Abstract

A hybrid no-core fiber (NCF)–graded index multimode fiber (GIMF) structure is used as a saturable absorber (SA) for mode-locked laser operation. Such an SA supports various types of soliton outputs. By changing the cavity parameters, not only the spatiotemporal mode-locking states with a stable single pulse but also tightly and loosely bound solitons are generated. Single 35.5 pJ solitons centered at 1568.5 nm have a 4 nm spectral full-width at half-maximum and an 818 fs temporal duration. Tightly bound soliton pairs with continuously tunable wavelength from 1567.48 nm to 1576.20 nm, featured with an 700  fs pulse train with a separation of 2.07 ps, have been observed by stretching the NCF-GIMF structured device. Meanwhile, several different pulse separations from 37.57 ps to 56.46 ps of loosely bound solitons have also been realized. The results provide help in understanding the nonlinear dynamics in fiber lasers.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Generation of pulse-width controllable dissipative solitons and bound solitons by using an all fiber saturable absorber

Zhaokun Wang, Liujiang Li, D. N. Wang, Zichun Le, Shuqin Zhang, Shiying Cao, and Zhanjun Fang
Opt. Lett. 44(3) 570-573 (2019)

Graded index fiber as an all-fiber saturable absorber for large energy conventional soliton and dissipative soliton generation

Zhaokun Wang, Jikai Chen, Tianyu Zhu, D. N. Wang, and Feng Gao
Photon. Res. 7(11) 1214-1220 (2019)

Observation of various bound solitons in a carbon-nanotube-based erbium fiber laser

Lili Gui, Xiaosheng Xiao, and Changxi Yang
J. Opt. Soc. Am. B 30(1) 158-164 (2013)

References

  • View by:
  • |
  • |
  • |

  1. D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72, 1–38 (2009).
    [Crossref]
  2. M. Olivier and M. Piché, “Origin of the bound states of pulses in the stretched-pulse fiber laser,” Opt. Express 17, 405–418 (2009).
    [Crossref]
  3. P. Wang, K. Zhao, L. Gui, X. Xiao, and C. Yang, “Self-organized structures of soliton molecules in 2-μm fiber laser based on MoS2 saturable absorber,” IEEE Photon. Technol. Lett. 30, 1210–1213 (2018).
    [Crossref]
  4. B. A. Malomed, “Bound solitons in the nonlinear Schrödinger/Ginzburg-Landau equation,” in Large Scale Structures in Nonlinear Physics, Lecture Notes in Physics (Springer, 1991).
  5. N. Akhmediev, A. Ankiewicz, and J. Soto-Crespo, “Multisoliton solutions of the complex Ginzburg-Landau equation,” Phys. Rev. Lett. 79, 4047–4051 (1997).
    [Crossref]
  6. N. N. Akhmediev, A. Ankiewicz, and J. M. Soto-Crespo, “Stable soliton pairs in optical transmission lines and fiber lasers,” J. Opt. Soc. Am. B 15, 515–523 (1998).
    [Crossref]
  7. D. Y. Tang, P. D. Drummond, W. S. Man, H. Y. Tam, and M. S. Demokan, “Observation of bound solitons in a passively mode-locked fiber laser,” in Quantum Electronics and Laser Science Conference (2000), paper QWG4.
  8. L. Gui, P. Wang, Y. Ding, K. Zhao, C. Bao, X. Xiao, and C. Yang, “Soliton molecules and multisoliton states in ultrafast fibre lasers: intrinsic complexes in dissipative systems,” Appl. Sci. 8, 201 (2018).
    [Crossref]
  9. P. Grelu and J. M. Soto-Crespo, “Multisoliton states and pulse fragmentation in a passively mode-locked fibre laser,” J. Opt. B Quantum Semiclass. Opt. 6, S271–S278 (2004).
    [Crossref]
  10. D. Y. Tang, B. Zhao, L. M. Zhao, and H. Y. Tam, “Soliton interaction in a fiber ring laser,” Phys. Rev. E 72, 1–51 (2005).
    [Crossref]
  11. A. Komarov, F. Amrani, A. Dmitriev, K. Komarov, D. Meshcheriakov, and F. Sanchez, “Multiple-pulse operation and bound states of solitons in passive mode-locked fiber lasers,” Int. J. Opt. 2012, 418469 (2012).
    [Crossref]
  12. A. Hideur, B. Ortaç, T. Chartier, M. Brunel, H. Leblond, and F. Sanchez, “Ultra-short bound states generation with a passively mode-locked high-power Yb-doped double-clad fiber laser,” Opt. Commun. 225, 71–78 (2003).
    [Crossref]
  13. B. Ortac, A. Hideur, M. Brunel, C. Chedot, J. Limpert, A. Tunnermann, and F. O. Ilday, “Generation of parabolic bound pulses from a Yb-fiber laser,” Opt. Express 14, 6075–6083 (2006).
    [Crossref]
  14. H. P. Li, H. D. Xia, Z. Jing, J. K. Liao, X. G. Tang, Y. Liu, and Y. Z. Liu, “Dark pulse generation in a dispersion-managed fiber laser,” Laser Phys. 22, 261–264 (2012).
    [Crossref]
  15. W. C. Chen, Z. C. Luo, W. C. Xu, D. A. Han, and H. Cao, “Effect of gain media characteristics on the formation of soliton molecules in fiber laser,” Laser Phys. 21, 1919–1924 (2011).
    [Crossref]
  16. P. Wang, X. Xiao, and C. Yang, “Quantized pulse separations of phase-locked soliton molecules in a dispersion-managed mode-locked Tm fiber laser at 2 μm,” Opt. Lett. 42, 29–32 (2017).
    [Crossref]
  17. P. Wang, C. Bao, B. Fu, X. Xiao, P. Grelu, and C. Yang, “Generation of wavelength-tunable soliton molecules in a 2-μm ultrafast all-fiber laser based on nonlinear polarization evolution,” Opt. Lett. 41, 2254–2257 (2016).
    [Crossref]
  18. J. Wang, M. Yao, C. Hu, A. Ping Zhang, Y. Shen, H. Tam, and P. K. A. Wai, “Optofluidic tunable mode-locked fiber laser using a long-period grating integrated microfluidic chip,” Opt. Lett. 42, 1117–1120 (2017).
    [Crossref]
  19. Y. Xiang, Y. Luo, B. Liu, Z. Yan, Q. Sun, and D. Liu, “Observation of wavelength tuning and bound states in fiber lasers,” Sci. Rep. 8, 6049 (2018).
    [Crossref]
  20. L. Gui and C. Yang, “Soliton molecules with ±π/2, 0, and π phase differences in a graphene-based mode locked erbium-doped fiber laser,” IEEE Photon. J. 10, 1502609 (2018).
    [Crossref]
  21. K. Li, Y. Song, J. Tian, H. Guoyu, and R. Xu, “Analysis of bound-soliton states in a dual-wavelength mode-locked fiber laser based on Bi2Se3,” IEEE Photon. J. 9, 1400209 (2017).
    [Crossref]
  22. X. Li, K. Xia, D. Wu, Q. Nie, and S. Dai, “Bound states of solitons in a fiber laser with a microfiber-based WS2 saturable absorber,” IEEE Photon. Technol. Lett. 29, 2071–2074 (2017).
    [Crossref]
  23. Y. Chen, S. Chen, J. Liu, Y. Gao, and W. Zhang, “Sub-300 femtosecond soliton tunable fiber laser with all-anomalous dispersion passively mode locked by black phosphorus,” Opt. Express 24, 13316–13324 (2016).
    [Crossref]
  24. Z. Wang, D. N. Wang, F. Yang, L. Li, C. Zhao, B. Xu, S. Jin, S. Cao, and Z. Fang, “Er-doped mode-locked fiber laser with a hybrid structure of a step-index-graded-index multimode fiber as the saturable absorber,” J. Lightwave Technol. 35, 5280–5285 (2017).
    [Crossref]
  25. Z. Wang, D. N. Wang, F. Yang, L. Li, C. Zhao, B. Xu, S. Jin, S. Cao, and Z. Fang, “Stretched graded-index multimode optical fiber as a saturable absorber for erbium-doped fiber laser mode locking,” Opt. Lett. 43, 2078–2081 (2018).
    [Crossref]
  26. Z. T. Wang, Y. Chen, C. J. Zhao, H. Zhang, and S. C. Wen, “Switchable dual-wavelength synchronously Q-switched erbium-doped fiber laser based on graphene saturable absorber,” IEEE Photon. J. 4, 869–876 (2012).
    [Crossref]
  27. P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6, 84–92 (2012).
    [Crossref]
  28. J. Peng, L. Zhan, S. Luo, and Q. S. Shen, “Generation of soliton molecules in a normal-dispersion fiber laser,” IEEE Photon. Technol. Lett. 25, 948–951 (2013).
    [Crossref]
  29. A. Mafi, P. Hofmann, C. J. Salvin, and A. Schulzgen, “Low-loss coupling between two single-mode optical fibers with different mode-field diameters using a graded-index multimode optical fiber,” Opt. Lett. 36, 3596–3598 (2011).
    [Crossref]
  30. P. Hofmann, A. Mafi, C. Jollivet, T. Tiess, N. Peyghambarian, and A. Schulzgen, “Detailed investigation of mode-field adapters utilizing multimode-interference in graded index fibers,” J. Lightwave Technol. 30, 2289–2298 (2012).
    [Crossref]
  31. D. Y. Tang, L. M. Zhao, and B. Zhao, “Multipulse bound solitons with fixed pulse separations formed by direct soliton interaction,” Appl. Phys. B 80, 239–242 (2005).
    [Crossref]
  32. L. M. Zhao, D. Y. Tang, X. Wu, and H. Zhang, “Dissipative soliton generation in Yb-fiber laser with an invisible intracavity bandpass filter,” Opt. Lett. 35, 2756–2758 (2010).
    [Crossref]
  33. L. Socci and M. Romagnoli, “Long-range soliton interactions in periodically amplified fiber links,” J. Opt. Soc. Am. B 16, 12–17 (1999).
    [Crossref]

2018 (5)

P. Wang, K. Zhao, L. Gui, X. Xiao, and C. Yang, “Self-organized structures of soliton molecules in 2-μm fiber laser based on MoS2 saturable absorber,” IEEE Photon. Technol. Lett. 30, 1210–1213 (2018).
[Crossref]

L. Gui, P. Wang, Y. Ding, K. Zhao, C. Bao, X. Xiao, and C. Yang, “Soliton molecules and multisoliton states in ultrafast fibre lasers: intrinsic complexes in dissipative systems,” Appl. Sci. 8, 201 (2018).
[Crossref]

Y. Xiang, Y. Luo, B. Liu, Z. Yan, Q. Sun, and D. Liu, “Observation of wavelength tuning and bound states in fiber lasers,” Sci. Rep. 8, 6049 (2018).
[Crossref]

L. Gui and C. Yang, “Soliton molecules with ±π/2, 0, and π phase differences in a graphene-based mode locked erbium-doped fiber laser,” IEEE Photon. J. 10, 1502609 (2018).
[Crossref]

Z. Wang, D. N. Wang, F. Yang, L. Li, C. Zhao, B. Xu, S. Jin, S. Cao, and Z. Fang, “Stretched graded-index multimode optical fiber as a saturable absorber for erbium-doped fiber laser mode locking,” Opt. Lett. 43, 2078–2081 (2018).
[Crossref]

2017 (5)

2016 (2)

2013 (1)

J. Peng, L. Zhan, S. Luo, and Q. S. Shen, “Generation of soliton molecules in a normal-dispersion fiber laser,” IEEE Photon. Technol. Lett. 25, 948–951 (2013).
[Crossref]

2012 (5)

H. P. Li, H. D. Xia, Z. Jing, J. K. Liao, X. G. Tang, Y. Liu, and Y. Z. Liu, “Dark pulse generation in a dispersion-managed fiber laser,” Laser Phys. 22, 261–264 (2012).
[Crossref]

Z. T. Wang, Y. Chen, C. J. Zhao, H. Zhang, and S. C. Wen, “Switchable dual-wavelength synchronously Q-switched erbium-doped fiber laser based on graphene saturable absorber,” IEEE Photon. J. 4, 869–876 (2012).
[Crossref]

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6, 84–92 (2012).
[Crossref]

A. Komarov, F. Amrani, A. Dmitriev, K. Komarov, D. Meshcheriakov, and F. Sanchez, “Multiple-pulse operation and bound states of solitons in passive mode-locked fiber lasers,” Int. J. Opt. 2012, 418469 (2012).
[Crossref]

P. Hofmann, A. Mafi, C. Jollivet, T. Tiess, N. Peyghambarian, and A. Schulzgen, “Detailed investigation of mode-field adapters utilizing multimode-interference in graded index fibers,” J. Lightwave Technol. 30, 2289–2298 (2012).
[Crossref]

2011 (2)

A. Mafi, P. Hofmann, C. J. Salvin, and A. Schulzgen, “Low-loss coupling between two single-mode optical fibers with different mode-field diameters using a graded-index multimode optical fiber,” Opt. Lett. 36, 3596–3598 (2011).
[Crossref]

W. C. Chen, Z. C. Luo, W. C. Xu, D. A. Han, and H. Cao, “Effect of gain media characteristics on the formation of soliton molecules in fiber laser,” Laser Phys. 21, 1919–1924 (2011).
[Crossref]

2010 (1)

2009 (2)

M. Olivier and M. Piché, “Origin of the bound states of pulses in the stretched-pulse fiber laser,” Opt. Express 17, 405–418 (2009).
[Crossref]

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72, 1–38 (2009).
[Crossref]

2006 (1)

2005 (2)

D. Y. Tang, B. Zhao, L. M. Zhao, and H. Y. Tam, “Soliton interaction in a fiber ring laser,” Phys. Rev. E 72, 1–51 (2005).
[Crossref]

D. Y. Tang, L. M. Zhao, and B. Zhao, “Multipulse bound solitons with fixed pulse separations formed by direct soliton interaction,” Appl. Phys. B 80, 239–242 (2005).
[Crossref]

2004 (1)

P. Grelu and J. M. Soto-Crespo, “Multisoliton states and pulse fragmentation in a passively mode-locked fibre laser,” J. Opt. B Quantum Semiclass. Opt. 6, S271–S278 (2004).
[Crossref]

2003 (1)

A. Hideur, B. Ortaç, T. Chartier, M. Brunel, H. Leblond, and F. Sanchez, “Ultra-short bound states generation with a passively mode-locked high-power Yb-doped double-clad fiber laser,” Opt. Commun. 225, 71–78 (2003).
[Crossref]

1999 (1)

1998 (1)

1997 (1)

N. Akhmediev, A. Ankiewicz, and J. Soto-Crespo, “Multisoliton solutions of the complex Ginzburg-Landau equation,” Phys. Rev. Lett. 79, 4047–4051 (1997).
[Crossref]

Akhmediev, N.

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6, 84–92 (2012).
[Crossref]

N. Akhmediev, A. Ankiewicz, and J. Soto-Crespo, “Multisoliton solutions of the complex Ginzburg-Landau equation,” Phys. Rev. Lett. 79, 4047–4051 (1997).
[Crossref]

Akhmediev, N. N.

Amrani, F.

A. Komarov, F. Amrani, A. Dmitriev, K. Komarov, D. Meshcheriakov, and F. Sanchez, “Multiple-pulse operation and bound states of solitons in passive mode-locked fiber lasers,” Int. J. Opt. 2012, 418469 (2012).
[Crossref]

Ankiewicz, A.

N. N. Akhmediev, A. Ankiewicz, and J. M. Soto-Crespo, “Stable soliton pairs in optical transmission lines and fiber lasers,” J. Opt. Soc. Am. B 15, 515–523 (1998).
[Crossref]

N. Akhmediev, A. Ankiewicz, and J. Soto-Crespo, “Multisoliton solutions of the complex Ginzburg-Landau equation,” Phys. Rev. Lett. 79, 4047–4051 (1997).
[Crossref]

Bao, C.

L. Gui, P. Wang, Y. Ding, K. Zhao, C. Bao, X. Xiao, and C. Yang, “Soliton molecules and multisoliton states in ultrafast fibre lasers: intrinsic complexes in dissipative systems,” Appl. Sci. 8, 201 (2018).
[Crossref]

P. Wang, C. Bao, B. Fu, X. Xiao, P. Grelu, and C. Yang, “Generation of wavelength-tunable soliton molecules in a 2-μm ultrafast all-fiber laser based on nonlinear polarization evolution,” Opt. Lett. 41, 2254–2257 (2016).
[Crossref]

Brunel, M.

B. Ortac, A. Hideur, M. Brunel, C. Chedot, J. Limpert, A. Tunnermann, and F. O. Ilday, “Generation of parabolic bound pulses from a Yb-fiber laser,” Opt. Express 14, 6075–6083 (2006).
[Crossref]

A. Hideur, B. Ortaç, T. Chartier, M. Brunel, H. Leblond, and F. Sanchez, “Ultra-short bound states generation with a passively mode-locked high-power Yb-doped double-clad fiber laser,” Opt. Commun. 225, 71–78 (2003).
[Crossref]

Cao, H.

W. C. Chen, Z. C. Luo, W. C. Xu, D. A. Han, and H. Cao, “Effect of gain media characteristics on the formation of soliton molecules in fiber laser,” Laser Phys. 21, 1919–1924 (2011).
[Crossref]

Cao, S.

Chartier, T.

A. Hideur, B. Ortaç, T. Chartier, M. Brunel, H. Leblond, and F. Sanchez, “Ultra-short bound states generation with a passively mode-locked high-power Yb-doped double-clad fiber laser,” Opt. Commun. 225, 71–78 (2003).
[Crossref]

Chedot, C.

Chen, S.

Chen, W. C.

W. C. Chen, Z. C. Luo, W. C. Xu, D. A. Han, and H. Cao, “Effect of gain media characteristics on the formation of soliton molecules in fiber laser,” Laser Phys. 21, 1919–1924 (2011).
[Crossref]

Chen, Y.

Y. Chen, S. Chen, J. Liu, Y. Gao, and W. Zhang, “Sub-300 femtosecond soliton tunable fiber laser with all-anomalous dispersion passively mode locked by black phosphorus,” Opt. Express 24, 13316–13324 (2016).
[Crossref]

Z. T. Wang, Y. Chen, C. J. Zhao, H. Zhang, and S. C. Wen, “Switchable dual-wavelength synchronously Q-switched erbium-doped fiber laser based on graphene saturable absorber,” IEEE Photon. J. 4, 869–876 (2012).
[Crossref]

Dai, S.

X. Li, K. Xia, D. Wu, Q. Nie, and S. Dai, “Bound states of solitons in a fiber laser with a microfiber-based WS2 saturable absorber,” IEEE Photon. Technol. Lett. 29, 2071–2074 (2017).
[Crossref]

Demokan, M. S.

D. Y. Tang, P. D. Drummond, W. S. Man, H. Y. Tam, and M. S. Demokan, “Observation of bound solitons in a passively mode-locked fiber laser,” in Quantum Electronics and Laser Science Conference (2000), paper QWG4.

Ding, Y.

L. Gui, P. Wang, Y. Ding, K. Zhao, C. Bao, X. Xiao, and C. Yang, “Soliton molecules and multisoliton states in ultrafast fibre lasers: intrinsic complexes in dissipative systems,” Appl. Sci. 8, 201 (2018).
[Crossref]

Dmitriev, A.

A. Komarov, F. Amrani, A. Dmitriev, K. Komarov, D. Meshcheriakov, and F. Sanchez, “Multiple-pulse operation and bound states of solitons in passive mode-locked fiber lasers,” Int. J. Opt. 2012, 418469 (2012).
[Crossref]

Drummond, P. D.

D. Y. Tang, P. D. Drummond, W. S. Man, H. Y. Tam, and M. S. Demokan, “Observation of bound solitons in a passively mode-locked fiber laser,” in Quantum Electronics and Laser Science Conference (2000), paper QWG4.

Fang, Z.

Fu, B.

Gao, Y.

Grelu, P.

P. Wang, C. Bao, B. Fu, X. Xiao, P. Grelu, and C. Yang, “Generation of wavelength-tunable soliton molecules in a 2-μm ultrafast all-fiber laser based on nonlinear polarization evolution,” Opt. Lett. 41, 2254–2257 (2016).
[Crossref]

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6, 84–92 (2012).
[Crossref]

P. Grelu and J. M. Soto-Crespo, “Multisoliton states and pulse fragmentation in a passively mode-locked fibre laser,” J. Opt. B Quantum Semiclass. Opt. 6, S271–S278 (2004).
[Crossref]

Gui, L.

L. Gui, P. Wang, Y. Ding, K. Zhao, C. Bao, X. Xiao, and C. Yang, “Soliton molecules and multisoliton states in ultrafast fibre lasers: intrinsic complexes in dissipative systems,” Appl. Sci. 8, 201 (2018).
[Crossref]

L. Gui and C. Yang, “Soliton molecules with ±π/2, 0, and π phase differences in a graphene-based mode locked erbium-doped fiber laser,” IEEE Photon. J. 10, 1502609 (2018).
[Crossref]

P. Wang, K. Zhao, L. Gui, X. Xiao, and C. Yang, “Self-organized structures of soliton molecules in 2-μm fiber laser based on MoS2 saturable absorber,” IEEE Photon. Technol. Lett. 30, 1210–1213 (2018).
[Crossref]

Guoyu, H.

K. Li, Y. Song, J. Tian, H. Guoyu, and R. Xu, “Analysis of bound-soliton states in a dual-wavelength mode-locked fiber laser based on Bi2Se3,” IEEE Photon. J. 9, 1400209 (2017).
[Crossref]

Han, D. A.

W. C. Chen, Z. C. Luo, W. C. Xu, D. A. Han, and H. Cao, “Effect of gain media characteristics on the formation of soliton molecules in fiber laser,” Laser Phys. 21, 1919–1924 (2011).
[Crossref]

Hideur, A.

B. Ortac, A. Hideur, M. Brunel, C. Chedot, J. Limpert, A. Tunnermann, and F. O. Ilday, “Generation of parabolic bound pulses from a Yb-fiber laser,” Opt. Express 14, 6075–6083 (2006).
[Crossref]

A. Hideur, B. Ortaç, T. Chartier, M. Brunel, H. Leblond, and F. Sanchez, “Ultra-short bound states generation with a passively mode-locked high-power Yb-doped double-clad fiber laser,” Opt. Commun. 225, 71–78 (2003).
[Crossref]

Hofmann, P.

Hu, C.

Ilday, F. O.

Jin, S.

Jing, Z.

H. P. Li, H. D. Xia, Z. Jing, J. K. Liao, X. G. Tang, Y. Liu, and Y. Z. Liu, “Dark pulse generation in a dispersion-managed fiber laser,” Laser Phys. 22, 261–264 (2012).
[Crossref]

Jollivet, C.

Komarov, A.

A. Komarov, F. Amrani, A. Dmitriev, K. Komarov, D. Meshcheriakov, and F. Sanchez, “Multiple-pulse operation and bound states of solitons in passive mode-locked fiber lasers,” Int. J. Opt. 2012, 418469 (2012).
[Crossref]

Komarov, K.

A. Komarov, F. Amrani, A. Dmitriev, K. Komarov, D. Meshcheriakov, and F. Sanchez, “Multiple-pulse operation and bound states of solitons in passive mode-locked fiber lasers,” Int. J. Opt. 2012, 418469 (2012).
[Crossref]

Leblond, H.

A. Hideur, B. Ortaç, T. Chartier, M. Brunel, H. Leblond, and F. Sanchez, “Ultra-short bound states generation with a passively mode-locked high-power Yb-doped double-clad fiber laser,” Opt. Commun. 225, 71–78 (2003).
[Crossref]

Li, H. P.

H. P. Li, H. D. Xia, Z. Jing, J. K. Liao, X. G. Tang, Y. Liu, and Y. Z. Liu, “Dark pulse generation in a dispersion-managed fiber laser,” Laser Phys. 22, 261–264 (2012).
[Crossref]

Li, K.

K. Li, Y. Song, J. Tian, H. Guoyu, and R. Xu, “Analysis of bound-soliton states in a dual-wavelength mode-locked fiber laser based on Bi2Se3,” IEEE Photon. J. 9, 1400209 (2017).
[Crossref]

Li, L.

Li, X.

X. Li, K. Xia, D. Wu, Q. Nie, and S. Dai, “Bound states of solitons in a fiber laser with a microfiber-based WS2 saturable absorber,” IEEE Photon. Technol. Lett. 29, 2071–2074 (2017).
[Crossref]

Liao, J. K.

H. P. Li, H. D. Xia, Z. Jing, J. K. Liao, X. G. Tang, Y. Liu, and Y. Z. Liu, “Dark pulse generation in a dispersion-managed fiber laser,” Laser Phys. 22, 261–264 (2012).
[Crossref]

Limpert, J.

Liu, A. Q.

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72, 1–38 (2009).
[Crossref]

Liu, B.

Y. Xiang, Y. Luo, B. Liu, Z. Yan, Q. Sun, and D. Liu, “Observation of wavelength tuning and bound states in fiber lasers,” Sci. Rep. 8, 6049 (2018).
[Crossref]

Liu, D.

Y. Xiang, Y. Luo, B. Liu, Z. Yan, Q. Sun, and D. Liu, “Observation of wavelength tuning and bound states in fiber lasers,” Sci. Rep. 8, 6049 (2018).
[Crossref]

Liu, J.

Liu, Y.

H. P. Li, H. D. Xia, Z. Jing, J. K. Liao, X. G. Tang, Y. Liu, and Y. Z. Liu, “Dark pulse generation in a dispersion-managed fiber laser,” Laser Phys. 22, 261–264 (2012).
[Crossref]

Liu, Y. Z.

H. P. Li, H. D. Xia, Z. Jing, J. K. Liao, X. G. Tang, Y. Liu, and Y. Z. Liu, “Dark pulse generation in a dispersion-managed fiber laser,” Laser Phys. 22, 261–264 (2012).
[Crossref]

Luo, S.

J. Peng, L. Zhan, S. Luo, and Q. S. Shen, “Generation of soliton molecules in a normal-dispersion fiber laser,” IEEE Photon. Technol. Lett. 25, 948–951 (2013).
[Crossref]

Luo, Y.

Y. Xiang, Y. Luo, B. Liu, Z. Yan, Q. Sun, and D. Liu, “Observation of wavelength tuning and bound states in fiber lasers,” Sci. Rep. 8, 6049 (2018).
[Crossref]

Luo, Z. C.

W. C. Chen, Z. C. Luo, W. C. Xu, D. A. Han, and H. Cao, “Effect of gain media characteristics on the formation of soliton molecules in fiber laser,” Laser Phys. 21, 1919–1924 (2011).
[Crossref]

Mafi, A.

Malomed, B. A.

B. A. Malomed, “Bound solitons in the nonlinear Schrödinger/Ginzburg-Landau equation,” in Large Scale Structures in Nonlinear Physics, Lecture Notes in Physics (Springer, 1991).

Man, W. S.

D. Y. Tang, P. D. Drummond, W. S. Man, H. Y. Tam, and M. S. Demokan, “Observation of bound solitons in a passively mode-locked fiber laser,” in Quantum Electronics and Laser Science Conference (2000), paper QWG4.

Meshcheriakov, D.

A. Komarov, F. Amrani, A. Dmitriev, K. Komarov, D. Meshcheriakov, and F. Sanchez, “Multiple-pulse operation and bound states of solitons in passive mode-locked fiber lasers,” Int. J. Opt. 2012, 418469 (2012).
[Crossref]

Nie, Q.

X. Li, K. Xia, D. Wu, Q. Nie, and S. Dai, “Bound states of solitons in a fiber laser with a microfiber-based WS2 saturable absorber,” IEEE Photon. Technol. Lett. 29, 2071–2074 (2017).
[Crossref]

Olivier, M.

Ortac, B.

Ortaç, B.

A. Hideur, B. Ortaç, T. Chartier, M. Brunel, H. Leblond, and F. Sanchez, “Ultra-short bound states generation with a passively mode-locked high-power Yb-doped double-clad fiber laser,” Opt. Commun. 225, 71–78 (2003).
[Crossref]

Peng, J.

J. Peng, L. Zhan, S. Luo, and Q. S. Shen, “Generation of soliton molecules in a normal-dispersion fiber laser,” IEEE Photon. Technol. Lett. 25, 948–951 (2013).
[Crossref]

Peyghambarian, N.

Piché, M.

Ping Zhang, A.

Romagnoli, M.

Salvin, C. J.

Sanchez, F.

A. Komarov, F. Amrani, A. Dmitriev, K. Komarov, D. Meshcheriakov, and F. Sanchez, “Multiple-pulse operation and bound states of solitons in passive mode-locked fiber lasers,” Int. J. Opt. 2012, 418469 (2012).
[Crossref]

A. Hideur, B. Ortaç, T. Chartier, M. Brunel, H. Leblond, and F. Sanchez, “Ultra-short bound states generation with a passively mode-locked high-power Yb-doped double-clad fiber laser,” Opt. Commun. 225, 71–78 (2003).
[Crossref]

Schulzgen, A.

Shen, Q. S.

J. Peng, L. Zhan, S. Luo, and Q. S. Shen, “Generation of soliton molecules in a normal-dispersion fiber laser,” IEEE Photon. Technol. Lett. 25, 948–951 (2013).
[Crossref]

Shen, Y.

Socci, L.

Song, Y.

K. Li, Y. Song, J. Tian, H. Guoyu, and R. Xu, “Analysis of bound-soliton states in a dual-wavelength mode-locked fiber laser based on Bi2Se3,” IEEE Photon. J. 9, 1400209 (2017).
[Crossref]

Soto-Crespo, J.

N. Akhmediev, A. Ankiewicz, and J. Soto-Crespo, “Multisoliton solutions of the complex Ginzburg-Landau equation,” Phys. Rev. Lett. 79, 4047–4051 (1997).
[Crossref]

Soto-Crespo, J. M.

P. Grelu and J. M. Soto-Crespo, “Multisoliton states and pulse fragmentation in a passively mode-locked fibre laser,” J. Opt. B Quantum Semiclass. Opt. 6, S271–S278 (2004).
[Crossref]

N. N. Akhmediev, A. Ankiewicz, and J. M. Soto-Crespo, “Stable soliton pairs in optical transmission lines and fiber lasers,” J. Opt. Soc. Am. B 15, 515–523 (1998).
[Crossref]

Sun, Q.

Y. Xiang, Y. Luo, B. Liu, Z. Yan, Q. Sun, and D. Liu, “Observation of wavelength tuning and bound states in fiber lasers,” Sci. Rep. 8, 6049 (2018).
[Crossref]

Tam, H.

Tam, H. Y.

D. Y. Tang, B. Zhao, L. M. Zhao, and H. Y. Tam, “Soliton interaction in a fiber ring laser,” Phys. Rev. E 72, 1–51 (2005).
[Crossref]

D. Y. Tang, P. D. Drummond, W. S. Man, H. Y. Tam, and M. S. Demokan, “Observation of bound solitons in a passively mode-locked fiber laser,” in Quantum Electronics and Laser Science Conference (2000), paper QWG4.

Tang, D. Y.

L. M. Zhao, D. Y. Tang, X. Wu, and H. Zhang, “Dissipative soliton generation in Yb-fiber laser with an invisible intracavity bandpass filter,” Opt. Lett. 35, 2756–2758 (2010).
[Crossref]

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72, 1–38 (2009).
[Crossref]

D. Y. Tang, L. M. Zhao, and B. Zhao, “Multipulse bound solitons with fixed pulse separations formed by direct soliton interaction,” Appl. Phys. B 80, 239–242 (2005).
[Crossref]

D. Y. Tang, B. Zhao, L. M. Zhao, and H. Y. Tam, “Soliton interaction in a fiber ring laser,” Phys. Rev. E 72, 1–51 (2005).
[Crossref]

D. Y. Tang, P. D. Drummond, W. S. Man, H. Y. Tam, and M. S. Demokan, “Observation of bound solitons in a passively mode-locked fiber laser,” in Quantum Electronics and Laser Science Conference (2000), paper QWG4.

Tang, X. G.

H. P. Li, H. D. Xia, Z. Jing, J. K. Liao, X. G. Tang, Y. Liu, and Y. Z. Liu, “Dark pulse generation in a dispersion-managed fiber laser,” Laser Phys. 22, 261–264 (2012).
[Crossref]

Tian, J.

K. Li, Y. Song, J. Tian, H. Guoyu, and R. Xu, “Analysis of bound-soliton states in a dual-wavelength mode-locked fiber laser based on Bi2Se3,” IEEE Photon. J. 9, 1400209 (2017).
[Crossref]

Tiess, T.

Tunnermann, A.

Wai, P. K. A.

Wang, D. N.

Wang, J.

Wang, P.

P. Wang, K. Zhao, L. Gui, X. Xiao, and C. Yang, “Self-organized structures of soliton molecules in 2-μm fiber laser based on MoS2 saturable absorber,” IEEE Photon. Technol. Lett. 30, 1210–1213 (2018).
[Crossref]

L. Gui, P. Wang, Y. Ding, K. Zhao, C. Bao, X. Xiao, and C. Yang, “Soliton molecules and multisoliton states in ultrafast fibre lasers: intrinsic complexes in dissipative systems,” Appl. Sci. 8, 201 (2018).
[Crossref]

P. Wang, X. Xiao, and C. Yang, “Quantized pulse separations of phase-locked soliton molecules in a dispersion-managed mode-locked Tm fiber laser at 2 μm,” Opt. Lett. 42, 29–32 (2017).
[Crossref]

P. Wang, C. Bao, B. Fu, X. Xiao, P. Grelu, and C. Yang, “Generation of wavelength-tunable soliton molecules in a 2-μm ultrafast all-fiber laser based on nonlinear polarization evolution,” Opt. Lett. 41, 2254–2257 (2016).
[Crossref]

Wang, Z.

Wang, Z. T.

Z. T. Wang, Y. Chen, C. J. Zhao, H. Zhang, and S. C. Wen, “Switchable dual-wavelength synchronously Q-switched erbium-doped fiber laser based on graphene saturable absorber,” IEEE Photon. J. 4, 869–876 (2012).
[Crossref]

Wen, S. C.

Z. T. Wang, Y. Chen, C. J. Zhao, H. Zhang, and S. C. Wen, “Switchable dual-wavelength synchronously Q-switched erbium-doped fiber laser based on graphene saturable absorber,” IEEE Photon. J. 4, 869–876 (2012).
[Crossref]

Wu, D.

X. Li, K. Xia, D. Wu, Q. Nie, and S. Dai, “Bound states of solitons in a fiber laser with a microfiber-based WS2 saturable absorber,” IEEE Photon. Technol. Lett. 29, 2071–2074 (2017).
[Crossref]

Wu, X.

Xia, H. D.

H. P. Li, H. D. Xia, Z. Jing, J. K. Liao, X. G. Tang, Y. Liu, and Y. Z. Liu, “Dark pulse generation in a dispersion-managed fiber laser,” Laser Phys. 22, 261–264 (2012).
[Crossref]

Xia, K.

X. Li, K. Xia, D. Wu, Q. Nie, and S. Dai, “Bound states of solitons in a fiber laser with a microfiber-based WS2 saturable absorber,” IEEE Photon. Technol. Lett. 29, 2071–2074 (2017).
[Crossref]

Xiang, Y.

Y. Xiang, Y. Luo, B. Liu, Z. Yan, Q. Sun, and D. Liu, “Observation of wavelength tuning and bound states in fiber lasers,” Sci. Rep. 8, 6049 (2018).
[Crossref]

Xiao, X.

L. Gui, P. Wang, Y. Ding, K. Zhao, C. Bao, X. Xiao, and C. Yang, “Soliton molecules and multisoliton states in ultrafast fibre lasers: intrinsic complexes in dissipative systems,” Appl. Sci. 8, 201 (2018).
[Crossref]

P. Wang, K. Zhao, L. Gui, X. Xiao, and C. Yang, “Self-organized structures of soliton molecules in 2-μm fiber laser based on MoS2 saturable absorber,” IEEE Photon. Technol. Lett. 30, 1210–1213 (2018).
[Crossref]

P. Wang, X. Xiao, and C. Yang, “Quantized pulse separations of phase-locked soliton molecules in a dispersion-managed mode-locked Tm fiber laser at 2 μm,” Opt. Lett. 42, 29–32 (2017).
[Crossref]

P. Wang, C. Bao, B. Fu, X. Xiao, P. Grelu, and C. Yang, “Generation of wavelength-tunable soliton molecules in a 2-μm ultrafast all-fiber laser based on nonlinear polarization evolution,” Opt. Lett. 41, 2254–2257 (2016).
[Crossref]

Xu, B.

Xu, R.

K. Li, Y. Song, J. Tian, H. Guoyu, and R. Xu, “Analysis of bound-soliton states in a dual-wavelength mode-locked fiber laser based on Bi2Se3,” IEEE Photon. J. 9, 1400209 (2017).
[Crossref]

Xu, W. C.

W. C. Chen, Z. C. Luo, W. C. Xu, D. A. Han, and H. Cao, “Effect of gain media characteristics on the formation of soliton molecules in fiber laser,” Laser Phys. 21, 1919–1924 (2011).
[Crossref]

Yan, Z.

Y. Xiang, Y. Luo, B. Liu, Z. Yan, Q. Sun, and D. Liu, “Observation of wavelength tuning and bound states in fiber lasers,” Sci. Rep. 8, 6049 (2018).
[Crossref]

Yang, C.

L. Gui and C. Yang, “Soliton molecules with ±π/2, 0, and π phase differences in a graphene-based mode locked erbium-doped fiber laser,” IEEE Photon. J. 10, 1502609 (2018).
[Crossref]

L. Gui, P. Wang, Y. Ding, K. Zhao, C. Bao, X. Xiao, and C. Yang, “Soliton molecules and multisoliton states in ultrafast fibre lasers: intrinsic complexes in dissipative systems,” Appl. Sci. 8, 201 (2018).
[Crossref]

P. Wang, K. Zhao, L. Gui, X. Xiao, and C. Yang, “Self-organized structures of soliton molecules in 2-μm fiber laser based on MoS2 saturable absorber,” IEEE Photon. Technol. Lett. 30, 1210–1213 (2018).
[Crossref]

P. Wang, X. Xiao, and C. Yang, “Quantized pulse separations of phase-locked soliton molecules in a dispersion-managed mode-locked Tm fiber laser at 2 μm,” Opt. Lett. 42, 29–32 (2017).
[Crossref]

P. Wang, C. Bao, B. Fu, X. Xiao, P. Grelu, and C. Yang, “Generation of wavelength-tunable soliton molecules in a 2-μm ultrafast all-fiber laser based on nonlinear polarization evolution,” Opt. Lett. 41, 2254–2257 (2016).
[Crossref]

Yang, F.

Yao, M.

Zhan, L.

J. Peng, L. Zhan, S. Luo, and Q. S. Shen, “Generation of soliton molecules in a normal-dispersion fiber laser,” IEEE Photon. Technol. Lett. 25, 948–951 (2013).
[Crossref]

Zhang, H.

Z. T. Wang, Y. Chen, C. J. Zhao, H. Zhang, and S. C. Wen, “Switchable dual-wavelength synchronously Q-switched erbium-doped fiber laser based on graphene saturable absorber,” IEEE Photon. J. 4, 869–876 (2012).
[Crossref]

L. M. Zhao, D. Y. Tang, X. Wu, and H. Zhang, “Dissipative soliton generation in Yb-fiber laser with an invisible intracavity bandpass filter,” Opt. Lett. 35, 2756–2758 (2010).
[Crossref]

Zhang, W.

Zhao, B.

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72, 1–38 (2009).
[Crossref]

D. Y. Tang, L. M. Zhao, and B. Zhao, “Multipulse bound solitons with fixed pulse separations formed by direct soliton interaction,” Appl. Phys. B 80, 239–242 (2005).
[Crossref]

D. Y. Tang, B. Zhao, L. M. Zhao, and H. Y. Tam, “Soliton interaction in a fiber ring laser,” Phys. Rev. E 72, 1–51 (2005).
[Crossref]

Zhao, C.

Zhao, C. J.

Z. T. Wang, Y. Chen, C. J. Zhao, H. Zhang, and S. C. Wen, “Switchable dual-wavelength synchronously Q-switched erbium-doped fiber laser based on graphene saturable absorber,” IEEE Photon. J. 4, 869–876 (2012).
[Crossref]

Zhao, K.

P. Wang, K. Zhao, L. Gui, X. Xiao, and C. Yang, “Self-organized structures of soliton molecules in 2-μm fiber laser based on MoS2 saturable absorber,” IEEE Photon. Technol. Lett. 30, 1210–1213 (2018).
[Crossref]

L. Gui, P. Wang, Y. Ding, K. Zhao, C. Bao, X. Xiao, and C. Yang, “Soliton molecules and multisoliton states in ultrafast fibre lasers: intrinsic complexes in dissipative systems,” Appl. Sci. 8, 201 (2018).
[Crossref]

Zhao, L. M.

L. M. Zhao, D. Y. Tang, X. Wu, and H. Zhang, “Dissipative soliton generation in Yb-fiber laser with an invisible intracavity bandpass filter,” Opt. Lett. 35, 2756–2758 (2010).
[Crossref]

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72, 1–38 (2009).
[Crossref]

D. Y. Tang, L. M. Zhao, and B. Zhao, “Multipulse bound solitons with fixed pulse separations formed by direct soliton interaction,” Appl. Phys. B 80, 239–242 (2005).
[Crossref]

D. Y. Tang, B. Zhao, L. M. Zhao, and H. Y. Tam, “Soliton interaction in a fiber ring laser,” Phys. Rev. E 72, 1–51 (2005).
[Crossref]

Appl. Phys. B (1)

D. Y. Tang, L. M. Zhao, and B. Zhao, “Multipulse bound solitons with fixed pulse separations formed by direct soliton interaction,” Appl. Phys. B 80, 239–242 (2005).
[Crossref]

Appl. Sci. (1)

L. Gui, P. Wang, Y. Ding, K. Zhao, C. Bao, X. Xiao, and C. Yang, “Soliton molecules and multisoliton states in ultrafast fibre lasers: intrinsic complexes in dissipative systems,” Appl. Sci. 8, 201 (2018).
[Crossref]

IEEE Photon. J. (3)

L. Gui and C. Yang, “Soliton molecules with ±π/2, 0, and π phase differences in a graphene-based mode locked erbium-doped fiber laser,” IEEE Photon. J. 10, 1502609 (2018).
[Crossref]

K. Li, Y. Song, J. Tian, H. Guoyu, and R. Xu, “Analysis of bound-soliton states in a dual-wavelength mode-locked fiber laser based on Bi2Se3,” IEEE Photon. J. 9, 1400209 (2017).
[Crossref]

Z. T. Wang, Y. Chen, C. J. Zhao, H. Zhang, and S. C. Wen, “Switchable dual-wavelength synchronously Q-switched erbium-doped fiber laser based on graphene saturable absorber,” IEEE Photon. J. 4, 869–876 (2012).
[Crossref]

IEEE Photon. Technol. Lett. (3)

J. Peng, L. Zhan, S. Luo, and Q. S. Shen, “Generation of soliton molecules in a normal-dispersion fiber laser,” IEEE Photon. Technol. Lett. 25, 948–951 (2013).
[Crossref]

X. Li, K. Xia, D. Wu, Q. Nie, and S. Dai, “Bound states of solitons in a fiber laser with a microfiber-based WS2 saturable absorber,” IEEE Photon. Technol. Lett. 29, 2071–2074 (2017).
[Crossref]

P. Wang, K. Zhao, L. Gui, X. Xiao, and C. Yang, “Self-organized structures of soliton molecules in 2-μm fiber laser based on MoS2 saturable absorber,” IEEE Photon. Technol. Lett. 30, 1210–1213 (2018).
[Crossref]

Int. J. Opt. (1)

A. Komarov, F. Amrani, A. Dmitriev, K. Komarov, D. Meshcheriakov, and F. Sanchez, “Multiple-pulse operation and bound states of solitons in passive mode-locked fiber lasers,” Int. J. Opt. 2012, 418469 (2012).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. B Quantum Semiclass. Opt. (1)

P. Grelu and J. M. Soto-Crespo, “Multisoliton states and pulse fragmentation in a passively mode-locked fibre laser,” J. Opt. B Quantum Semiclass. Opt. 6, S271–S278 (2004).
[Crossref]

J. Opt. Soc. Am. B (2)

Laser Phys. (2)

H. P. Li, H. D. Xia, Z. Jing, J. K. Liao, X. G. Tang, Y. Liu, and Y. Z. Liu, “Dark pulse generation in a dispersion-managed fiber laser,” Laser Phys. 22, 261–264 (2012).
[Crossref]

W. C. Chen, Z. C. Luo, W. C. Xu, D. A. Han, and H. Cao, “Effect of gain media characteristics on the formation of soliton molecules in fiber laser,” Laser Phys. 21, 1919–1924 (2011).
[Crossref]

Nat. Photonics (1)

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6, 84–92 (2012).
[Crossref]

Opt. Commun. (1)

A. Hideur, B. Ortaç, T. Chartier, M. Brunel, H. Leblond, and F. Sanchez, “Ultra-short bound states generation with a passively mode-locked high-power Yb-doped double-clad fiber laser,” Opt. Commun. 225, 71–78 (2003).
[Crossref]

Opt. Express (3)

Opt. Lett. (6)

Phys. Rev. A (1)

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72, 1–38 (2009).
[Crossref]

Phys. Rev. E (1)

D. Y. Tang, B. Zhao, L. M. Zhao, and H. Y. Tam, “Soliton interaction in a fiber ring laser,” Phys. Rev. E 72, 1–51 (2005).
[Crossref]

Phys. Rev. Lett. (1)

N. Akhmediev, A. Ankiewicz, and J. Soto-Crespo, “Multisoliton solutions of the complex Ginzburg-Landau equation,” Phys. Rev. Lett. 79, 4047–4051 (1997).
[Crossref]

Sci. Rep. (1)

Y. Xiang, Y. Luo, B. Liu, Z. Yan, Q. Sun, and D. Liu, “Observation of wavelength tuning and bound states in fiber lasers,” Sci. Rep. 8, 6049 (2018).
[Crossref]

Other (2)

D. Y. Tang, P. D. Drummond, W. S. Man, H. Y. Tam, and M. S. Demokan, “Observation of bound solitons in a passively mode-locked fiber laser,” in Quantum Electronics and Laser Science Conference (2000), paper QWG4.

B. A. Malomed, “Bound solitons in the nonlinear Schrödinger/Ginzburg-Landau equation,” in Large Scale Structures in Nonlinear Physics, Lecture Notes in Physics (Springer, 1991).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Schematic diagram of the experimental setup. Red arrow represents the direction of laser transmission, and the small diagram shows the SA structure; (b) transmission spectrum of the NCF-GIMF device; (c) nonlinear saturable absorption curve of the NCF-GIMF device.
Fig. 2.
Fig. 2. Conventional mode-locked single soliton outputs. (a) Optical spectrum; (b) autocorrelation trace; (c) pulse train; (d) RF spectrum.
Fig. 3.
Fig. 3. Output of stable tight soliton pairs. (a) Optical spectrum; (b) autocorrelation trace; (c) pulse train; (d) RF spectrum.
Fig. 4.
Fig. 4. Tunable wavelength spectra in tight soliton pairs.
Fig. 5.
Fig. 5. Relationship between the stretched length of the SA and wavelength.
Fig. 6.
Fig. 6. Autocorrelation traces with different spectral modulation periods. The profiles in red are optical spectra with details in enlarged scale in the corner. The profiles in blue are autocorrelation traces with pulse width in the corner, corresponding to the panels on the left.
Fig. 7.
Fig. 7. (a)–(c) Different spectra of quasi-bound pairs; (d)–(f) corresponding autocorrelation traces.

Tables (1)

Tables Icon

Table 1. Detailed Characteristics of Loosely Bound Solitons Corresponding to Fig. 6a

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δλ=CΔτ,

Metrics