Abstract

We experimentally demonstrate self-trapping of light, as a result of plasmonic resonant optical nonlinearity, in both aqueous and organic (toluene) suspensions of gold nanorods. The threshold power for soliton formation is greatly reduced in toluene as opposed to aqueous suspensions. It is well known that the optical gradient forces are optimized at off-resonance wavelengths at which suspended particles typically exhibit a strong positive (or negative) polarizability. However, surprisingly, as we tune the wavelength of the optical beam from a continuous-wave (CW) laser, we find that the threshold power is reduced by more than threefold at the plasmonic resonance frequency. By analyzing the optical forces and torque acting on the nanorods, we show theoretically that it is possible to align the nanorods inside a soliton waveguide channel into orthogonal orientations by using merely two different laser wavelengths. We perform a series of experiments to examine the transmission of the soliton-forming beam itself, as well as the polarization transmission spectrum of a low-power probe beam guided along the soliton channel. It is found that the expected synthetic anisotropic properties are too subtle to be clearly observed, in large part due to Brownian motion of the solvent molecules and a limited ordering region where the optical field from the self-trapped beam is strong enough to overcome thermodynamic fluctuations. The ability to achieve tunable nonlinearity and nanorod orientations in colloidal nanosuspensions with low-power CW laser beams may lead to interesting applications in all-optical switching and transparent display technologies.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Soliton-mediated orientational ordering of gold nanorods and birefringence in plasmonic suspensions

Yu-Xuan Ren, Trevor S. Kelly, Chensong Zhang, Huizhong Xu, and Zhigang Chen
Opt. Lett. 42(3) 627-630 (2017)

Wavelength-dependent longitudinal polarizability of gold nanorod on optical torques

Jiunn-Woei Liaw, Wei-Jiun Lo, and Mao-Kuen Kuo
Opt. Express 22(9) 10858-10867 (2014)

Tunable optical forces enhanced by plasmonic modes hybridization in optical trapping of gold nanorods with plasmonic nanocavity

Wen-Hao Huang, Shun-Feng Li, Hai-Tao Xu, Zheng-Xun Xiang, Yong-Bing Long, and Hai-Dong Deng
Opt. Express 26(5) 6202-6213 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6, 737–748 (2012).
    [Crossref]
  2. J. Butet, P.-F. Brevet, and O. J. F. Martin, “Optical second harmonic generation in plasmonic nanostructures: from fundamental principles to advanced applications,” ACS Nano 9, 10545–10562 (2015).
    [Crossref]
  3. A. S. Reyna and C. B. de Araújo, “High-order optical nonlinearities in plasmonic nanocomposites—a review,” Adv. Opt. Photon. 9, 720–774 (2017).
    [Crossref]
  4. N. C. Panoiu, W. E. I. Sha, D. Y. Lei, and G.-C. Li, “Nonlinear optics in plasmonic nanostructures,” J. Opt. 20, 083001 (2018).
    [Crossref]
  5. N. M. Litchinitser, “Nonlinear optics in metamaterials,” Adv. Phys. X 3, 1367628 (2018).
    [Crossref]
  6. G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6, 107–111 (2011).
    [Crossref]
  7. M. Mesch, B. Metzger, M. Hentschel, and H. Giessen, “Nonlinear plasmonic sensing,” Nano Lett. 16, 3155–3159 (2016).
    [Crossref]
  8. Y. Hua, K. Chandra, D. H. M. Dam, G. P. Wiederrecht, and T. W. Odom, “Shape-dependent nonlinear optical properties of anisotropic gold nanoparticles,” J. Phys. Chem. Lett. 6, 4904–4908 (2015).
    [Crossref]
  9. M. Gordel, J. Olesiak-Banska, R. Kolkowski, K. Matczyszyn, M. Buckle, and M. Samoc, “Shell-thickness-dependent nonlinear optical properties of colloidal gold nanoshells,” J. Mater. Chem. C 2, 7239–7246 (2014).
    [Crossref]
  10. S. Fardad, A. Salandrino, M. Heinrich, P. Zhang, Z. Chen, and D. N. Christodoulides, “Plasmonic resonant solitons in metallic nanosuspensions,” Nano Lett. 14, 2498–2504 (2014).
    [Crossref]
  11. T. S. Kelly, Y.-X. Ren, A. Samadi, A. Bezryadina, D. N. Christodoulides, and Z. Chen, “Guiding and nonlinear coupling of light in plasmonic nanosuspensions,” Opt. Lett. 41, 3817–3820 (2016).
    [Crossref]
  12. A. S. Reyna and C. B. de Araújo, “Guiding and confinement of light induced by optical vortex solitons in a cubic-quintic medium,” Opt. Lett. 41, 191–194 (2016).
    [Crossref]
  13. J. Trojek, L. Chvátal, and P. Zemánek, “Optical alignment and confinement of an ellipsoidal nanorod in optical tweezers: a theoretical study,” J. Opt. Soc. Am. A 29, 1224–1236 (2012).
    [Crossref]
  14. J.-W. Liaw, W.-J. Lo, and M.-K. Kuo, “Wavelength-dependent longitudinal polarizability of gold nanorod on optical torques,” Opt. Express 22, 10858–10867 (2014).
    [Crossref]
  15. K. C. Chu, C. Y. Chao, Y. F. Chen, Y. C. Wu, and C. C. Chen, “Electrically controlled surface plasmon resonance frequency of gold nanorods,” Appl. Phys. Lett. 89, 103107 (2006).
    [Crossref]
  16. W. Ahmed, E. S. Kooij, A. van Silfhout, and B. Poelsema, “Quantitative analysis of gold nanorod alignment after electric field-assisted deposition,” Nano Lett. 9, 3786–3794 (2009).
    [Crossref]
  17. P. Zijlstra, M. van Stee, N. Verhart, Z. Gu, and M. Orrit, “Rotational diffusion and alignment of short gold nanorods in an external electric field,” Phys. Chem. Chem. Phys. 14, 4584–4588 (2012).
    [Crossref]
  18. J. Fontana, G. K. B. da Costa, J. M. Pereira, J. Naciri, B. R. Ratna, P. Palffy-Muhoray, and I. C. S. Carvalho, “Electric field induced orientational order of gold nanorods in dilute organic suspensions,” Appl. Phys. Lett. 108, 081904 (2016).
    [Crossref]
  19. S. Etcheverry, L. F. Araujo, G. K. B. da Costa, J. M. B. Pereira, A. R. Camara, J. Naciri, B. R. Ratna, I. Hernández-Romano, C. J. S. de Matos, I. C. S. Carvalho, W. Margulis, and J. Fontana, “Microsecond switching of plasmonic nanorods in an all-fiber optofluidic component,” Optica 4, 864–870 (2017).
    [Crossref]
  20. M. Maldonado, L. de Souza Menezes, L. F. Araujo, G. K. B. da Costa, I. C. S. Carvalho, J. Fontana, C. B. de Araújo, and A. S. L. Gomes, “Nonlinear refractive index of electric field aligned gold nanorods suspended in index matching oil measured with a Hartmann–Shack wavefront aberrometer,” Opt. Express 26, 20298–20305 (2018).
    [Crossref]
  21. Q. Liu, Y. Cui, D. Gardner, X. Li, S. He, and I. I. Smalyukh, “Self-alignment of plasmonic gold nanorods in reconfigurable anisotropic fluids for tunable bulk metamaterial applications,” Nano Lett. 10, 1347–1353 (2010).
    [Crossref]
  22. K. C. Ng, I. B. Udagedara, I. D. Rukhlenko, Y. Chen, Y. Tang, M. Premaratne, and W. Cheng, “Free-standing plasmonic-nanorod superlattice sheets,” ACS Nano 6, 925–934 (2012).
    [Crossref]
  23. Q. Liu, Y. Yuan, and I. I. Smalyukh, “Electrically and optically tunable plasmonic guest-host liquid crystals with long-range ordered nanoparticles,” Nano Lett. 14, 4071–4077 (2014).
    [Crossref]
  24. C. J. Murphy and C. J. Orendorff, “Alignment of gold nanorods in polymer composites and on polymer surfaces,” Adv. Mater. 17, 2173–2177 (2005).
    [Crossref]
  25. J. Pérez-Juste, B. Rodriguez-Gonzalez, P. Mulvaney, and L. M. Liz-Marzan, “Optical control and patterning of gold-nanorod-poly(vinyl alcohol) nanocomposite films,” Adv. Funct. Mater. 15, 1065–1071 (2005).
    [Crossref]
  26. J. Li, S. Liu, Y. Liu, F. Zhou, and Z.-Y. Li, “Anisotropic and enhanced absorptive nonlinearities in a macroscopic film induced by aligned gold nanorods,” Appl. Phys. Lett. 96, 263103 (2010).
    [Crossref]
  27. K. E. Roskov, K. A. Kozek, W. C. Wu, R. K. Chhetri, A. L. Oldenburg, R. J. Spontak, and J. B. Tracy, “Long-range alignment of gold nanorods in electrospun polymer nano/microfibers,” Langmuir 27, 13965–13969 (2011).
    [Crossref]
  28. H. Zhang, Z. Hu, Z. Ma, M. Gecevičius, G. Dong, S. Zhou, and J. Qiu, “Anisotropically enhanced nonlinear optical properties of ensembles of gold nanorods electrospun in polymer nanofiber film,” ACS Appl. Mater. Interfaces 8, 2048–2053 (2016).
    [Crossref]
  29. M. Pelton, M. Liu, H. Y. Kim, G. Smith, P. Guyot-Sionnest, and N. F. Scherer, “Optical trapping and alignment of single gold nanorods by using plasmon resonances,” Opt. Lett. 31, 2075–2077 (2006).
    [Crossref]
  30. C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett. 8, 2998–3003 (2008).
    [Crossref]
  31. L. Tong, V. D. Miljković, and M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett. 10, 268–273 (2010).
    [Crossref]
  32. P. V. Ruijgrok, N. R. Verhart, P. Zijlstra, A. L. Tchebotareva, and M. Orrit, “Brownian fluctuations and heating of an optically aligned gold nanorod,” Phys. Rev. Lett. 107, 037401 (2011).
    [Crossref]
  33. J. Do, M. Fedoruk, F. Jäckel, and J. Feldmann, “Two-color laser printing of individual gold nanorods,” Nano Lett. 13, 4164–4168 (2013).
    [Crossref]
  34. Z. Li, W. Mao, M. S. Devadas, and G. V. Hartland, “Absorption spectroscopy of single optically trapped gold nanorods,” Nano Lett. 15, 7731–7735 (2015).
    [Crossref]
  35. Y.-X. Ren, T. S. Kelly, C. Zhang, H. Xu, and Z. Chen, “Soliton-mediated orientational ordering of gold nanorods and birefringence in plasmonic suspensions,” Opt. Lett. 42, 627–630 (2017).
    [Crossref]
  36. R. Karimzadeh, “Spatial self-phase modulation of a laser beam propagating through liquids with self-induced natural convection flow,” J. Opt. 14, 095701 (2012).
    [Crossref]
  37. R. El-Ganainy, D. N. Christodoulides, C. Rotschild, and M. Segev, “Soliton dynamics and self-induced transparency in nonlinear nanosuspensions,” Opt. Express 15, 10207–10218 (2007).
    [Crossref]
  38. R. El-Ganainy, D. N. Christodoulides, E. M. Wright, W. M. Lee, and K. Dholakia, “Nonlinear optical dynamics in nonideal gases of interacting colloidal nanoparticles,” Phys. Rev. A 80, 053805 (2009).
    [Crossref]
  39. W. Man, S. Fardad, Z. Zhang, J. Prakash, M. Lau, P. Zhang, M. Heinrich, D. N. Christodoulides, and Z. Chen, “Optical nonlinearities and enhanced light transmission in soft-matter systems with tunable polarizabilities,” Phys. Rev. Lett. 111, 218302 (2013).
    [Crossref]
  40. L. Novotny and B. Hecht, “Forces in confined fields,” in Principles of Nano-Optics (Cambridge University, 2006), Chap. 13, pp. 427–428.
  41. Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12, 3377–3382 (2004).
    [Crossref]
  42. P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5, 1937–1942 (2005).
    [Crossref]
  43. F. J. V. Santos, C. A. Nieto de Castro, J. H. Dymond, N. K. Dalaouti, M. J. Assael, and A. Nagashima, “Standard reference data for the viscosity of toluene,” J. Phys. Chem. Ref. Data 35, 1–8 (2006).
    [Crossref]
  44. J. W. P. Schmelzer, E. D. Zanotto, and V. M. Fokin, “Pressure dependence of viscosity,” J. Chem. Phys. 122, 074511 (2005).
    [Crossref]

2018 (3)

2017 (3)

2016 (5)

J. Fontana, G. K. B. da Costa, J. M. Pereira, J. Naciri, B. R. Ratna, P. Palffy-Muhoray, and I. C. S. Carvalho, “Electric field induced orientational order of gold nanorods in dilute organic suspensions,” Appl. Phys. Lett. 108, 081904 (2016).
[Crossref]

T. S. Kelly, Y.-X. Ren, A. Samadi, A. Bezryadina, D. N. Christodoulides, and Z. Chen, “Guiding and nonlinear coupling of light in plasmonic nanosuspensions,” Opt. Lett. 41, 3817–3820 (2016).
[Crossref]

A. S. Reyna and C. B. de Araújo, “Guiding and confinement of light induced by optical vortex solitons in a cubic-quintic medium,” Opt. Lett. 41, 191–194 (2016).
[Crossref]

M. Mesch, B. Metzger, M. Hentschel, and H. Giessen, “Nonlinear plasmonic sensing,” Nano Lett. 16, 3155–3159 (2016).
[Crossref]

H. Zhang, Z. Hu, Z. Ma, M. Gecevičius, G. Dong, S. Zhou, and J. Qiu, “Anisotropically enhanced nonlinear optical properties of ensembles of gold nanorods electrospun in polymer nanofiber film,” ACS Appl. Mater. Interfaces 8, 2048–2053 (2016).
[Crossref]

2015 (3)

Y. Hua, K. Chandra, D. H. M. Dam, G. P. Wiederrecht, and T. W. Odom, “Shape-dependent nonlinear optical properties of anisotropic gold nanoparticles,” J. Phys. Chem. Lett. 6, 4904–4908 (2015).
[Crossref]

J. Butet, P.-F. Brevet, and O. J. F. Martin, “Optical second harmonic generation in plasmonic nanostructures: from fundamental principles to advanced applications,” ACS Nano 9, 10545–10562 (2015).
[Crossref]

Z. Li, W. Mao, M. S. Devadas, and G. V. Hartland, “Absorption spectroscopy of single optically trapped gold nanorods,” Nano Lett. 15, 7731–7735 (2015).
[Crossref]

2014 (4)

M. Gordel, J. Olesiak-Banska, R. Kolkowski, K. Matczyszyn, M. Buckle, and M. Samoc, “Shell-thickness-dependent nonlinear optical properties of colloidal gold nanoshells,” J. Mater. Chem. C 2, 7239–7246 (2014).
[Crossref]

S. Fardad, A. Salandrino, M. Heinrich, P. Zhang, Z. Chen, and D. N. Christodoulides, “Plasmonic resonant solitons in metallic nanosuspensions,” Nano Lett. 14, 2498–2504 (2014).
[Crossref]

J.-W. Liaw, W.-J. Lo, and M.-K. Kuo, “Wavelength-dependent longitudinal polarizability of gold nanorod on optical torques,” Opt. Express 22, 10858–10867 (2014).
[Crossref]

Q. Liu, Y. Yuan, and I. I. Smalyukh, “Electrically and optically tunable plasmonic guest-host liquid crystals with long-range ordered nanoparticles,” Nano Lett. 14, 4071–4077 (2014).
[Crossref]

2013 (2)

J. Do, M. Fedoruk, F. Jäckel, and J. Feldmann, “Two-color laser printing of individual gold nanorods,” Nano Lett. 13, 4164–4168 (2013).
[Crossref]

W. Man, S. Fardad, Z. Zhang, J. Prakash, M. Lau, P. Zhang, M. Heinrich, D. N. Christodoulides, and Z. Chen, “Optical nonlinearities and enhanced light transmission in soft-matter systems with tunable polarizabilities,” Phys. Rev. Lett. 111, 218302 (2013).
[Crossref]

2012 (5)

R. Karimzadeh, “Spatial self-phase modulation of a laser beam propagating through liquids with self-induced natural convection flow,” J. Opt. 14, 095701 (2012).
[Crossref]

K. C. Ng, I. B. Udagedara, I. D. Rukhlenko, Y. Chen, Y. Tang, M. Premaratne, and W. Cheng, “Free-standing plasmonic-nanorod superlattice sheets,” ACS Nano 6, 925–934 (2012).
[Crossref]

J. Trojek, L. Chvátal, and P. Zemánek, “Optical alignment and confinement of an ellipsoidal nanorod in optical tweezers: a theoretical study,” J. Opt. Soc. Am. A 29, 1224–1236 (2012).
[Crossref]

P. Zijlstra, M. van Stee, N. Verhart, Z. Gu, and M. Orrit, “Rotational diffusion and alignment of short gold nanorods in an external electric field,” Phys. Chem. Chem. Phys. 14, 4584–4588 (2012).
[Crossref]

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6, 737–748 (2012).
[Crossref]

2011 (3)

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6, 107–111 (2011).
[Crossref]

K. E. Roskov, K. A. Kozek, W. C. Wu, R. K. Chhetri, A. L. Oldenburg, R. J. Spontak, and J. B. Tracy, “Long-range alignment of gold nanorods in electrospun polymer nano/microfibers,” Langmuir 27, 13965–13969 (2011).
[Crossref]

P. V. Ruijgrok, N. R. Verhart, P. Zijlstra, A. L. Tchebotareva, and M. Orrit, “Brownian fluctuations and heating of an optically aligned gold nanorod,” Phys. Rev. Lett. 107, 037401 (2011).
[Crossref]

2010 (3)

L. Tong, V. D. Miljković, and M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett. 10, 268–273 (2010).
[Crossref]

J. Li, S. Liu, Y. Liu, F. Zhou, and Z.-Y. Li, “Anisotropic and enhanced absorptive nonlinearities in a macroscopic film induced by aligned gold nanorods,” Appl. Phys. Lett. 96, 263103 (2010).
[Crossref]

Q. Liu, Y. Cui, D. Gardner, X. Li, S. He, and I. I. Smalyukh, “Self-alignment of plasmonic gold nanorods in reconfigurable anisotropic fluids for tunable bulk metamaterial applications,” Nano Lett. 10, 1347–1353 (2010).
[Crossref]

2009 (2)

W. Ahmed, E. S. Kooij, A. van Silfhout, and B. Poelsema, “Quantitative analysis of gold nanorod alignment after electric field-assisted deposition,” Nano Lett. 9, 3786–3794 (2009).
[Crossref]

R. El-Ganainy, D. N. Christodoulides, E. M. Wright, W. M. Lee, and K. Dholakia, “Nonlinear optical dynamics in nonideal gases of interacting colloidal nanoparticles,” Phys. Rev. A 80, 053805 (2009).
[Crossref]

2008 (1)

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett. 8, 2998–3003 (2008).
[Crossref]

2007 (1)

2006 (3)

M. Pelton, M. Liu, H. Y. Kim, G. Smith, P. Guyot-Sionnest, and N. F. Scherer, “Optical trapping and alignment of single gold nanorods by using plasmon resonances,” Opt. Lett. 31, 2075–2077 (2006).
[Crossref]

K. C. Chu, C. Y. Chao, Y. F. Chen, Y. C. Wu, and C. C. Chen, “Electrically controlled surface plasmon resonance frequency of gold nanorods,” Appl. Phys. Lett. 89, 103107 (2006).
[Crossref]

F. J. V. Santos, C. A. Nieto de Castro, J. H. Dymond, N. K. Dalaouti, M. J. Assael, and A. Nagashima, “Standard reference data for the viscosity of toluene,” J. Phys. Chem. Ref. Data 35, 1–8 (2006).
[Crossref]

2005 (4)

J. W. P. Schmelzer, E. D. Zanotto, and V. M. Fokin, “Pressure dependence of viscosity,” J. Chem. Phys. 122, 074511 (2005).
[Crossref]

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5, 1937–1942 (2005).
[Crossref]

C. J. Murphy and C. J. Orendorff, “Alignment of gold nanorods in polymer composites and on polymer surfaces,” Adv. Mater. 17, 2173–2177 (2005).
[Crossref]

J. Pérez-Juste, B. Rodriguez-Gonzalez, P. Mulvaney, and L. M. Liz-Marzan, “Optical control and patterning of gold-nanorod-poly(vinyl alcohol) nanocomposite films,” Adv. Funct. Mater. 15, 1065–1071 (2005).
[Crossref]

2004 (1)

Ahmed, W.

W. Ahmed, E. S. Kooij, A. van Silfhout, and B. Poelsema, “Quantitative analysis of gold nanorod alignment after electric field-assisted deposition,” Nano Lett. 9, 3786–3794 (2009).
[Crossref]

Araujo, L. F.

Assael, M. J.

F. J. V. Santos, C. A. Nieto de Castro, J. H. Dymond, N. K. Dalaouti, M. J. Assael, and A. Nagashima, “Standard reference data for the viscosity of toluene,” J. Phys. Chem. Ref. Data 35, 1–8 (2006).
[Crossref]

Bezryadina, A.

Bhatia, V. K.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5, 1937–1942 (2005).
[Crossref]

Brevet, P.-F.

J. Butet, P.-F. Brevet, and O. J. F. Martin, “Optical second harmonic generation in plasmonic nanostructures: from fundamental principles to advanced applications,” ACS Nano 9, 10545–10562 (2015).
[Crossref]

Buckle, M.

M. Gordel, J. Olesiak-Banska, R. Kolkowski, K. Matczyszyn, M. Buckle, and M. Samoc, “Shell-thickness-dependent nonlinear optical properties of colloidal gold nanoshells,” J. Mater. Chem. C 2, 7239–7246 (2014).
[Crossref]

Butet, J.

J. Butet, P.-F. Brevet, and O. J. F. Martin, “Optical second harmonic generation in plasmonic nanostructures: from fundamental principles to advanced applications,” ACS Nano 9, 10545–10562 (2015).
[Crossref]

Camara, A. R.

Carvalho, I. C. S.

Chandra, K.

Y. Hua, K. Chandra, D. H. M. Dam, G. P. Wiederrecht, and T. W. Odom, “Shape-dependent nonlinear optical properties of anisotropic gold nanoparticles,” J. Phys. Chem. Lett. 6, 4904–4908 (2015).
[Crossref]

Chao, C. Y.

K. C. Chu, C. Y. Chao, Y. F. Chen, Y. C. Wu, and C. C. Chen, “Electrically controlled surface plasmon resonance frequency of gold nanorods,” Appl. Phys. Lett. 89, 103107 (2006).
[Crossref]

Chen, C. C.

K. C. Chu, C. Y. Chao, Y. F. Chen, Y. C. Wu, and C. C. Chen, “Electrically controlled surface plasmon resonance frequency of gold nanorods,” Appl. Phys. Lett. 89, 103107 (2006).
[Crossref]

Chen, Y.

K. C. Ng, I. B. Udagedara, I. D. Rukhlenko, Y. Chen, Y. Tang, M. Premaratne, and W. Cheng, “Free-standing plasmonic-nanorod superlattice sheets,” ACS Nano 6, 925–934 (2012).
[Crossref]

Chen, Y. F.

K. C. Chu, C. Y. Chao, Y. F. Chen, Y. C. Wu, and C. C. Chen, “Electrically controlled surface plasmon resonance frequency of gold nanorods,” Appl. Phys. Lett. 89, 103107 (2006).
[Crossref]

Chen, Z.

Y.-X. Ren, T. S. Kelly, C. Zhang, H. Xu, and Z. Chen, “Soliton-mediated orientational ordering of gold nanorods and birefringence in plasmonic suspensions,” Opt. Lett. 42, 627–630 (2017).
[Crossref]

T. S. Kelly, Y.-X. Ren, A. Samadi, A. Bezryadina, D. N. Christodoulides, and Z. Chen, “Guiding and nonlinear coupling of light in plasmonic nanosuspensions,” Opt. Lett. 41, 3817–3820 (2016).
[Crossref]

S. Fardad, A. Salandrino, M. Heinrich, P. Zhang, Z. Chen, and D. N. Christodoulides, “Plasmonic resonant solitons in metallic nanosuspensions,” Nano Lett. 14, 2498–2504 (2014).
[Crossref]

W. Man, S. Fardad, Z. Zhang, J. Prakash, M. Lau, P. Zhang, M. Heinrich, D. N. Christodoulides, and Z. Chen, “Optical nonlinearities and enhanced light transmission in soft-matter systems with tunable polarizabilities,” Phys. Rev. Lett. 111, 218302 (2013).
[Crossref]

Cheng, W.

K. C. Ng, I. B. Udagedara, I. D. Rukhlenko, Y. Chen, Y. Tang, M. Premaratne, and W. Cheng, “Free-standing plasmonic-nanorod superlattice sheets,” ACS Nano 6, 925–934 (2012).
[Crossref]

Chhetri, R. K.

K. E. Roskov, K. A. Kozek, W. C. Wu, R. K. Chhetri, A. L. Oldenburg, R. J. Spontak, and J. B. Tracy, “Long-range alignment of gold nanorods in electrospun polymer nano/microfibers,” Langmuir 27, 13965–13969 (2011).
[Crossref]

Christodoulides, D. N.

T. S. Kelly, Y.-X. Ren, A. Samadi, A. Bezryadina, D. N. Christodoulides, and Z. Chen, “Guiding and nonlinear coupling of light in plasmonic nanosuspensions,” Opt. Lett. 41, 3817–3820 (2016).
[Crossref]

S. Fardad, A. Salandrino, M. Heinrich, P. Zhang, Z. Chen, and D. N. Christodoulides, “Plasmonic resonant solitons in metallic nanosuspensions,” Nano Lett. 14, 2498–2504 (2014).
[Crossref]

W. Man, S. Fardad, Z. Zhang, J. Prakash, M. Lau, P. Zhang, M. Heinrich, D. N. Christodoulides, and Z. Chen, “Optical nonlinearities and enhanced light transmission in soft-matter systems with tunable polarizabilities,” Phys. Rev. Lett. 111, 218302 (2013).
[Crossref]

R. El-Ganainy, D. N. Christodoulides, E. M. Wright, W. M. Lee, and K. Dholakia, “Nonlinear optical dynamics in nonideal gases of interacting colloidal nanoparticles,” Phys. Rev. A 80, 053805 (2009).
[Crossref]

R. El-Ganainy, D. N. Christodoulides, C. Rotschild, and M. Segev, “Soliton dynamics and self-induced transparency in nonlinear nanosuspensions,” Opt. Express 15, 10207–10218 (2007).
[Crossref]

Chu, K. C.

K. C. Chu, C. Y. Chao, Y. F. Chen, Y. C. Wu, and C. C. Chen, “Electrically controlled surface plasmon resonance frequency of gold nanorods,” Appl. Phys. Lett. 89, 103107 (2006).
[Crossref]

Chvátal, L.

Cui, Y.

Q. Liu, Y. Cui, D. Gardner, X. Li, S. He, and I. I. Smalyukh, “Self-alignment of plasmonic gold nanorods in reconfigurable anisotropic fluids for tunable bulk metamaterial applications,” Nano Lett. 10, 1347–1353 (2010).
[Crossref]

da Costa, G. K. B.

Dalaouti, N. K.

F. J. V. Santos, C. A. Nieto de Castro, J. H. Dymond, N. K. Dalaouti, M. J. Assael, and A. Nagashima, “Standard reference data for the viscosity of toluene,” J. Phys. Chem. Ref. Data 35, 1–8 (2006).
[Crossref]

Dam, D. H. M.

Y. Hua, K. Chandra, D. H. M. Dam, G. P. Wiederrecht, and T. W. Odom, “Shape-dependent nonlinear optical properties of anisotropic gold nanoparticles,” J. Phys. Chem. Lett. 6, 4904–4908 (2015).
[Crossref]

de Araújo, C. B.

de Matos, C. J. S.

de Souza Menezes, L.

Devadas, M. S.

Z. Li, W. Mao, M. S. Devadas, and G. V. Hartland, “Absorption spectroscopy of single optically trapped gold nanorods,” Nano Lett. 15, 7731–7735 (2015).
[Crossref]

Dholakia, K.

R. El-Ganainy, D. N. Christodoulides, E. M. Wright, W. M. Lee, and K. Dholakia, “Nonlinear optical dynamics in nonideal gases of interacting colloidal nanoparticles,” Phys. Rev. A 80, 053805 (2009).
[Crossref]

Do, J.

J. Do, M. Fedoruk, F. Jäckel, and J. Feldmann, “Two-color laser printing of individual gold nanorods,” Nano Lett. 13, 4164–4168 (2013).
[Crossref]

Dong, G.

H. Zhang, Z. Hu, Z. Ma, M. Gecevičius, G. Dong, S. Zhou, and J. Qiu, “Anisotropically enhanced nonlinear optical properties of ensembles of gold nanorods electrospun in polymer nanofiber film,” ACS Appl. Mater. Interfaces 8, 2048–2053 (2016).
[Crossref]

Dymond, J. H.

F. J. V. Santos, C. A. Nieto de Castro, J. H. Dymond, N. K. Dalaouti, M. J. Assael, and A. Nagashima, “Standard reference data for the viscosity of toluene,” J. Phys. Chem. Ref. Data 35, 1–8 (2006).
[Crossref]

El-Ganainy, R.

R. El-Ganainy, D. N. Christodoulides, E. M. Wright, W. M. Lee, and K. Dholakia, “Nonlinear optical dynamics in nonideal gases of interacting colloidal nanoparticles,” Phys. Rev. A 80, 053805 (2009).
[Crossref]

R. El-Ganainy, D. N. Christodoulides, C. Rotschild, and M. Segev, “Soliton dynamics and self-induced transparency in nonlinear nanosuspensions,” Opt. Express 15, 10207–10218 (2007).
[Crossref]

Etcheverry, S.

Fardad, S.

S. Fardad, A. Salandrino, M. Heinrich, P. Zhang, Z. Chen, and D. N. Christodoulides, “Plasmonic resonant solitons in metallic nanosuspensions,” Nano Lett. 14, 2498–2504 (2014).
[Crossref]

W. Man, S. Fardad, Z. Zhang, J. Prakash, M. Lau, P. Zhang, M. Heinrich, D. N. Christodoulides, and Z. Chen, “Optical nonlinearities and enhanced light transmission in soft-matter systems with tunable polarizabilities,” Phys. Rev. Lett. 111, 218302 (2013).
[Crossref]

Fedoruk, M.

J. Do, M. Fedoruk, F. Jäckel, and J. Feldmann, “Two-color laser printing of individual gold nanorods,” Nano Lett. 13, 4164–4168 (2013).
[Crossref]

Feldmann, J.

J. Do, M. Fedoruk, F. Jäckel, and J. Feldmann, “Two-color laser printing of individual gold nanorods,” Nano Lett. 13, 4164–4168 (2013).
[Crossref]

Fokin, V. M.

J. W. P. Schmelzer, E. D. Zanotto, and V. M. Fokin, “Pressure dependence of viscosity,” J. Chem. Phys. 122, 074511 (2005).
[Crossref]

Fontana, J.

Gardner, D.

Q. Liu, Y. Cui, D. Gardner, X. Li, S. He, and I. I. Smalyukh, “Self-alignment of plasmonic gold nanorods in reconfigurable anisotropic fluids for tunable bulk metamaterial applications,” Nano Lett. 10, 1347–1353 (2010).
[Crossref]

Gecevicius, M.

H. Zhang, Z. Hu, Z. Ma, M. Gecevičius, G. Dong, S. Zhou, and J. Qiu, “Anisotropically enhanced nonlinear optical properties of ensembles of gold nanorods electrospun in polymer nanofiber film,” ACS Appl. Mater. Interfaces 8, 2048–2053 (2016).
[Crossref]

Giessen, H.

M. Mesch, B. Metzger, M. Hentschel, and H. Giessen, “Nonlinear plasmonic sensing,” Nano Lett. 16, 3155–3159 (2016).
[Crossref]

Gomes, A. S. L.

Gordel, M.

M. Gordel, J. Olesiak-Banska, R. Kolkowski, K. Matczyszyn, M. Buckle, and M. Samoc, “Shell-thickness-dependent nonlinear optical properties of colloidal gold nanoshells,” J. Mater. Chem. C 2, 7239–7246 (2014).
[Crossref]

Gosztola, D. J.

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6, 107–111 (2011).
[Crossref]

Gu, Z.

P. Zijlstra, M. van Stee, N. Verhart, Z. Gu, and M. Orrit, “Rotational diffusion and alignment of short gold nanorods in an external electric field,” Phys. Chem. Chem. Phys. 14, 4584–4588 (2012).
[Crossref]

Guyot-Sionnest, P.

Hansen, P. M.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5, 1937–1942 (2005).
[Crossref]

Harrit, N.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5, 1937–1942 (2005).
[Crossref]

Hartland, G. V.

Z. Li, W. Mao, M. S. Devadas, and G. V. Hartland, “Absorption spectroscopy of single optically trapped gold nanorods,” Nano Lett. 15, 7731–7735 (2015).
[Crossref]

He, S.

Q. Liu, Y. Cui, D. Gardner, X. Li, S. He, and I. I. Smalyukh, “Self-alignment of plasmonic gold nanorods in reconfigurable anisotropic fluids for tunable bulk metamaterial applications,” Nano Lett. 10, 1347–1353 (2010).
[Crossref]

Hecht, B.

L. Novotny and B. Hecht, “Forces in confined fields,” in Principles of Nano-Optics (Cambridge University, 2006), Chap. 13, pp. 427–428.

Heinrich, M.

S. Fardad, A. Salandrino, M. Heinrich, P. Zhang, Z. Chen, and D. N. Christodoulides, “Plasmonic resonant solitons in metallic nanosuspensions,” Nano Lett. 14, 2498–2504 (2014).
[Crossref]

W. Man, S. Fardad, Z. Zhang, J. Prakash, M. Lau, P. Zhang, M. Heinrich, D. N. Christodoulides, and Z. Chen, “Optical nonlinearities and enhanced light transmission in soft-matter systems with tunable polarizabilities,” Phys. Rev. Lett. 111, 218302 (2013).
[Crossref]

Hendren, W.

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6, 107–111 (2011).
[Crossref]

Hentschel, M.

M. Mesch, B. Metzger, M. Hentschel, and H. Giessen, “Nonlinear plasmonic sensing,” Nano Lett. 16, 3155–3159 (2016).
[Crossref]

Hernández-Romano, I.

Hu, Z.

H. Zhang, Z. Hu, Z. Ma, M. Gecevičius, G. Dong, S. Zhou, and J. Qiu, “Anisotropically enhanced nonlinear optical properties of ensembles of gold nanorods electrospun in polymer nanofiber film,” ACS Appl. Mater. Interfaces 8, 2048–2053 (2016).
[Crossref]

Hua, Y.

Y. Hua, K. Chandra, D. H. M. Dam, G. P. Wiederrecht, and T. W. Odom, “Shape-dependent nonlinear optical properties of anisotropic gold nanoparticles,” J. Phys. Chem. Lett. 6, 4904–4908 (2015).
[Crossref]

Jäckel, F.

J. Do, M. Fedoruk, F. Jäckel, and J. Feldmann, “Two-color laser printing of individual gold nanorods,” Nano Lett. 13, 4164–4168 (2013).
[Crossref]

Käll, M.

L. Tong, V. D. Miljković, and M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett. 10, 268–273 (2010).
[Crossref]

Karimzadeh, R.

R. Karimzadeh, “Spatial self-phase modulation of a laser beam propagating through liquids with self-induced natural convection flow,” J. Opt. 14, 095701 (2012).
[Crossref]

Kauranen, M.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6, 737–748 (2012).
[Crossref]

Kelly, T. S.

Kim, H. Y.

Kolkowski, R.

M. Gordel, J. Olesiak-Banska, R. Kolkowski, K. Matczyszyn, M. Buckle, and M. Samoc, “Shell-thickness-dependent nonlinear optical properties of colloidal gold nanoshells,” J. Mater. Chem. C 2, 7239–7246 (2014).
[Crossref]

Kooij, E. S.

W. Ahmed, E. S. Kooij, A. van Silfhout, and B. Poelsema, “Quantitative analysis of gold nanorod alignment after electric field-assisted deposition,” Nano Lett. 9, 3786–3794 (2009).
[Crossref]

Kozek, K. A.

K. E. Roskov, K. A. Kozek, W. C. Wu, R. K. Chhetri, A. L. Oldenburg, R. J. Spontak, and J. B. Tracy, “Long-range alignment of gold nanorods in electrospun polymer nano/microfibers,” Langmuir 27, 13965–13969 (2011).
[Crossref]

Kuo, M.-K.

Lau, M.

W. Man, S. Fardad, Z. Zhang, J. Prakash, M. Lau, P. Zhang, M. Heinrich, D. N. Christodoulides, and Z. Chen, “Optical nonlinearities and enhanced light transmission in soft-matter systems with tunable polarizabilities,” Phys. Rev. Lett. 111, 218302 (2013).
[Crossref]

Lee, W. M.

R. El-Ganainy, D. N. Christodoulides, E. M. Wright, W. M. Lee, and K. Dholakia, “Nonlinear optical dynamics in nonideal gases of interacting colloidal nanoparticles,” Phys. Rev. A 80, 053805 (2009).
[Crossref]

Lei, D. Y.

N. C. Panoiu, W. E. I. Sha, D. Y. Lei, and G.-C. Li, “Nonlinear optics in plasmonic nanostructures,” J. Opt. 20, 083001 (2018).
[Crossref]

Li, G.-C.

N. C. Panoiu, W. E. I. Sha, D. Y. Lei, and G.-C. Li, “Nonlinear optics in plasmonic nanostructures,” J. Opt. 20, 083001 (2018).
[Crossref]

Li, J.

J. Li, S. Liu, Y. Liu, F. Zhou, and Z.-Y. Li, “Anisotropic and enhanced absorptive nonlinearities in a macroscopic film induced by aligned gold nanorods,” Appl. Phys. Lett. 96, 263103 (2010).
[Crossref]

Li, X.

Q. Liu, Y. Cui, D. Gardner, X. Li, S. He, and I. I. Smalyukh, “Self-alignment of plasmonic gold nanorods in reconfigurable anisotropic fluids for tunable bulk metamaterial applications,” Nano Lett. 10, 1347–1353 (2010).
[Crossref]

Li, Z.

Z. Li, W. Mao, M. S. Devadas, and G. V. Hartland, “Absorption spectroscopy of single optically trapped gold nanorods,” Nano Lett. 15, 7731–7735 (2015).
[Crossref]

Li, Z.-Y.

J. Li, S. Liu, Y. Liu, F. Zhou, and Z.-Y. Li, “Anisotropic and enhanced absorptive nonlinearities in a macroscopic film induced by aligned gold nanorods,” Appl. Phys. Lett. 96, 263103 (2010).
[Crossref]

Liaw, J.-W.

Litchinitser, N. M.

N. M. Litchinitser, “Nonlinear optics in metamaterials,” Adv. Phys. X 3, 1367628 (2018).
[Crossref]

Liu, M.

Liu, Q.

Q. Liu, Y. Yuan, and I. I. Smalyukh, “Electrically and optically tunable plasmonic guest-host liquid crystals with long-range ordered nanoparticles,” Nano Lett. 14, 4071–4077 (2014).
[Crossref]

Q. Liu, Y. Cui, D. Gardner, X. Li, S. He, and I. I. Smalyukh, “Self-alignment of plasmonic gold nanorods in reconfigurable anisotropic fluids for tunable bulk metamaterial applications,” Nano Lett. 10, 1347–1353 (2010).
[Crossref]

Liu, S.

J. Li, S. Liu, Y. Liu, F. Zhou, and Z.-Y. Li, “Anisotropic and enhanced absorptive nonlinearities in a macroscopic film induced by aligned gold nanorods,” Appl. Phys. Lett. 96, 263103 (2010).
[Crossref]

Liu, Y.

J. Li, S. Liu, Y. Liu, F. Zhou, and Z.-Y. Li, “Anisotropic and enhanced absorptive nonlinearities in a macroscopic film induced by aligned gold nanorods,” Appl. Phys. Lett. 96, 263103 (2010).
[Crossref]

Liz-Marzan, L. M.

J. Pérez-Juste, B. Rodriguez-Gonzalez, P. Mulvaney, and L. M. Liz-Marzan, “Optical control and patterning of gold-nanorod-poly(vinyl alcohol) nanocomposite films,” Adv. Funct. Mater. 15, 1065–1071 (2005).
[Crossref]

Lo, W.-J.

Ma, Z.

H. Zhang, Z. Hu, Z. Ma, M. Gecevičius, G. Dong, S. Zhou, and J. Qiu, “Anisotropically enhanced nonlinear optical properties of ensembles of gold nanorods electrospun in polymer nanofiber film,” ACS Appl. Mater. Interfaces 8, 2048–2053 (2016).
[Crossref]

Maldonado, M.

Man, W.

W. Man, S. Fardad, Z. Zhang, J. Prakash, M. Lau, P. Zhang, M. Heinrich, D. N. Christodoulides, and Z. Chen, “Optical nonlinearities and enhanced light transmission in soft-matter systems with tunable polarizabilities,” Phys. Rev. Lett. 111, 218302 (2013).
[Crossref]

Mao, W.

Z. Li, W. Mao, M. S. Devadas, and G. V. Hartland, “Absorption spectroscopy of single optically trapped gold nanorods,” Nano Lett. 15, 7731–7735 (2015).
[Crossref]

Margulis, W.

Martin, O. J. F.

J. Butet, P.-F. Brevet, and O. J. F. Martin, “Optical second harmonic generation in plasmonic nanostructures: from fundamental principles to advanced applications,” ACS Nano 9, 10545–10562 (2015).
[Crossref]

Matczyszyn, K.

M. Gordel, J. Olesiak-Banska, R. Kolkowski, K. Matczyszyn, M. Buckle, and M. Samoc, “Shell-thickness-dependent nonlinear optical properties of colloidal gold nanoshells,” J. Mater. Chem. C 2, 7239–7246 (2014).
[Crossref]

Mesch, M.

M. Mesch, B. Metzger, M. Hentschel, and H. Giessen, “Nonlinear plasmonic sensing,” Nano Lett. 16, 3155–3159 (2016).
[Crossref]

Metzger, B.

M. Mesch, B. Metzger, M. Hentschel, and H. Giessen, “Nonlinear plasmonic sensing,” Nano Lett. 16, 3155–3159 (2016).
[Crossref]

Miljkovic, V. D.

L. Tong, V. D. Miljković, and M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett. 10, 268–273 (2010).
[Crossref]

Mulvaney, P.

J. Pérez-Juste, B. Rodriguez-Gonzalez, P. Mulvaney, and L. M. Liz-Marzan, “Optical control and patterning of gold-nanorod-poly(vinyl alcohol) nanocomposite films,” Adv. Funct. Mater. 15, 1065–1071 (2005).
[Crossref]

Murphy, C. J.

C. J. Murphy and C. J. Orendorff, “Alignment of gold nanorods in polymer composites and on polymer surfaces,” Adv. Mater. 17, 2173–2177 (2005).
[Crossref]

Naciri, J.

S. Etcheverry, L. F. Araujo, G. K. B. da Costa, J. M. B. Pereira, A. R. Camara, J. Naciri, B. R. Ratna, I. Hernández-Romano, C. J. S. de Matos, I. C. S. Carvalho, W. Margulis, and J. Fontana, “Microsecond switching of plasmonic nanorods in an all-fiber optofluidic component,” Optica 4, 864–870 (2017).
[Crossref]

J. Fontana, G. K. B. da Costa, J. M. Pereira, J. Naciri, B. R. Ratna, P. Palffy-Muhoray, and I. C. S. Carvalho, “Electric field induced orientational order of gold nanorods in dilute organic suspensions,” Appl. Phys. Lett. 108, 081904 (2016).
[Crossref]

Nagashima, A.

F. J. V. Santos, C. A. Nieto de Castro, J. H. Dymond, N. K. Dalaouti, M. J. Assael, and A. Nagashima, “Standard reference data for the viscosity of toluene,” J. Phys. Chem. Ref. Data 35, 1–8 (2006).
[Crossref]

Ng, K. C.

K. C. Ng, I. B. Udagedara, I. D. Rukhlenko, Y. Chen, Y. Tang, M. Premaratne, and W. Cheng, “Free-standing plasmonic-nanorod superlattice sheets,” ACS Nano 6, 925–934 (2012).
[Crossref]

Nieto de Castro, C. A.

F. J. V. Santos, C. A. Nieto de Castro, J. H. Dymond, N. K. Dalaouti, M. J. Assael, and A. Nagashima, “Standard reference data for the viscosity of toluene,” J. Phys. Chem. Ref. Data 35, 1–8 (2006).
[Crossref]

Novotny, L.

L. Novotny and B. Hecht, “Forces in confined fields,” in Principles of Nano-Optics (Cambridge University, 2006), Chap. 13, pp. 427–428.

Oddershede, L.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5, 1937–1942 (2005).
[Crossref]

Oddershede, L. B.

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett. 8, 2998–3003 (2008).
[Crossref]

Odom, T. W.

Y. Hua, K. Chandra, D. H. M. Dam, G. P. Wiederrecht, and T. W. Odom, “Shape-dependent nonlinear optical properties of anisotropic gold nanoparticles,” J. Phys. Chem. Lett. 6, 4904–4908 (2015).
[Crossref]

Oldenburg, A. L.

K. E. Roskov, K. A. Kozek, W. C. Wu, R. K. Chhetri, A. L. Oldenburg, R. J. Spontak, and J. B. Tracy, “Long-range alignment of gold nanorods in electrospun polymer nano/microfibers,” Langmuir 27, 13965–13969 (2011).
[Crossref]

Olesiak-Banska, J.

M. Gordel, J. Olesiak-Banska, R. Kolkowski, K. Matczyszyn, M. Buckle, and M. Samoc, “Shell-thickness-dependent nonlinear optical properties of colloidal gold nanoshells,” J. Mater. Chem. C 2, 7239–7246 (2014).
[Crossref]

Orendorff, C. J.

C. J. Murphy and C. J. Orendorff, “Alignment of gold nanorods in polymer composites and on polymer surfaces,” Adv. Mater. 17, 2173–2177 (2005).
[Crossref]

Orrit, M.

P. Zijlstra, M. van Stee, N. Verhart, Z. Gu, and M. Orrit, “Rotational diffusion and alignment of short gold nanorods in an external electric field,” Phys. Chem. Chem. Phys. 14, 4584–4588 (2012).
[Crossref]

P. V. Ruijgrok, N. R. Verhart, P. Zijlstra, A. L. Tchebotareva, and M. Orrit, “Brownian fluctuations and heating of an optically aligned gold nanorod,” Phys. Rev. Lett. 107, 037401 (2011).
[Crossref]

Palffy-Muhoray, P.

J. Fontana, G. K. B. da Costa, J. M. Pereira, J. Naciri, B. R. Ratna, P. Palffy-Muhoray, and I. C. S. Carvalho, “Electric field induced orientational order of gold nanorods in dilute organic suspensions,” Appl. Phys. Lett. 108, 081904 (2016).
[Crossref]

Panoiu, N. C.

N. C. Panoiu, W. E. I. Sha, D. Y. Lei, and G.-C. Li, “Nonlinear optics in plasmonic nanostructures,” J. Opt. 20, 083001 (2018).
[Crossref]

Pelton, M.

Pereira, J. M.

J. Fontana, G. K. B. da Costa, J. M. Pereira, J. Naciri, B. R. Ratna, P. Palffy-Muhoray, and I. C. S. Carvalho, “Electric field induced orientational order of gold nanorods in dilute organic suspensions,” Appl. Phys. Lett. 108, 081904 (2016).
[Crossref]

Pereira, J. M. B.

Pérez-Juste, J.

J. Pérez-Juste, B. Rodriguez-Gonzalez, P. Mulvaney, and L. M. Liz-Marzan, “Optical control and patterning of gold-nanorod-poly(vinyl alcohol) nanocomposite films,” Adv. Funct. Mater. 15, 1065–1071 (2005).
[Crossref]

Podolskiy, V. A.

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6, 107–111 (2011).
[Crossref]

Poelsema, B.

W. Ahmed, E. S. Kooij, A. van Silfhout, and B. Poelsema, “Quantitative analysis of gold nanorod alignment after electric field-assisted deposition,” Nano Lett. 9, 3786–3794 (2009).
[Crossref]

Pollard, R.

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6, 107–111 (2011).
[Crossref]

Prakash, J.

W. Man, S. Fardad, Z. Zhang, J. Prakash, M. Lau, P. Zhang, M. Heinrich, D. N. Christodoulides, and Z. Chen, “Optical nonlinearities and enhanced light transmission in soft-matter systems with tunable polarizabilities,” Phys. Rev. Lett. 111, 218302 (2013).
[Crossref]

Premaratne, M.

K. C. Ng, I. B. Udagedara, I. D. Rukhlenko, Y. Chen, Y. Tang, M. Premaratne, and W. Cheng, “Free-standing plasmonic-nanorod superlattice sheets,” ACS Nano 6, 925–934 (2012).
[Crossref]

Qiu, J.

H. Zhang, Z. Hu, Z. Ma, M. Gecevičius, G. Dong, S. Zhou, and J. Qiu, “Anisotropically enhanced nonlinear optical properties of ensembles of gold nanorods electrospun in polymer nanofiber film,” ACS Appl. Mater. Interfaces 8, 2048–2053 (2016).
[Crossref]

Ratna, B. R.

S. Etcheverry, L. F. Araujo, G. K. B. da Costa, J. M. B. Pereira, A. R. Camara, J. Naciri, B. R. Ratna, I. Hernández-Romano, C. J. S. de Matos, I. C. S. Carvalho, W. Margulis, and J. Fontana, “Microsecond switching of plasmonic nanorods in an all-fiber optofluidic component,” Optica 4, 864–870 (2017).
[Crossref]

J. Fontana, G. K. B. da Costa, J. M. Pereira, J. Naciri, B. R. Ratna, P. Palffy-Muhoray, and I. C. S. Carvalho, “Electric field induced orientational order of gold nanorods in dilute organic suspensions,” Appl. Phys. Lett. 108, 081904 (2016).
[Crossref]

Ren, Y.-X.

Reyna, A. S.

Rodriguez-Gonzalez, B.

J. Pérez-Juste, B. Rodriguez-Gonzalez, P. Mulvaney, and L. M. Liz-Marzan, “Optical control and patterning of gold-nanorod-poly(vinyl alcohol) nanocomposite films,” Adv. Funct. Mater. 15, 1065–1071 (2005).
[Crossref]

Roskov, K. E.

K. E. Roskov, K. A. Kozek, W. C. Wu, R. K. Chhetri, A. L. Oldenburg, R. J. Spontak, and J. B. Tracy, “Long-range alignment of gold nanorods in electrospun polymer nano/microfibers,” Langmuir 27, 13965–13969 (2011).
[Crossref]

Rotschild, C.

Ruijgrok, P. V.

P. V. Ruijgrok, N. R. Verhart, P. Zijlstra, A. L. Tchebotareva, and M. Orrit, “Brownian fluctuations and heating of an optically aligned gold nanorod,” Phys. Rev. Lett. 107, 037401 (2011).
[Crossref]

Rukhlenko, I. D.

K. C. Ng, I. B. Udagedara, I. D. Rukhlenko, Y. Chen, Y. Tang, M. Premaratne, and W. Cheng, “Free-standing plasmonic-nanorod superlattice sheets,” ACS Nano 6, 925–934 (2012).
[Crossref]

Salandrino, A.

S. Fardad, A. Salandrino, M. Heinrich, P. Zhang, Z. Chen, and D. N. Christodoulides, “Plasmonic resonant solitons in metallic nanosuspensions,” Nano Lett. 14, 2498–2504 (2014).
[Crossref]

Samadi, A.

Samoc, M.

M. Gordel, J. Olesiak-Banska, R. Kolkowski, K. Matczyszyn, M. Buckle, and M. Samoc, “Shell-thickness-dependent nonlinear optical properties of colloidal gold nanoshells,” J. Mater. Chem. C 2, 7239–7246 (2014).
[Crossref]

Santos, F. J. V.

F. J. V. Santos, C. A. Nieto de Castro, J. H. Dymond, N. K. Dalaouti, M. J. Assael, and A. Nagashima, “Standard reference data for the viscosity of toluene,” J. Phys. Chem. Ref. Data 35, 1–8 (2006).
[Crossref]

Scherer, N. F.

Schmelzer, J. W. P.

J. W. P. Schmelzer, E. D. Zanotto, and V. M. Fokin, “Pressure dependence of viscosity,” J. Chem. Phys. 122, 074511 (2005).
[Crossref]

Schubert, O.

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett. 8, 2998–3003 (2008).
[Crossref]

Segev, M.

Selhuber-Unkel, C.

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett. 8, 2998–3003 (2008).
[Crossref]

Sha, W. E. I.

N. C. Panoiu, W. E. I. Sha, D. Y. Lei, and G.-C. Li, “Nonlinear optics in plasmonic nanostructures,” J. Opt. 20, 083001 (2018).
[Crossref]

Smalyukh, I. I.

Q. Liu, Y. Yuan, and I. I. Smalyukh, “Electrically and optically tunable plasmonic guest-host liquid crystals with long-range ordered nanoparticles,” Nano Lett. 14, 4071–4077 (2014).
[Crossref]

Q. Liu, Y. Cui, D. Gardner, X. Li, S. He, and I. I. Smalyukh, “Self-alignment of plasmonic gold nanorods in reconfigurable anisotropic fluids for tunable bulk metamaterial applications,” Nano Lett. 10, 1347–1353 (2010).
[Crossref]

Smith, G.

Sönnichsen, C.

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett. 8, 2998–3003 (2008).
[Crossref]

Spontak, R. J.

K. E. Roskov, K. A. Kozek, W. C. Wu, R. K. Chhetri, A. L. Oldenburg, R. J. Spontak, and J. B. Tracy, “Long-range alignment of gold nanorods in electrospun polymer nano/microfibers,” Langmuir 27, 13965–13969 (2011).
[Crossref]

Tang, Y.

K. C. Ng, I. B. Udagedara, I. D. Rukhlenko, Y. Chen, Y. Tang, M. Premaratne, and W. Cheng, “Free-standing plasmonic-nanorod superlattice sheets,” ACS Nano 6, 925–934 (2012).
[Crossref]

Tchebotareva, A. L.

P. V. Ruijgrok, N. R. Verhart, P. Zijlstra, A. L. Tchebotareva, and M. Orrit, “Brownian fluctuations and heating of an optically aligned gold nanorod,” Phys. Rev. Lett. 107, 037401 (2011).
[Crossref]

Tong, L.

L. Tong, V. D. Miljković, and M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett. 10, 268–273 (2010).
[Crossref]

Tracy, J. B.

K. E. Roskov, K. A. Kozek, W. C. Wu, R. K. Chhetri, A. L. Oldenburg, R. J. Spontak, and J. B. Tracy, “Long-range alignment of gold nanorods in electrospun polymer nano/microfibers,” Langmuir 27, 13965–13969 (2011).
[Crossref]

Trojek, J.

Udagedara, I. B.

K. C. Ng, I. B. Udagedara, I. D. Rukhlenko, Y. Chen, Y. Tang, M. Premaratne, and W. Cheng, “Free-standing plasmonic-nanorod superlattice sheets,” ACS Nano 6, 925–934 (2012).
[Crossref]

van Silfhout, A.

W. Ahmed, E. S. Kooij, A. van Silfhout, and B. Poelsema, “Quantitative analysis of gold nanorod alignment after electric field-assisted deposition,” Nano Lett. 9, 3786–3794 (2009).
[Crossref]

van Stee, M.

P. Zijlstra, M. van Stee, N. Verhart, Z. Gu, and M. Orrit, “Rotational diffusion and alignment of short gold nanorods in an external electric field,” Phys. Chem. Chem. Phys. 14, 4584–4588 (2012).
[Crossref]

Verhart, N.

P. Zijlstra, M. van Stee, N. Verhart, Z. Gu, and M. Orrit, “Rotational diffusion and alignment of short gold nanorods in an external electric field,” Phys. Chem. Chem. Phys. 14, 4584–4588 (2012).
[Crossref]

Verhart, N. R.

P. V. Ruijgrok, N. R. Verhart, P. Zijlstra, A. L. Tchebotareva, and M. Orrit, “Brownian fluctuations and heating of an optically aligned gold nanorod,” Phys. Rev. Lett. 107, 037401 (2011).
[Crossref]

Wiederrecht, G. P.

Y. Hua, K. Chandra, D. H. M. Dam, G. P. Wiederrecht, and T. W. Odom, “Shape-dependent nonlinear optical properties of anisotropic gold nanoparticles,” J. Phys. Chem. Lett. 6, 4904–4908 (2015).
[Crossref]

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6, 107–111 (2011).
[Crossref]

Wright, E. M.

R. El-Ganainy, D. N. Christodoulides, E. M. Wright, W. M. Lee, and K. Dholakia, “Nonlinear optical dynamics in nonideal gases of interacting colloidal nanoparticles,” Phys. Rev. A 80, 053805 (2009).
[Crossref]

Wu, W. C.

K. E. Roskov, K. A. Kozek, W. C. Wu, R. K. Chhetri, A. L. Oldenburg, R. J. Spontak, and J. B. Tracy, “Long-range alignment of gold nanorods in electrospun polymer nano/microfibers,” Langmuir 27, 13965–13969 (2011).
[Crossref]

Wu, Y. C.

K. C. Chu, C. Y. Chao, Y. F. Chen, Y. C. Wu, and C. C. Chen, “Electrically controlled surface plasmon resonance frequency of gold nanorods,” Appl. Phys. Lett. 89, 103107 (2006).
[Crossref]

Wurtz, G. A.

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6, 107–111 (2011).
[Crossref]

Xu, H.

Yuan, Y.

Q. Liu, Y. Yuan, and I. I. Smalyukh, “Electrically and optically tunable plasmonic guest-host liquid crystals with long-range ordered nanoparticles,” Nano Lett. 14, 4071–4077 (2014).
[Crossref]

Zanotto, E. D.

J. W. P. Schmelzer, E. D. Zanotto, and V. M. Fokin, “Pressure dependence of viscosity,” J. Chem. Phys. 122, 074511 (2005).
[Crossref]

Zayats, A. V.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6, 737–748 (2012).
[Crossref]

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6, 107–111 (2011).
[Crossref]

Zemánek, P.

Zhan, Q.

Zhang, C.

Zhang, H.

H. Zhang, Z. Hu, Z. Ma, M. Gecevičius, G. Dong, S. Zhou, and J. Qiu, “Anisotropically enhanced nonlinear optical properties of ensembles of gold nanorods electrospun in polymer nanofiber film,” ACS Appl. Mater. Interfaces 8, 2048–2053 (2016).
[Crossref]

Zhang, P.

S. Fardad, A. Salandrino, M. Heinrich, P. Zhang, Z. Chen, and D. N. Christodoulides, “Plasmonic resonant solitons in metallic nanosuspensions,” Nano Lett. 14, 2498–2504 (2014).
[Crossref]

W. Man, S. Fardad, Z. Zhang, J. Prakash, M. Lau, P. Zhang, M. Heinrich, D. N. Christodoulides, and Z. Chen, “Optical nonlinearities and enhanced light transmission in soft-matter systems with tunable polarizabilities,” Phys. Rev. Lett. 111, 218302 (2013).
[Crossref]

Zhang, Z.

W. Man, S. Fardad, Z. Zhang, J. Prakash, M. Lau, P. Zhang, M. Heinrich, D. N. Christodoulides, and Z. Chen, “Optical nonlinearities and enhanced light transmission in soft-matter systems with tunable polarizabilities,” Phys. Rev. Lett. 111, 218302 (2013).
[Crossref]

Zhou, F.

J. Li, S. Liu, Y. Liu, F. Zhou, and Z.-Y. Li, “Anisotropic and enhanced absorptive nonlinearities in a macroscopic film induced by aligned gold nanorods,” Appl. Phys. Lett. 96, 263103 (2010).
[Crossref]

Zhou, S.

H. Zhang, Z. Hu, Z. Ma, M. Gecevičius, G. Dong, S. Zhou, and J. Qiu, “Anisotropically enhanced nonlinear optical properties of ensembles of gold nanorods electrospun in polymer nanofiber film,” ACS Appl. Mater. Interfaces 8, 2048–2053 (2016).
[Crossref]

Zijlstra, P.

P. Zijlstra, M. van Stee, N. Verhart, Z. Gu, and M. Orrit, “Rotational diffusion and alignment of short gold nanorods in an external electric field,” Phys. Chem. Chem. Phys. 14, 4584–4588 (2012).
[Crossref]

P. V. Ruijgrok, N. R. Verhart, P. Zijlstra, A. L. Tchebotareva, and M. Orrit, “Brownian fluctuations and heating of an optically aligned gold nanorod,” Phys. Rev. Lett. 107, 037401 (2011).
[Crossref]

Zins, I.

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett. 8, 2998–3003 (2008).
[Crossref]

ACS Appl. Mater. Interfaces (1)

H. Zhang, Z. Hu, Z. Ma, M. Gecevičius, G. Dong, S. Zhou, and J. Qiu, “Anisotropically enhanced nonlinear optical properties of ensembles of gold nanorods electrospun in polymer nanofiber film,” ACS Appl. Mater. Interfaces 8, 2048–2053 (2016).
[Crossref]

ACS Nano (2)

K. C. Ng, I. B. Udagedara, I. D. Rukhlenko, Y. Chen, Y. Tang, M. Premaratne, and W. Cheng, “Free-standing plasmonic-nanorod superlattice sheets,” ACS Nano 6, 925–934 (2012).
[Crossref]

J. Butet, P.-F. Brevet, and O. J. F. Martin, “Optical second harmonic generation in plasmonic nanostructures: from fundamental principles to advanced applications,” ACS Nano 9, 10545–10562 (2015).
[Crossref]

Adv. Funct. Mater. (1)

J. Pérez-Juste, B. Rodriguez-Gonzalez, P. Mulvaney, and L. M. Liz-Marzan, “Optical control and patterning of gold-nanorod-poly(vinyl alcohol) nanocomposite films,” Adv. Funct. Mater. 15, 1065–1071 (2005).
[Crossref]

Adv. Mater. (1)

C. J. Murphy and C. J. Orendorff, “Alignment of gold nanorods in polymer composites and on polymer surfaces,” Adv. Mater. 17, 2173–2177 (2005).
[Crossref]

Adv. Opt. Photon. (1)

Adv. Phys. X (1)

N. M. Litchinitser, “Nonlinear optics in metamaterials,” Adv. Phys. X 3, 1367628 (2018).
[Crossref]

Appl. Phys. Lett. (3)

K. C. Chu, C. Y. Chao, Y. F. Chen, Y. C. Wu, and C. C. Chen, “Electrically controlled surface plasmon resonance frequency of gold nanorods,” Appl. Phys. Lett. 89, 103107 (2006).
[Crossref]

J. Fontana, G. K. B. da Costa, J. M. Pereira, J. Naciri, B. R. Ratna, P. Palffy-Muhoray, and I. C. S. Carvalho, “Electric field induced orientational order of gold nanorods in dilute organic suspensions,” Appl. Phys. Lett. 108, 081904 (2016).
[Crossref]

J. Li, S. Liu, Y. Liu, F. Zhou, and Z.-Y. Li, “Anisotropic and enhanced absorptive nonlinearities in a macroscopic film induced by aligned gold nanorods,” Appl. Phys. Lett. 96, 263103 (2010).
[Crossref]

J. Chem. Phys. (1)

J. W. P. Schmelzer, E. D. Zanotto, and V. M. Fokin, “Pressure dependence of viscosity,” J. Chem. Phys. 122, 074511 (2005).
[Crossref]

J. Mater. Chem. C (1)

M. Gordel, J. Olesiak-Banska, R. Kolkowski, K. Matczyszyn, M. Buckle, and M. Samoc, “Shell-thickness-dependent nonlinear optical properties of colloidal gold nanoshells,” J. Mater. Chem. C 2, 7239–7246 (2014).
[Crossref]

J. Opt. (2)

N. C. Panoiu, W. E. I. Sha, D. Y. Lei, and G.-C. Li, “Nonlinear optics in plasmonic nanostructures,” J. Opt. 20, 083001 (2018).
[Crossref]

R. Karimzadeh, “Spatial self-phase modulation of a laser beam propagating through liquids with self-induced natural convection flow,” J. Opt. 14, 095701 (2012).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. Lett. (1)

Y. Hua, K. Chandra, D. H. M. Dam, G. P. Wiederrecht, and T. W. Odom, “Shape-dependent nonlinear optical properties of anisotropic gold nanoparticles,” J. Phys. Chem. Lett. 6, 4904–4908 (2015).
[Crossref]

J. Phys. Chem. Ref. Data (1)

F. J. V. Santos, C. A. Nieto de Castro, J. H. Dymond, N. K. Dalaouti, M. J. Assael, and A. Nagashima, “Standard reference data for the viscosity of toluene,” J. Phys. Chem. Ref. Data 35, 1–8 (2006).
[Crossref]

Langmuir (1)

K. E. Roskov, K. A. Kozek, W. C. Wu, R. K. Chhetri, A. L. Oldenburg, R. J. Spontak, and J. B. Tracy, “Long-range alignment of gold nanorods in electrospun polymer nano/microfibers,” Langmuir 27, 13965–13969 (2011).
[Crossref]

Nano Lett. (10)

Q. Liu, Y. Cui, D. Gardner, X. Li, S. He, and I. I. Smalyukh, “Self-alignment of plasmonic gold nanorods in reconfigurable anisotropic fluids for tunable bulk metamaterial applications,” Nano Lett. 10, 1347–1353 (2010).
[Crossref]

Q. Liu, Y. Yuan, and I. I. Smalyukh, “Electrically and optically tunable plasmonic guest-host liquid crystals with long-range ordered nanoparticles,” Nano Lett. 14, 4071–4077 (2014).
[Crossref]

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett. 8, 2998–3003 (2008).
[Crossref]

L. Tong, V. D. Miljković, and M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett. 10, 268–273 (2010).
[Crossref]

M. Mesch, B. Metzger, M. Hentschel, and H. Giessen, “Nonlinear plasmonic sensing,” Nano Lett. 16, 3155–3159 (2016).
[Crossref]

W. Ahmed, E. S. Kooij, A. van Silfhout, and B. Poelsema, “Quantitative analysis of gold nanorod alignment after electric field-assisted deposition,” Nano Lett. 9, 3786–3794 (2009).
[Crossref]

S. Fardad, A. Salandrino, M. Heinrich, P. Zhang, Z. Chen, and D. N. Christodoulides, “Plasmonic resonant solitons in metallic nanosuspensions,” Nano Lett. 14, 2498–2504 (2014).
[Crossref]

J. Do, M. Fedoruk, F. Jäckel, and J. Feldmann, “Two-color laser printing of individual gold nanorods,” Nano Lett. 13, 4164–4168 (2013).
[Crossref]

Z. Li, W. Mao, M. S. Devadas, and G. V. Hartland, “Absorption spectroscopy of single optically trapped gold nanorods,” Nano Lett. 15, 7731–7735 (2015).
[Crossref]

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5, 1937–1942 (2005).
[Crossref]

Nat. Nanotechnol. (1)

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6, 107–111 (2011).
[Crossref]

Nat. Photonics (1)

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6, 737–748 (2012).
[Crossref]

Opt. Express (4)

Opt. Lett. (4)

Optica (1)

Phys. Chem. Chem. Phys. (1)

P. Zijlstra, M. van Stee, N. Verhart, Z. Gu, and M. Orrit, “Rotational diffusion and alignment of short gold nanorods in an external electric field,” Phys. Chem. Chem. Phys. 14, 4584–4588 (2012).
[Crossref]

Phys. Rev. A (1)

R. El-Ganainy, D. N. Christodoulides, E. M. Wright, W. M. Lee, and K. Dholakia, “Nonlinear optical dynamics in nonideal gases of interacting colloidal nanoparticles,” Phys. Rev. A 80, 053805 (2009).
[Crossref]

Phys. Rev. Lett. (2)

W. Man, S. Fardad, Z. Zhang, J. Prakash, M. Lau, P. Zhang, M. Heinrich, D. N. Christodoulides, and Z. Chen, “Optical nonlinearities and enhanced light transmission in soft-matter systems with tunable polarizabilities,” Phys. Rev. Lett. 111, 218302 (2013).
[Crossref]

P. V. Ruijgrok, N. R. Verhart, P. Zijlstra, A. L. Tchebotareva, and M. Orrit, “Brownian fluctuations and heating of an optically aligned gold nanorod,” Phys. Rev. Lett. 107, 037401 (2011).
[Crossref]

Other (1)

L. Novotny and B. Hecht, “Forces in confined fields,” in Principles of Nano-Optics (Cambridge University, 2006), Chap. 13, pp. 427–428.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematic of the experimental setup. A linearly polarized 1064 nm probe beam is sent through a soliton channel created by a pump beam of tunable wavelength from 700 to 960 nm in a suspension of gold nanorods. The polarizer before the dichroic mirror is to establish a linearly polarized light for the probe beam. BE, beam expander; DCM, dichroic mirror; FL, focusing lens; M, mirror; PBS, polarizing beam splitter; PM, powermeter. The insert shows the guidance of an infrared probe beam of 1064 nm wavelength through a 4-cm-long cuvette of gold nanoparticle suspension by a soliton-induced waveguide formed typically at a visible wavelength of 532 nm.
Fig. 2.
Fig. 2. Beam profiles of a 740 nm laser soliton beam passing through a suspension of gold nanorods (average diameter 50 nm, average length 145 nm) in water (top panels) and toluene (bottom panels) at different powers. (a) Input beam profile at 10 mW. (b)–(d) Output beam profiles pumped at 10, 157, and 620 mW, respectively. (e) Input beam profile at 10 mW. (f)–(h) Output beam profiles pumped at 10, 50, and 157 mW, respectively. Note the significant decrease in threshold power for self-trapping in toluene solution.
Fig. 3.
Fig. 3. Threshold power for self-trapping and transmission spectrum of the pump beam through a gold nanorod (average diameter 50 nm, average length 145 nm) suspension in toluene. (a) Soliton-formation power as a function of pump wavelength. (b) Transmission spectra (left axis) of the pump beam for two different input powers: 1 mW (solid circles) for linear propagation and threshold power for soliton formation (open triangles) as shown in (a), and calculated parallel extinction cross sections (dashed line, right axis) of a single nanorod as a function of wavelength and measured white-light extinction spectrum (solid line, arbitrary units, right axis).
Fig. 4.
Fig. 4. (a) Real part of the polarizabilities calculated for a single nanorod (diameter 50 nm, length 145 nm) suspended in toluene as a function of wavelength. The perpendicular component (dashed line) stays positive, while the parallel one (solid line) changes from negative to positive as the wavelength is tuned through the LSPR at 865 nm. The two vertical arrows mark the locations of LSPR for rods in water (790 nm) and toluene (865 nm). (b) Calculated parallel (solid line) and perpendicular (dotted line) extinction cross sections of a single nanorod as a function of wavelength.
Fig. 5.
Fig. 5. (a) Calculated potential energy for rotation along the z axis (the beam propagation direction) as a result of the soliton beam acting on a single gold nanorod in toluene at the beam center for two soliton wavelengths: 740 nm (solid line) and 960 nm (dotted line). The soliton beam is assumed to have a power of 100 mW and a Gaussian beam radius of 10 μm. The inset shows the definition of the orientation angle β . Note that the rotational potential energies in the x and y directions (not shown here) are typically 3 orders of magnitude smaller. (b) Schematic illustration of perpendicular and parallel orientations of the nanorods for two soliton wavelengths of 740 and 960 nm, respectively.
Fig. 6.
Fig. 6. (a) Transmittance of a 1064 nm probe beam guided by a 740 nm soliton beam as a function of the pump power for probe polarization perpendicular (crosses) and parallel (open circles) to the polarization of the soliton beam. The input power of the probe beam is fixed at 5.0 mW. (b) Relative percentage difference between the perpendicular and parallel transmittances.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

F grad = Re ( α ) 4 | E | 2 .
F scat = n b σ scat c S ,
F abs = n b σ abs c S ,
v F scat + F abs η n b σ ext η S .
PE ( β ) = 0 β τ ( θ ) d θ ,
I = | E ( θ 2 ) | 2 = I 0 ( e η cos 2 θ 1 cos 2 θ 2 + e η sin 2 θ 1 sin 2 θ 2 + 1 2 sin 2 θ 1 sin 2 θ 2 cos δ ) ,
| E | 2 = 1 2 | E in | 2 { exp [ 2 Im ( n x ) k 0 L ] cos 2 θ 1 + exp [ 2 Im ( n y ) k 0 L ] sin 2 θ 1 } .
η = [ Im ( n x ) Im ( n y ) ] k 0 L = ln T ( 90 ° ) / T ( 0 ° ) .
n eff 2 n b 2 n eff 2 + 2 n b 2 = N α 3 ϵ 0 n b 2 ,

Metrics