ya.

ACS Appl. Mater. Interfaces (1)

G. Chen, L. Wang, Q. Wang, J. Sun, P. Song, X. Chen, X. Liu, S. Guan, X. Zhang, L. Wang, H. Yang, and H. Yu, “Photoinduced hyper-reflective laminated liquid crystal film with simultaneous multicolor reflection,” ACS Appl. Mater. Interfaces 6, 1380–1384 (2014).
[Crossref]

Adv. Opt. Mater. (1)

L.-L. Ma, S.-S. Li, W.-S. Li, W. Ji, B. Luo, Z.-G. Zheng, Z.-P. Cai, V. Chigrinov, Y.-Q. Lu, W. Hu, and L.-J. Chen, “Rationally designed dynamic superstructures enabled by photoaligning cholesteric liquid crystals,” Adv. Opt. Mater. 3, 1691–1696 (2015).
[Crossref]

AIP Adv. (1)

C.-H. Yu, P.-C. Wu, and W. Lee, “Alternative generation of well-aligned uniform lying helix texture in a cholesteric liquid crystal cell,” AIP Adv. 7, 105107 (2017).
[Crossref]

Appl. Phy. Lett. (1)

G. Carbone, P. Salter, P. S. J. Elston, P. Raynes, L. De Sio, S. Ferjani, G. Strangi, C. Umeton, and R. Bartolino, “Short pitch cholesteric electro-optical device based on periodic polymer structures,” Appl. Phy. Lett. 95, 011102 (2009).
[Crossref]

Appl. Phys. Express (2)

Y. Inoue and H. Moritake, “Formation of a defect-free uniform lying helix in a thick cholesteric liquid crystal cell,” Appl. Phys. Express 8, 071701 (2015).
[Crossref]

R. Bao, C.-M. Liu, and D.-K. Yang, “Smart bistable polymer stabilized cholesteric texture light shutter,” Appl. Phys. Express 2, 112401 (2009).
[Crossref]

Appl. Phys. Lett. (4)

S.-S. Li, Y. Shen, Z.-N. Chang, W.-S. Li, Y.-C. Xu, X.-Y. Fan, and L.-J. Chen, “Dynamic cholesteric liquid crystal superstructures photoaligned by one-step polarization holography,” Appl. Phys. Lett. 111, 231109 (2017).
[Crossref]

C.-T. Wang, W.-Y. Wang, and T.-H. Lin, “A stable and switchable uniform lying helix structure in cholesteric liquid crystals,” Appl. Phys. Lett. 99, 041108 (2011).
[Crossref]

G. Hegde and L. Komitov, “Periodic anchoring condition for alignment of a short pitch cholesteric liquid crystal in uniform lying helix texture,” Appl. Phys. Lett. 96, 113503 (2010).
[Crossref]

B. I. Outram and S. J. Elston, “Alignment of cholesteric liquid crystals using the macroscopic flexoelectric polarization contribution to dielectric properties,” Appl. Phys. Lett. 103, 141111 (2013).
[Crossref]

Crystals (1)

C.-H. Yu, P.-C. Wu, and W. Lee, “Electro-thermal formation of uniform lying helix alignment in a cholesteric liquid crystal cell,” Crystals 9, 183 (2019).
[Crossref]

IEEE Photon. J. (1)

Z. Lan, Y. Li, H. Dai, and D. Luo, “Bistable smart window based on ionic liquid doped cholesteric liquid crystal,” IEEE Photon. J. 9, 2200307 (2017).
[Crossref]

J. Appl. Phys. (5)

B. I. Outram, S. J. Elston, R. Tuffin, S. Siemianowski, and B. Snow, “The use of mould-templated surface structures for high-quality uniform-lying-helix liquid-crystal alignment,” J. Appl. Phys. 113, 213111 (2013).
[Crossref]

B. I. Outram and S. J. Elston, “Spontaneous and stable uniform lying helix liquid-crystal alignment,” J. Appl. Phys. 113, 043103 (2013).
[Crossref]

L. Komitov, G. P. B. Brown, E. L. Wood, and A. B. J. Smout, “Alignment of cholesteric liquid crystals using periodic anchoring,” J. Appl. Phys. 86, 3508–3511 (1999).
[Crossref]

A. Varanytsia and L.-C. Chien, “Bimesogen-enhanced flexoelectro-optic behavior of polymer stabilized cholesteric liquid crystal,” J. Appl. Phys. 119, 014502 (2016).
[Crossref]

G. Tan, Y.-H. Lee, F. Gou, M. Hu, Y.-F. Lan, C.-Y. Tsai, and S.-T. Wu, “Macroscopic model for analyzing the electro-optics of uniform lying helix cholesteric liquid crystals,” J. Appl. Phys. 121, 173102 (2017).
[Crossref]

J. Mater. Chem. (1)

T. J. White, M. E. McConney, and T. J. Bunning, “Dynamic color in stimuli-responsive cholesteric liquid crystals,” J. Mater. Chem. 20, 9832–9847 (2010).
[Crossref]

J. Mater. Chem. C (1)

C. Meyer, G. R. Luckhurst, and I. Dozov, “The temperature dependence of the heliconical tilt angle in the twist-bend nematic phase of the odd dimer CB7CB,” J. Mater. Chem. C 3, 318–328 (2015).
[Crossref]

Jpn. J. Appl. Phys. (1)

P. S. Salter, S. J. Elston, P. Raynes, and L. A. Parry-Jones, “Alignment of the uniform lying helix structure in cholesteric liquid crystals,” Jpn. J. Appl. Phys. 48, 101302 (2009).
[Crossref]

Liq. Cryst. (1)

P. Rudquist, L. Komitov, and S. T. Lagerwall, “Volume-stabilized ULH structure for the flexoelectro-optic effect and the phase-shift effect in cholesterics,” Liq. Cryst. 24, 329–334 (1998).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Opt. Mater. (1)

A. Moheghi, H. Nemati, Y. Li, Q. Li, and D.-K. Yang, “Bistable salt doped cholesteric liquid crystals light shutter,” Opt. Mater. 52, 219–223 (2016).
[Crossref]

Photon. Res. (2)

Phys. Rev. Appl. (1)

X. Zhou, Y. Jiang, G. Qin, X. Xu, and D.-K. Yang, “Static and dynamic properties of hybridly aligned flexoelectric in-plane-switching liquid crystal display,” Phys. Rev. Appl. 8, 054033 (2017).
[Crossref]

Phys. Rev. E (1)

B. I. Outram and S. J. Elston, “Frequency-dependent dielectric contribution of flexoelectricity allowing control of state switching in helicoidal liquid crystals,” Phys. Rev. E 88, 012506 (2013).
[Crossref]

Phys. Rev. Lett. (1)

J. S. Patel and R. B. Meyer, “Flexoelectric electro-optics of a cholesteric liquid crystal,” Phys. Rev. Lett. 58, 1538–1540 (1987).
[Crossref]

Sci. Rep. (1)

A. Varanytsia and L.-C. Chien, “Giant flexoelectro-optic effect with liquid crystal dimer CB7CB,” Sci. Rep. 7, 41333 (2017).
[Crossref]

Other (2)

H. J. Coles and S. M. Morris, “Flexoelectro-optic liquid crystal displays,” in Handbook of Visual Display Technology, J. Chen, W. Cranton, and M. Fihn, eds. (Springer, 2012), pp. 1681–1694.

G. Chilaya, “Cholesteric liquid crystals: optics, electro-optics, and photo-optics,” in Chirality in Liquid Crystals, H. Kitzerow and C. Bahr, eds. (Springer, 2001), pp. 159–185.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Voltage dependence of transmission curves (VTr) of (a) undoped and (b) CB7CB-doped CLC cells in the increasing voltage process. Here, the unpolarized probe beam was derived from a He–Ne laser source operating at 632.8 nm in wavelength. Inset in (b) is an optical texture (under crossed polarizers) indicating the induction of ULH alignment in the CB7CB-doped cell by 100 Hz voltage of 90Vrms. The abbreviations of P, A, and R denote the transmission axes of the polarizer, analyzer, and the rubbing direction, respectively.
Fig. 2.
Fig. 2. Frequency-dependent critical voltages of VH, VULH, and VFC for the inductions of the H, ULH, and FC states in the binary (i.e., CB7CB-doped) CLC cell.
Fig. 3.
Fig. 3. Real-part dielectric spectra ε(f) of (a) the CB7CB-doped cell in the P, FC, and ULH states and (b) the undoped counterpart in the P and FC states. The simulated ε(f) curves [solid lines in (a)] of the CB7CB-doped cell are plotted with fitting parameters of fR=703.1  Hz, εH=9.9, and εflexo=2.1 for the ULH state and fR=702.6  Hz, εH=10.5, and εflexo=2.6 for the FC state according to Eq. (2).
Fig. 4.
Fig. 4. (a) Transmission spectra (without polarizers) and (b) polarized optical micrographs (under crossed polarizers) of the CB7CB-doped CLC at null voltage after treatments with gradually decreasing voltages from V=120Vrms to 0Vrms at various frequencies. The arrows indicate the transmission axes of the polarizer (P) and analyzer (A) as well as the helical axis (H.A.).
Fig. 5.
Fig. 5. Frequency-dependent transmission curves of the CB7CB-doped CLC at three wavelengths, acquired from transmission spectra of the cell in the unperturbed state after stimulations by gradually decreasing AC voltages from V=120Vrms to 0Vrms.
Fig. 6.
Fig. 6. Schematic of the driving scheme for the tristable switching among the P, FC, and ULH states and, in turn, the modulation in transmitted light intensity in the stable ULH/FC coexisting state of the binary E7/CB7CB CLC. The applied voltage is fixed at 50Vrms, and the frequency is variable (refer to Figs. 2 and 5).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

VH=π22p0d4πK22Δεπ3e2K1,
ε=εH+εflexo1+f2/fR2,

Metrics