Abstract

Microring lasers feature ultralow thresholds and inherent wavelength-division multiplexing functionalities, offering an attractive approach to miniaturizing photonics in a compact area. Here, we present static and dynamic properties of microring quantum dot lasers grown directly on exact (001) GaP/Si. Effectively, a single-mode operation was observed at 1.3 μm with modes at spectrally distant locations. High temperature stability with T0103  K has been achieved with a low threshold of 3 mA for microrings with an outer ring radius of 15 μm and a ring waveguide width of 4 μm. Small signal modulation responses were measured for the first time for the microrings directly grown on silicon, and a 3 dB bandwidth of 6.5 GHz was achieved for a larger ring with an outer ring radius of 50 μm and a ring waveguide width of 4 μm. The directly modulated microring laser, monolithically integrated on a silicon substrate, can incur minimal real estate cost while offering full photonic functionality.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
O-band electrically injected quantum dot micro-ring lasers on on-axis (001) GaP/Si and V-groove Si

Yating Wan, Daehwan Jung, Justin Norman, Chen Shang, Ian MacFarlane, Qiang Li, M. J. Kennedy, Arthur C. Gossard, Kei May Lau, and John E. Bowers
Opt. Express 25(22) 26853-26860 (2017)

Directly modulated 1.3 μm quantum dot lasers epitaxially grown on silicon

Daisuke Inoue, Daehwan Jung, Justin Norman, Yating Wan, Nobuhiko Nishiyama, Shigehisa Arai, Arthur C. Gossard, and John E. Bowers
Opt. Express 26(6) 7022-7033 (2018)

1.3  μm submilliamp threshold quantum dot micro-lasers on Si

Yating Wan, Justin Norman, Qiang Li, M. J. Kennedy, Di Liang, Chong Zhang, Duanni Huang, Zeyu Zhang, Alan Y. Liu, Alfredo Torres, Daehwan Jung, Arthur C. Gossard, Evelyn L. Hu, Kei May Lau, and John E. Bowers
Optica 4(8) 940-944 (2017)

References

  • View by:
  • |
  • |
  • |

  1. L. Ge, L. Feng, and H. G. L. Schwefel, “Optical microcavities: new understandings and developments,” Photon. Res. 5, OM1–OM3 (2017).
    [Crossref]
  2. M. T. Hill and M. C. Gather, “Advances in small lasers,” Nat. Photonics 8, 908–918 (2014).
    [Crossref]
  3. S. Longhi and L. Feng, “Unidirectional lasing in semiconductor microring lasers at an exceptional point [Invited],” Photon. Res. 5, B1–B6 (2017).
    [Crossref]
  4. T. Harayama, S. Sunada, and S. Shinohara, “Universal single-mode lasing in fully-chaotic two-dimensional microcavity lasers under continuous wave operation with large pumping power [Invited],” Photon. Res. 5, B39–B46 (2017).
    [Crossref]
  5. S. J. Herr, K. Buse, and I. Breunig, “LED-pumped whispering-gallery laser,” Photon. Res. 5, B34–B38 (2017).
    [Crossref]
  6. J. Ma, X. Jiang, and M. Xiao, “Kerr frequency combs in large size, ultra-high-Q toroid microcavities with low repetition rates,” Photon. Res. 5, B54–B58 (2017).
    [Crossref]
  7. Y. Han, Q. Li, S. Zhu, K. W. Ng, and K. M. Lau, “Continuous-wave lasing from InP/InGaAs nanoridges at telecommunication wavelengths,” Appl. Phys. Lett. 111, 212101 (2017).
    [Crossref]
  8. Y. Shi, Z. Wang, J. V. Campenhout, M. Pantouvaki, W. Guo, B. Kunert, and D. V. Thourhout, “Optical pumped InGaAs/GaAs nano-ridge laser epitaxially grown on a standard 300-mm Si wafer,” Optica 4, 1468–1473 (2017).
    [Crossref]
  9. Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Campenhout, C. Merckling, and D. Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
    [Crossref]
  10. Y. Wan, Q. Li, A. Y. Liu, W. W. Chow, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Sub-wavelength InAs quantum dot micro-disk lasers epitaxially grown on exact Si (001) substrates,” Appl. Phys. Lett. 108, 221101 (2016).
    [Crossref]
  11. N. Kryzhanovskaya, E. Moiseev, Y. Polubavkina, M. Maximov, M. Kulagina, S. Troshkov, Y. Zadiranov, Y. Guseva, A. Lipovskii, M. Tang, M. Liao, J. Wu, S. Chen, H. Liu, and A. Zhukov, “Heat-sink free CW operation of injection microdisk lasers grown on Si substrate with emission wavelength beyond 1.3  μm,” Opt. Lett. 42, 3319–3322 (2017).
    [Crossref]
  12. Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “Sub-mA threshold 1.3 μm CW lasing from electrically pumped micro-rings grown on (001) Si,” in Proceedings of CLEO: Applications and Technology (Optical Society of America, 2017), paper JTh5C.3.
  13. S. A. Moore, L. O’Faolain, M. A. Cataluna, M. B. Flynn, M. V. Kotlyar, and T. F. Krauss, “Reduced surface sidewall recombination and diffusion in quantum-dot lasers,” IEEE Photon. Technol. Lett. 18, 1861–1863 (2006).
    [Crossref]
  14. J. Gérard, O. Cabrol, and B. Sermage, “InAs quantum boxes: highly efficient radiative traps for light emitting devices on Si,” Appl. Phys. Lett. 68, 3123–3125 (1996).
    [Crossref]
  15. J. Wang, H. Hu, C. Deng, Y. He, Q. Wang, X. Duan, Y. Huang, and X. Ren, “Defect reduction in GaAs/Si film with InAs quantum-dot dislocation filter grown by metalorganic chemical vapor deposition,” Chin. Phys. B 24, 028101 (2015).
    [Crossref]
  16. M. Tang, S. Chen, J. Wu, Q. Jiang, K. Kennedy, P. Jurczak, M. Liao, R. Beanland, A. Seeds, and H. Liu, “Optimizations of defect filter layers for 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” IEEE J. Sel. Top. Quantum Electron. 22, 50–56 (2016).
    [Crossref]
  17. J. C. Norman, D. Jung, Y. Wan, and J. E. Bowers, “Perspective: the future of quantum dot photonic integrated circuits,” APL Photon. 3, 030901 (2018).
    [Crossref]
  18. D. Bimberg and U. W. Pohl, “Quantum dots: promises and accomplishments,” Mater. Today 14, 388–397 (2011).
    [Crossref]
  19. Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4, e358 (2015).
    [Crossref]
  20. S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, A. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
    [Crossref]
  21. D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photon. 5, 1094–1100 (2017).
    [Crossref]
  22. Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3  μm submilliamp threshold quantum dot microlasers on Si,” Optica 4, 940–944 (2017).
    [Crossref]
  23. Y. Wang, S. Chen, Y. Yu, L. Zhou, L. Liu, C. Yang, M. Liao, M. Tang, Z. Liu, J. Wu, W. Li, I. Ross, A. J. Seeds, H. Liu, and S. Yu, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5, 528–533 (2018).
    [Crossref]
  24. J. Kwoen, B. Jang, J. Lee, T. Kageyama, K. Watanabe, and Y. Arakawa, “All MBE grown InAs/GaAs quantum dot lasers on on-axis Si (001),” Opt. Express 26, 11568–11576 (2018).
    [Crossref]
  25. J. Wang, H. Hu, H. Yin, Y. Bai, J. Li, X. Wei, Y. Liu, Y. Huang, X. Ren, and H. Liu, “1.3  μm InAs/GaAs quantum dot lasers on silicon with GaInP upper cladding layers,” Photon. Res. 6, 321–325 (2018).
    [Crossref]
  26. S. Liu, D. Jung, J. Norman, M. Kennedy, A. Gossard, and J. Bowers, “490  fs pulse generation from passively mode-locked single section quantum dot laser directly grown on on-axis GaP/Si,” Electron. Lett. 54, 432–433 (2018).
    [Crossref]
  27. D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3  μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111, 122107 (2017).
    [Crossref]
  28. D. A. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
    [Crossref]
  29. R. R. Alexander, D. T. Childs, H. Agarwal, K. M. Groom, H.-Y. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3-μm quantum-dot lasers,” IEEE J. Quantum Electron. 43, 1129–1139 (2007).
    [Crossref]
  30. K. Otsubo, N. Hatori, M. Ishida, S. Okumura, T. Akiyama, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Temperature-insensitive eye-opening under 10-Gb/s modulation of 1.3-μm p-doped quantum-dot lasers without current adjustments,” Jpn. J. Appl. Phys. Part 2 43, L1124–L1126 (2004).
    [Crossref]
  31. Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Temperature characteristics of epitaxially grown InAs quantum dot micro-disk lasers on silicon for on-chip light sources,” Appl. Phys. Lett. 109, 011104 (2016).
    [Crossref]
  32. Y. Wan, J. Norman, D. Jung, C. Shang, L. Macfarlane, Q. Li, M. J. Kennedy, Z. Zhang, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “O-band electrically injected InAs quantum-dot micro-ring lasers on V-groove patterned and unpatterned (001) silicon,” Opt. Express 25, 26853–26860 (2017).
    [Crossref]
  33. O. B. Shchekin and D. G. Deppe, “Low-threshold high-to 1.3-μm InAs quantum-dot lasers due to P-type modulation doping of the active region,” IEEE Photon. Technol. Lett. 14, 1231–1233 (2002).
    [Crossref]
  34. D. Jung, P. G. Callahan, B. Shin, K. Mukherjee, A. C. Gossard, and J. E. Bowers, “Low threading dislocation density GaAs growth on on-axis GaP/Si (001),” J. Appl. Phys. 122, 225703 (2017).
    [Crossref]
  35. A. Y. Liu, C. Zhang, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “MBE growth of P-doped 1.3  μm InAs quantum dot lasers on silicon,” J. Vac. Sci. Technol. B 32, 02C108 (2014).
    [Crossref]
  36. R. L. Nagarajan, M. Ishikawa, T. Fukushima, R. S. Geels, and J. E. Bowers, “High speed quantum well lasers and carrier transport effects,” IEEE J. Quantum Electron. 28, 1990–2008 (1992).
    [Crossref]
  37. D. Innoue, D. Jung, J. Norman, Y. Wan, N. Nishyama, S. Arai, A. C. Gossard, and J. E. Bowers, “Directly modulated 1.3  μm quantum dot lasers epitaxially grown on silicon,” Opt. Express 26, 7022–7033 (2018).
    [Crossref]
  38. J. E. Bowers, B. R. Hemenway, A. H. Gnauck, and D. P. Wilt, “High-speed InGaAsP constricted-mesa lasers,” IEEE J. Quantum Electron. 22, 833–844 (1986).
    [Crossref]
  39. T. Kageyama, Q. H. Vo, K. Watanabe, K. Takemasa, M. Sugawara, S. Iwamoto, and Y. Arakawa, “Large modulation bandwidth (13.1  GHz) of 1.3  μm-range quantum dot lasers with high dot density and thin barrier layer,” in Proceedings of the Compound Semiconductor Week (CSW’2016) (2016), paper MoC3–4.
  40. D. Arsenijević and D. Bimberg, “Quantum-dot lasers for 35  Gbit/s pulse-amplitude modulation and 160  Gbit/s differential quadrature phase-shift keying,” Proc. SPIE 9892, 98920S (2016).
    [Crossref]

2018 (6)

2017 (13)

D. Jung, P. G. Callahan, B. Shin, K. Mukherjee, A. C. Gossard, and J. E. Bowers, “Low threading dislocation density GaAs growth on on-axis GaP/Si (001),” J. Appl. Phys. 122, 225703 (2017).
[Crossref]

Y. Wan, J. Norman, D. Jung, C. Shang, L. Macfarlane, Q. Li, M. J. Kennedy, Z. Zhang, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “O-band electrically injected InAs quantum-dot micro-ring lasers on V-groove patterned and unpatterned (001) silicon,” Opt. Express 25, 26853–26860 (2017).
[Crossref]

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3  μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111, 122107 (2017).
[Crossref]

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photon. 5, 1094–1100 (2017).
[Crossref]

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3  μm submilliamp threshold quantum dot microlasers on Si,” Optica 4, 940–944 (2017).
[Crossref]

S. Longhi and L. Feng, “Unidirectional lasing in semiconductor microring lasers at an exceptional point [Invited],” Photon. Res. 5, B1–B6 (2017).
[Crossref]

T. Harayama, S. Sunada, and S. Shinohara, “Universal single-mode lasing in fully-chaotic two-dimensional microcavity lasers under continuous wave operation with large pumping power [Invited],” Photon. Res. 5, B39–B46 (2017).
[Crossref]

S. J. Herr, K. Buse, and I. Breunig, “LED-pumped whispering-gallery laser,” Photon. Res. 5, B34–B38 (2017).
[Crossref]

J. Ma, X. Jiang, and M. Xiao, “Kerr frequency combs in large size, ultra-high-Q toroid microcavities with low repetition rates,” Photon. Res. 5, B54–B58 (2017).
[Crossref]

Y. Han, Q. Li, S. Zhu, K. W. Ng, and K. M. Lau, “Continuous-wave lasing from InP/InGaAs nanoridges at telecommunication wavelengths,” Appl. Phys. Lett. 111, 212101 (2017).
[Crossref]

Y. Shi, Z. Wang, J. V. Campenhout, M. Pantouvaki, W. Guo, B. Kunert, and D. V. Thourhout, “Optical pumped InGaAs/GaAs nano-ridge laser epitaxially grown on a standard 300-mm Si wafer,” Optica 4, 1468–1473 (2017).
[Crossref]

L. Ge, L. Feng, and H. G. L. Schwefel, “Optical microcavities: new understandings and developments,” Photon. Res. 5, OM1–OM3 (2017).
[Crossref]

N. Kryzhanovskaya, E. Moiseev, Y. Polubavkina, M. Maximov, M. Kulagina, S. Troshkov, Y. Zadiranov, Y. Guseva, A. Lipovskii, M. Tang, M. Liao, J. Wu, S. Chen, H. Liu, and A. Zhukov, “Heat-sink free CW operation of injection microdisk lasers grown on Si substrate with emission wavelength beyond 1.3  μm,” Opt. Lett. 42, 3319–3322 (2017).
[Crossref]

2016 (5)

M. Tang, S. Chen, J. Wu, Q. Jiang, K. Kennedy, P. Jurczak, M. Liao, R. Beanland, A. Seeds, and H. Liu, “Optimizations of defect filter layers for 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” IEEE J. Sel. Top. Quantum Electron. 22, 50–56 (2016).
[Crossref]

Y. Wan, Q. Li, A. Y. Liu, W. W. Chow, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Sub-wavelength InAs quantum dot micro-disk lasers epitaxially grown on exact Si (001) substrates,” Appl. Phys. Lett. 108, 221101 (2016).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, A. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Temperature characteristics of epitaxially grown InAs quantum dot micro-disk lasers on silicon for on-chip light sources,” Appl. Phys. Lett. 109, 011104 (2016).
[Crossref]

D. Arsenijević and D. Bimberg, “Quantum-dot lasers for 35  Gbit/s pulse-amplitude modulation and 160  Gbit/s differential quadrature phase-shift keying,” Proc. SPIE 9892, 98920S (2016).
[Crossref]

2015 (3)

J. Wang, H. Hu, C. Deng, Y. He, Q. Wang, X. Duan, Y. Huang, and X. Ren, “Defect reduction in GaAs/Si film with InAs quantum-dot dislocation filter grown by metalorganic chemical vapor deposition,” Chin. Phys. B 24, 028101 (2015).
[Crossref]

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4, e358 (2015).
[Crossref]

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Campenhout, C. Merckling, and D. Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

2014 (2)

M. T. Hill and M. C. Gather, “Advances in small lasers,” Nat. Photonics 8, 908–918 (2014).
[Crossref]

A. Y. Liu, C. Zhang, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “MBE growth of P-doped 1.3  μm InAs quantum dot lasers on silicon,” J. Vac. Sci. Technol. B 32, 02C108 (2014).
[Crossref]

2011 (1)

D. Bimberg and U. W. Pohl, “Quantum dots: promises and accomplishments,” Mater. Today 14, 388–397 (2011).
[Crossref]

2009 (1)

D. A. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
[Crossref]

2007 (1)

R. R. Alexander, D. T. Childs, H. Agarwal, K. M. Groom, H.-Y. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3-μm quantum-dot lasers,” IEEE J. Quantum Electron. 43, 1129–1139 (2007).
[Crossref]

2006 (1)

S. A. Moore, L. O’Faolain, M. A. Cataluna, M. B. Flynn, M. V. Kotlyar, and T. F. Krauss, “Reduced surface sidewall recombination and diffusion in quantum-dot lasers,” IEEE Photon. Technol. Lett. 18, 1861–1863 (2006).
[Crossref]

2004 (1)

K. Otsubo, N. Hatori, M. Ishida, S. Okumura, T. Akiyama, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Temperature-insensitive eye-opening under 10-Gb/s modulation of 1.3-μm p-doped quantum-dot lasers without current adjustments,” Jpn. J. Appl. Phys. Part 2 43, L1124–L1126 (2004).
[Crossref]

2002 (1)

O. B. Shchekin and D. G. Deppe, “Low-threshold high-to 1.3-μm InAs quantum-dot lasers due to P-type modulation doping of the active region,” IEEE Photon. Technol. Lett. 14, 1231–1233 (2002).
[Crossref]

1996 (1)

J. Gérard, O. Cabrol, and B. Sermage, “InAs quantum boxes: highly efficient radiative traps for light emitting devices on Si,” Appl. Phys. Lett. 68, 3123–3125 (1996).
[Crossref]

1992 (1)

R. L. Nagarajan, M. Ishikawa, T. Fukushima, R. S. Geels, and J. E. Bowers, “High speed quantum well lasers and carrier transport effects,” IEEE J. Quantum Electron. 28, 1990–2008 (1992).
[Crossref]

1986 (1)

J. E. Bowers, B. R. Hemenway, A. H. Gnauck, and D. P. Wilt, “High-speed InGaAsP constricted-mesa lasers,” IEEE J. Quantum Electron. 22, 833–844 (1986).
[Crossref]

Absil, P.

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Campenhout, C. Merckling, and D. Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

Agarwal, H.

R. R. Alexander, D. T. Childs, H. Agarwal, K. M. Groom, H.-Y. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3-μm quantum-dot lasers,” IEEE J. Quantum Electron. 43, 1129–1139 (2007).
[Crossref]

Akiyama, T.

K. Otsubo, N. Hatori, M. Ishida, S. Okumura, T. Akiyama, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Temperature-insensitive eye-opening under 10-Gb/s modulation of 1.3-μm p-doped quantum-dot lasers without current adjustments,” Jpn. J. Appl. Phys. Part 2 43, L1124–L1126 (2004).
[Crossref]

Alexander, R. R.

R. R. Alexander, D. T. Childs, H. Agarwal, K. M. Groom, H.-Y. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3-μm quantum-dot lasers,” IEEE J. Quantum Electron. 43, 1129–1139 (2007).
[Crossref]

Arai, S.

Arakawa, Y.

J. Kwoen, B. Jang, J. Lee, T. Kageyama, K. Watanabe, and Y. Arakawa, “All MBE grown InAs/GaAs quantum dot lasers on on-axis Si (001),” Opt. Express 26, 11568–11576 (2018).
[Crossref]

R. R. Alexander, D. T. Childs, H. Agarwal, K. M. Groom, H.-Y. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3-μm quantum-dot lasers,” IEEE J. Quantum Electron. 43, 1129–1139 (2007).
[Crossref]

K. Otsubo, N. Hatori, M. Ishida, S. Okumura, T. Akiyama, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Temperature-insensitive eye-opening under 10-Gb/s modulation of 1.3-μm p-doped quantum-dot lasers without current adjustments,” Jpn. J. Appl. Phys. Part 2 43, L1124–L1126 (2004).
[Crossref]

T. Kageyama, Q. H. Vo, K. Watanabe, K. Takemasa, M. Sugawara, S. Iwamoto, and Y. Arakawa, “Large modulation bandwidth (13.1  GHz) of 1.3  μm-range quantum dot lasers with high dot density and thin barrier layer,” in Proceedings of the Compound Semiconductor Week (CSW’2016) (2016), paper MoC3–4.

Arsenijevic, D.

D. Arsenijević and D. Bimberg, “Quantum-dot lasers for 35  Gbit/s pulse-amplitude modulation and 160  Gbit/s differential quadrature phase-shift keying,” Proc. SPIE 9892, 98920S (2016).
[Crossref]

Badcock, T. J.

R. R. Alexander, D. T. Childs, H. Agarwal, K. M. Groom, H.-Y. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3-μm quantum-dot lasers,” IEEE J. Quantum Electron. 43, 1129–1139 (2007).
[Crossref]

Bai, Y.

Beanland, R.

M. Tang, S. Chen, J. Wu, Q. Jiang, K. Kennedy, P. Jurczak, M. Liao, R. Beanland, A. Seeds, and H. Liu, “Optimizations of defect filter layers for 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” IEEE J. Sel. Top. Quantum Electron. 22, 50–56 (2016).
[Crossref]

Bimberg, D.

D. Arsenijević and D. Bimberg, “Quantum-dot lasers for 35  Gbit/s pulse-amplitude modulation and 160  Gbit/s differential quadrature phase-shift keying,” Proc. SPIE 9892, 98920S (2016).
[Crossref]

D. Bimberg and U. W. Pohl, “Quantum dots: promises and accomplishments,” Mater. Today 14, 388–397 (2011).
[Crossref]

Bowers, J.

S. Liu, D. Jung, J. Norman, M. Kennedy, A. Gossard, and J. Bowers, “490  fs pulse generation from passively mode-locked single section quantum dot laser directly grown on on-axis GaP/Si,” Electron. Lett. 54, 432–433 (2018).
[Crossref]

Bowers, J. E.

D. Innoue, D. Jung, J. Norman, Y. Wan, N. Nishyama, S. Arai, A. C. Gossard, and J. E. Bowers, “Directly modulated 1.3  μm quantum dot lasers epitaxially grown on silicon,” Opt. Express 26, 7022–7033 (2018).
[Crossref]

J. C. Norman, D. Jung, Y. Wan, and J. E. Bowers, “Perspective: the future of quantum dot photonic integrated circuits,” APL Photon. 3, 030901 (2018).
[Crossref]

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photon. 5, 1094–1100 (2017).
[Crossref]

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3  μm submilliamp threshold quantum dot microlasers on Si,” Optica 4, 940–944 (2017).
[Crossref]

Y. Wan, J. Norman, D. Jung, C. Shang, L. Macfarlane, Q. Li, M. J. Kennedy, Z. Zhang, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “O-band electrically injected InAs quantum-dot micro-ring lasers on V-groove patterned and unpatterned (001) silicon,” Opt. Express 25, 26853–26860 (2017).
[Crossref]

D. Jung, P. G. Callahan, B. Shin, K. Mukherjee, A. C. Gossard, and J. E. Bowers, “Low threading dislocation density GaAs growth on on-axis GaP/Si (001),” J. Appl. Phys. 122, 225703 (2017).
[Crossref]

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3  μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111, 122107 (2017).
[Crossref]

Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Temperature characteristics of epitaxially grown InAs quantum dot micro-disk lasers on silicon for on-chip light sources,” Appl. Phys. Lett. 109, 011104 (2016).
[Crossref]

Y. Wan, Q. Li, A. Y. Liu, W. W. Chow, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Sub-wavelength InAs quantum dot micro-disk lasers epitaxially grown on exact Si (001) substrates,” Appl. Phys. Lett. 108, 221101 (2016).
[Crossref]

A. Y. Liu, C. Zhang, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “MBE growth of P-doped 1.3  μm InAs quantum dot lasers on silicon,” J. Vac. Sci. Technol. B 32, 02C108 (2014).
[Crossref]

R. L. Nagarajan, M. Ishikawa, T. Fukushima, R. S. Geels, and J. E. Bowers, “High speed quantum well lasers and carrier transport effects,” IEEE J. Quantum Electron. 28, 1990–2008 (1992).
[Crossref]

J. E. Bowers, B. R. Hemenway, A. H. Gnauck, and D. P. Wilt, “High-speed InGaAsP constricted-mesa lasers,” IEEE J. Quantum Electron. 22, 833–844 (1986).
[Crossref]

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “Sub-mA threshold 1.3 μm CW lasing from electrically pumped micro-rings grown on (001) Si,” in Proceedings of CLEO: Applications and Technology (Optical Society of America, 2017), paper JTh5C.3.

Breunig, I.

Buse, K.

Cabrol, O.

J. Gérard, O. Cabrol, and B. Sermage, “InAs quantum boxes: highly efficient radiative traps for light emitting devices on Si,” Appl. Phys. Lett. 68, 3123–3125 (1996).
[Crossref]

Callahan, P. G.

D. Jung, P. G. Callahan, B. Shin, K. Mukherjee, A. C. Gossard, and J. E. Bowers, “Low threading dislocation density GaAs growth on on-axis GaP/Si (001),” J. Appl. Phys. 122, 225703 (2017).
[Crossref]

Campenhout, J.

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Campenhout, C. Merckling, and D. Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

Campenhout, J. V.

Cataluna, M. A.

S. A. Moore, L. O’Faolain, M. A. Cataluna, M. B. Flynn, M. V. Kotlyar, and T. F. Krauss, “Reduced surface sidewall recombination and diffusion in quantum-dot lasers,” IEEE Photon. Technol. Lett. 18, 1861–1863 (2006).
[Crossref]

Chen, S.

Y. Wang, S. Chen, Y. Yu, L. Zhou, L. Liu, C. Yang, M. Liao, M. Tang, Z. Liu, J. Wu, W. Li, I. Ross, A. J. Seeds, H. Liu, and S. Yu, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5, 528–533 (2018).
[Crossref]

N. Kryzhanovskaya, E. Moiseev, Y. Polubavkina, M. Maximov, M. Kulagina, S. Troshkov, Y. Zadiranov, Y. Guseva, A. Lipovskii, M. Tang, M. Liao, J. Wu, S. Chen, H. Liu, and A. Zhukov, “Heat-sink free CW operation of injection microdisk lasers grown on Si substrate with emission wavelength beyond 1.3  μm,” Opt. Lett. 42, 3319–3322 (2017).
[Crossref]

M. Tang, S. Chen, J. Wu, Q. Jiang, K. Kennedy, P. Jurczak, M. Liao, R. Beanland, A. Seeds, and H. Liu, “Optimizations of defect filter layers for 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” IEEE J. Sel. Top. Quantum Electron. 22, 50–56 (2016).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, A. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Childs, D. T.

R. R. Alexander, D. T. Childs, H. Agarwal, K. M. Groom, H.-Y. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3-μm quantum-dot lasers,” IEEE J. Quantum Electron. 43, 1129–1139 (2007).
[Crossref]

Chow, W. W.

Y. Wan, Q. Li, A. Y. Liu, W. W. Chow, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Sub-wavelength InAs quantum dot micro-disk lasers epitaxially grown on exact Si (001) substrates,” Appl. Phys. Lett. 108, 221101 (2016).
[Crossref]

Deng, C.

J. Wang, H. Hu, C. Deng, Y. He, Q. Wang, X. Duan, Y. Huang, and X. Ren, “Defect reduction in GaAs/Si film with InAs quantum-dot dislocation filter grown by metalorganic chemical vapor deposition,” Chin. Phys. B 24, 028101 (2015).
[Crossref]

Deppe, D. G.

O. B. Shchekin and D. G. Deppe, “Low-threshold high-to 1.3-μm InAs quantum-dot lasers due to P-type modulation doping of the active region,” IEEE Photon. Technol. Lett. 14, 1231–1233 (2002).
[Crossref]

Duan, X.

J. Wang, H. Hu, C. Deng, Y. He, Q. Wang, X. Duan, Y. Huang, and X. Ren, “Defect reduction in GaAs/Si film with InAs quantum-dot dislocation filter grown by metalorganic chemical vapor deposition,” Chin. Phys. B 24, 028101 (2015).
[Crossref]

Ebe, H.

K. Otsubo, N. Hatori, M. Ishida, S. Okumura, T. Akiyama, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Temperature-insensitive eye-opening under 10-Gb/s modulation of 1.3-μm p-doped quantum-dot lasers without current adjustments,” Jpn. J. Appl. Phys. Part 2 43, L1124–L1126 (2004).
[Crossref]

Elliott, S.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, A. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Fastenau, J. M.

A. Y. Liu, C. Zhang, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “MBE growth of P-doped 1.3  μm InAs quantum dot lasers on silicon,” J. Vac. Sci. Technol. B 32, 02C108 (2014).
[Crossref]

Feng, L.

Flynn, M. B.

S. A. Moore, L. O’Faolain, M. A. Cataluna, M. B. Flynn, M. V. Kotlyar, and T. F. Krauss, “Reduced surface sidewall recombination and diffusion in quantum-dot lasers,” IEEE Photon. Technol. Lett. 18, 1861–1863 (2006).
[Crossref]

Fukushima, T.

R. L. Nagarajan, M. Ishikawa, T. Fukushima, R. S. Geels, and J. E. Bowers, “High speed quantum well lasers and carrier transport effects,” IEEE J. Quantum Electron. 28, 1990–2008 (1992).
[Crossref]

Gather, M. C.

M. T. Hill and M. C. Gather, “Advances in small lasers,” Nat. Photonics 8, 908–918 (2014).
[Crossref]

Ge, L.

Geels, R. S.

R. L. Nagarajan, M. Ishikawa, T. Fukushima, R. S. Geels, and J. E. Bowers, “High speed quantum well lasers and carrier transport effects,” IEEE J. Quantum Electron. 28, 1990–2008 (1992).
[Crossref]

Gérard, J.

J. Gérard, O. Cabrol, and B. Sermage, “InAs quantum boxes: highly efficient radiative traps for light emitting devices on Si,” Appl. Phys. Lett. 68, 3123–3125 (1996).
[Crossref]

Gnauck, A. H.

J. E. Bowers, B. R. Hemenway, A. H. Gnauck, and D. P. Wilt, “High-speed InGaAsP constricted-mesa lasers,” IEEE J. Quantum Electron. 22, 833–844 (1986).
[Crossref]

Gossard, A.

S. Liu, D. Jung, J. Norman, M. Kennedy, A. Gossard, and J. Bowers, “490  fs pulse generation from passively mode-locked single section quantum dot laser directly grown on on-axis GaP/Si,” Electron. Lett. 54, 432–433 (2018).
[Crossref]

Gossard, A. C.

D. Innoue, D. Jung, J. Norman, Y. Wan, N. Nishyama, S. Arai, A. C. Gossard, and J. E. Bowers, “Directly modulated 1.3  μm quantum dot lasers epitaxially grown on silicon,” Opt. Express 26, 7022–7033 (2018).
[Crossref]

D. Jung, P. G. Callahan, B. Shin, K. Mukherjee, A. C. Gossard, and J. E. Bowers, “Low threading dislocation density GaAs growth on on-axis GaP/Si (001),” J. Appl. Phys. 122, 225703 (2017).
[Crossref]

Y. Wan, J. Norman, D. Jung, C. Shang, L. Macfarlane, Q. Li, M. J. Kennedy, Z. Zhang, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “O-band electrically injected InAs quantum-dot micro-ring lasers on V-groove patterned and unpatterned (001) silicon,” Opt. Express 25, 26853–26860 (2017).
[Crossref]

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3  μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111, 122107 (2017).
[Crossref]

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3  μm submilliamp threshold quantum dot microlasers on Si,” Optica 4, 940–944 (2017).
[Crossref]

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photon. 5, 1094–1100 (2017).
[Crossref]

Y. Wan, Q. Li, A. Y. Liu, W. W. Chow, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Sub-wavelength InAs quantum dot micro-disk lasers epitaxially grown on exact Si (001) substrates,” Appl. Phys. Lett. 108, 221101 (2016).
[Crossref]

Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Temperature characteristics of epitaxially grown InAs quantum dot micro-disk lasers on silicon for on-chip light sources,” Appl. Phys. Lett. 109, 011104 (2016).
[Crossref]

A. Y. Liu, C. Zhang, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “MBE growth of P-doped 1.3  μm InAs quantum dot lasers on silicon,” J. Vac. Sci. Technol. B 32, 02C108 (2014).
[Crossref]

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “Sub-mA threshold 1.3 μm CW lasing from electrically pumped micro-rings grown on (001) Si,” in Proceedings of CLEO: Applications and Technology (Optical Society of America, 2017), paper JTh5C.3.

Groom, K. M.

R. R. Alexander, D. T. Childs, H. Agarwal, K. M. Groom, H.-Y. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3-μm quantum-dot lasers,” IEEE J. Quantum Electron. 43, 1129–1139 (2007).
[Crossref]

Guo, W.

Y. Shi, Z. Wang, J. V. Campenhout, M. Pantouvaki, W. Guo, B. Kunert, and D. V. Thourhout, “Optical pumped InGaAs/GaAs nano-ridge laser epitaxially grown on a standard 300-mm Si wafer,” Optica 4, 1468–1473 (2017).
[Crossref]

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Campenhout, C. Merckling, and D. Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

Guseva, Y.

Han, Y.

Y. Han, Q. Li, S. Zhu, K. W. Ng, and K. M. Lau, “Continuous-wave lasing from InP/InGaAs nanoridges at telecommunication wavelengths,” Appl. Phys. Lett. 111, 212101 (2017).
[Crossref]

Harayama, T.

Hatori, N.

K. Otsubo, N. Hatori, M. Ishida, S. Okumura, T. Akiyama, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Temperature-insensitive eye-opening under 10-Gb/s modulation of 1.3-μm p-doped quantum-dot lasers without current adjustments,” Jpn. J. Appl. Phys. Part 2 43, L1124–L1126 (2004).
[Crossref]

He, Y.

J. Wang, H. Hu, C. Deng, Y. He, Q. Wang, X. Duan, Y. Huang, and X. Ren, “Defect reduction in GaAs/Si film with InAs quantum-dot dislocation filter grown by metalorganic chemical vapor deposition,” Chin. Phys. B 24, 028101 (2015).
[Crossref]

Hemenway, B. R.

J. E. Bowers, B. R. Hemenway, A. H. Gnauck, and D. P. Wilt, “High-speed InGaAsP constricted-mesa lasers,” IEEE J. Quantum Electron. 22, 833–844 (1986).
[Crossref]

Herr, S. J.

Herrick, R.

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photon. 5, 1094–1100 (2017).
[Crossref]

Hill, M. T.

M. T. Hill and M. C. Gather, “Advances in small lasers,” Nat. Photonics 8, 908–918 (2014).
[Crossref]

Hogg, R. A.

R. R. Alexander, D. T. Childs, H. Agarwal, K. M. Groom, H.-Y. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3-μm quantum-dot lasers,” IEEE J. Quantum Electron. 43, 1129–1139 (2007).
[Crossref]

Hopkinson, M.

R. R. Alexander, D. T. Childs, H. Agarwal, K. M. Groom, H.-Y. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3-μm quantum-dot lasers,” IEEE J. Quantum Electron. 43, 1129–1139 (2007).
[Crossref]

Hu, E. L.

Y. Wan, J. Norman, D. Jung, C. Shang, L. Macfarlane, Q. Li, M. J. Kennedy, Z. Zhang, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “O-band electrically injected InAs quantum-dot micro-ring lasers on V-groove patterned and unpatterned (001) silicon,” Opt. Express 25, 26853–26860 (2017).
[Crossref]

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3  μm submilliamp threshold quantum dot microlasers on Si,” Optica 4, 940–944 (2017).
[Crossref]

Y. Wan, Q. Li, A. Y. Liu, W. W. Chow, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Sub-wavelength InAs quantum dot micro-disk lasers epitaxially grown on exact Si (001) substrates,” Appl. Phys. Lett. 108, 221101 (2016).
[Crossref]

Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Temperature characteristics of epitaxially grown InAs quantum dot micro-disk lasers on silicon for on-chip light sources,” Appl. Phys. Lett. 109, 011104 (2016).
[Crossref]

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “Sub-mA threshold 1.3 μm CW lasing from electrically pumped micro-rings grown on (001) Si,” in Proceedings of CLEO: Applications and Technology (Optical Society of America, 2017), paper JTh5C.3.

Hu, H.

J. Wang, H. Hu, H. Yin, Y. Bai, J. Li, X. Wei, Y. Liu, Y. Huang, X. Ren, and H. Liu, “1.3  μm InAs/GaAs quantum dot lasers on silicon with GaInP upper cladding layers,” Photon. Res. 6, 321–325 (2018).
[Crossref]

J. Wang, H. Hu, C. Deng, Y. He, Q. Wang, X. Duan, Y. Huang, and X. Ren, “Defect reduction in GaAs/Si film with InAs quantum-dot dislocation filter grown by metalorganic chemical vapor deposition,” Chin. Phys. B 24, 028101 (2015).
[Crossref]

Huang, D.

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3  μm submilliamp threshold quantum dot microlasers on Si,” Optica 4, 940–944 (2017).
[Crossref]

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “Sub-mA threshold 1.3 μm CW lasing from electrically pumped micro-rings grown on (001) Si,” in Proceedings of CLEO: Applications and Technology (Optical Society of America, 2017), paper JTh5C.3.

Huang, Y.

J. Wang, H. Hu, H. Yin, Y. Bai, J. Li, X. Wei, Y. Liu, Y. Huang, X. Ren, and H. Liu, “1.3  μm InAs/GaAs quantum dot lasers on silicon with GaInP upper cladding layers,” Photon. Res. 6, 321–325 (2018).
[Crossref]

J. Wang, H. Hu, C. Deng, Y. He, Q. Wang, X. Duan, Y. Huang, and X. Ren, “Defect reduction in GaAs/Si film with InAs quantum-dot dislocation filter grown by metalorganic chemical vapor deposition,” Chin. Phys. B 24, 028101 (2015).
[Crossref]

Innoue, D.

Ishida, M.

R. R. Alexander, D. T. Childs, H. Agarwal, K. M. Groom, H.-Y. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3-μm quantum-dot lasers,” IEEE J. Quantum Electron. 43, 1129–1139 (2007).
[Crossref]

K. Otsubo, N. Hatori, M. Ishida, S. Okumura, T. Akiyama, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Temperature-insensitive eye-opening under 10-Gb/s modulation of 1.3-μm p-doped quantum-dot lasers without current adjustments,” Jpn. J. Appl. Phys. Part 2 43, L1124–L1126 (2004).
[Crossref]

Ishikawa, M.

R. L. Nagarajan, M. Ishikawa, T. Fukushima, R. S. Geels, and J. E. Bowers, “High speed quantum well lasers and carrier transport effects,” IEEE J. Quantum Electron. 28, 1990–2008 (1992).
[Crossref]

Iwamoto, S.

T. Kageyama, Q. H. Vo, K. Watanabe, K. Takemasa, M. Sugawara, S. Iwamoto, and Y. Arakawa, “Large modulation bandwidth (13.1  GHz) of 1.3  μm-range quantum dot lasers with high dot density and thin barrier layer,” in Proceedings of the Compound Semiconductor Week (CSW’2016) (2016), paper MoC3–4.

Jan, C.

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photon. 5, 1094–1100 (2017).
[Crossref]

Jang, B.

Jiang, Q.

M. Tang, S. Chen, J. Wu, Q. Jiang, K. Kennedy, P. Jurczak, M. Liao, R. Beanland, A. Seeds, and H. Liu, “Optimizations of defect filter layers for 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” IEEE J. Sel. Top. Quantum Electron. 22, 50–56 (2016).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, A. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Jiang, X.

Jung, D.

J. C. Norman, D. Jung, Y. Wan, and J. E. Bowers, “Perspective: the future of quantum dot photonic integrated circuits,” APL Photon. 3, 030901 (2018).
[Crossref]

S. Liu, D. Jung, J. Norman, M. Kennedy, A. Gossard, and J. Bowers, “490  fs pulse generation from passively mode-locked single section quantum dot laser directly grown on on-axis GaP/Si,” Electron. Lett. 54, 432–433 (2018).
[Crossref]

D. Innoue, D. Jung, J. Norman, Y. Wan, N. Nishyama, S. Arai, A. C. Gossard, and J. E. Bowers, “Directly modulated 1.3  μm quantum dot lasers epitaxially grown on silicon,” Opt. Express 26, 7022–7033 (2018).
[Crossref]

D. Jung, P. G. Callahan, B. Shin, K. Mukherjee, A. C. Gossard, and J. E. Bowers, “Low threading dislocation density GaAs growth on on-axis GaP/Si (001),” J. Appl. Phys. 122, 225703 (2017).
[Crossref]

Y. Wan, J. Norman, D. Jung, C. Shang, L. Macfarlane, Q. Li, M. J. Kennedy, Z. Zhang, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “O-band electrically injected InAs quantum-dot micro-ring lasers on V-groove patterned and unpatterned (001) silicon,” Opt. Express 25, 26853–26860 (2017).
[Crossref]

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3  μm submilliamp threshold quantum dot microlasers on Si,” Optica 4, 940–944 (2017).
[Crossref]

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3  μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111, 122107 (2017).
[Crossref]

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photon. 5, 1094–1100 (2017).
[Crossref]

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “Sub-mA threshold 1.3 μm CW lasing from electrically pumped micro-rings grown on (001) Si,” in Proceedings of CLEO: Applications and Technology (Optical Society of America, 2017), paper JTh5C.3.

Jurczak, P.

M. Tang, S. Chen, J. Wu, Q. Jiang, K. Kennedy, P. Jurczak, M. Liao, R. Beanland, A. Seeds, and H. Liu, “Optimizations of defect filter layers for 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” IEEE J. Sel. Top. Quantum Electron. 22, 50–56 (2016).
[Crossref]

Kageyama, T.

J. Kwoen, B. Jang, J. Lee, T. Kageyama, K. Watanabe, and Y. Arakawa, “All MBE grown InAs/GaAs quantum dot lasers on on-axis Si (001),” Opt. Express 26, 11568–11576 (2018).
[Crossref]

T. Kageyama, Q. H. Vo, K. Watanabe, K. Takemasa, M. Sugawara, S. Iwamoto, and Y. Arakawa, “Large modulation bandwidth (13.1  GHz) of 1.3  μm-range quantum dot lasers with high dot density and thin barrier layer,” in Proceedings of the Compound Semiconductor Week (CSW’2016) (2016), paper MoC3–4.

Kennedy, K.

M. Tang, S. Chen, J. Wu, Q. Jiang, K. Kennedy, P. Jurczak, M. Liao, R. Beanland, A. Seeds, and H. Liu, “Optimizations of defect filter layers for 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” IEEE J. Sel. Top. Quantum Electron. 22, 50–56 (2016).
[Crossref]

Kennedy, M.

S. Liu, D. Jung, J. Norman, M. Kennedy, A. Gossard, and J. Bowers, “490  fs pulse generation from passively mode-locked single section quantum dot laser directly grown on on-axis GaP/Si,” Electron. Lett. 54, 432–433 (2018).
[Crossref]

Kennedy, M. J.

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3  μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111, 122107 (2017).
[Crossref]

Y. Wan, J. Norman, D. Jung, C. Shang, L. Macfarlane, Q. Li, M. J. Kennedy, Z. Zhang, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “O-band electrically injected InAs quantum-dot micro-ring lasers on V-groove patterned and unpatterned (001) silicon,” Opt. Express 25, 26853–26860 (2017).
[Crossref]

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photon. 5, 1094–1100 (2017).
[Crossref]

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3  μm submilliamp threshold quantum dot microlasers on Si,” Optica 4, 940–944 (2017).
[Crossref]

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “Sub-mA threshold 1.3 μm CW lasing from electrically pumped micro-rings grown on (001) Si,” in Proceedings of CLEO: Applications and Technology (Optical Society of America, 2017), paper JTh5C.3.

Kotlyar, M. V.

S. A. Moore, L. O’Faolain, M. A. Cataluna, M. B. Flynn, M. V. Kotlyar, and T. F. Krauss, “Reduced surface sidewall recombination and diffusion in quantum-dot lasers,” IEEE Photon. Technol. Lett. 18, 1861–1863 (2006).
[Crossref]

Krauss, T. F.

S. A. Moore, L. O’Faolain, M. A. Cataluna, M. B. Flynn, M. V. Kotlyar, and T. F. Krauss, “Reduced surface sidewall recombination and diffusion in quantum-dot lasers,” IEEE Photon. Technol. Lett. 18, 1861–1863 (2006).
[Crossref]

Kryzhanovskaya, N.

Kulagina, M.

Kunert, B.

Kwoen, J.

Lau, K. M.

Y. Wan, J. Norman, D. Jung, C. Shang, L. Macfarlane, Q. Li, M. J. Kennedy, Z. Zhang, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “O-band electrically injected InAs quantum-dot micro-ring lasers on V-groove patterned and unpatterned (001) silicon,” Opt. Express 25, 26853–26860 (2017).
[Crossref]

Y. Han, Q. Li, S. Zhu, K. W. Ng, and K. M. Lau, “Continuous-wave lasing from InP/InGaAs nanoridges at telecommunication wavelengths,” Appl. Phys. Lett. 111, 212101 (2017).
[Crossref]

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3  μm submilliamp threshold quantum dot microlasers on Si,” Optica 4, 940–944 (2017).
[Crossref]

Y. Wan, Q. Li, A. Y. Liu, W. W. Chow, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Sub-wavelength InAs quantum dot micro-disk lasers epitaxially grown on exact Si (001) substrates,” Appl. Phys. Lett. 108, 221101 (2016).
[Crossref]

Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Temperature characteristics of epitaxially grown InAs quantum dot micro-disk lasers on silicon for on-chip light sources,” Appl. Phys. Lett. 109, 011104 (2016).
[Crossref]

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “Sub-mA threshold 1.3 μm CW lasing from electrically pumped micro-rings grown on (001) Si,” in Proceedings of CLEO: Applications and Technology (Optical Society of America, 2017), paper JTh5C.3.

Lee, J.

Li, J.

Li, Q.

Y. Wan, J. Norman, D. Jung, C. Shang, L. Macfarlane, Q. Li, M. J. Kennedy, Z. Zhang, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “O-band electrically injected InAs quantum-dot micro-ring lasers on V-groove patterned and unpatterned (001) silicon,” Opt. Express 25, 26853–26860 (2017).
[Crossref]

Y. Han, Q. Li, S. Zhu, K. W. Ng, and K. M. Lau, “Continuous-wave lasing from InP/InGaAs nanoridges at telecommunication wavelengths,” Appl. Phys. Lett. 111, 212101 (2017).
[Crossref]

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3  μm submilliamp threshold quantum dot microlasers on Si,” Optica 4, 940–944 (2017).
[Crossref]

Y. Wan, Q. Li, A. Y. Liu, W. W. Chow, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Sub-wavelength InAs quantum dot micro-disk lasers epitaxially grown on exact Si (001) substrates,” Appl. Phys. Lett. 108, 221101 (2016).
[Crossref]

Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Temperature characteristics of epitaxially grown InAs quantum dot micro-disk lasers on silicon for on-chip light sources,” Appl. Phys. Lett. 109, 011104 (2016).
[Crossref]

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “Sub-mA threshold 1.3 μm CW lasing from electrically pumped micro-rings grown on (001) Si,” in Proceedings of CLEO: Applications and Technology (Optical Society of America, 2017), paper JTh5C.3.

Li, W.

Y. Wang, S. Chen, Y. Yu, L. Zhou, L. Liu, C. Yang, M. Liao, M. Tang, Z. Liu, J. Wu, W. Li, I. Ross, A. J. Seeds, H. Liu, and S. Yu, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5, 528–533 (2018).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, A. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Liang, D.

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3  μm submilliamp threshold quantum dot microlasers on Si,” Optica 4, 940–944 (2017).
[Crossref]

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “Sub-mA threshold 1.3 μm CW lasing from electrically pumped micro-rings grown on (001) Si,” in Proceedings of CLEO: Applications and Technology (Optical Society of America, 2017), paper JTh5C.3.

Liao, M.

Lipovskii, A.

Liu, A. W.

A. Y. Liu, C. Zhang, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “MBE growth of P-doped 1.3  μm InAs quantum dot lasers on silicon,” J. Vac. Sci. Technol. B 32, 02C108 (2014).
[Crossref]

Liu, A. Y.

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3  μm submilliamp threshold quantum dot microlasers on Si,” Optica 4, 940–944 (2017).
[Crossref]

Y. Wan, Q. Li, A. Y. Liu, W. W. Chow, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Sub-wavelength InAs quantum dot micro-disk lasers epitaxially grown on exact Si (001) substrates,” Appl. Phys. Lett. 108, 221101 (2016).
[Crossref]

Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Temperature characteristics of epitaxially grown InAs quantum dot micro-disk lasers on silicon for on-chip light sources,” Appl. Phys. Lett. 109, 011104 (2016).
[Crossref]

A. Y. Liu, C. Zhang, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “MBE growth of P-doped 1.3  μm InAs quantum dot lasers on silicon,” J. Vac. Sci. Technol. B 32, 02C108 (2014).
[Crossref]

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “Sub-mA threshold 1.3 μm CW lasing from electrically pumped micro-rings grown on (001) Si,” in Proceedings of CLEO: Applications and Technology (Optical Society of America, 2017), paper JTh5C.3.

Liu, H.

Liu, H.-Y.

R. R. Alexander, D. T. Childs, H. Agarwal, K. M. Groom, H.-Y. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3-μm quantum-dot lasers,” IEEE J. Quantum Electron. 43, 1129–1139 (2007).
[Crossref]

Liu, L.

Liu, S.

S. Liu, D. Jung, J. Norman, M. Kennedy, A. Gossard, and J. Bowers, “490  fs pulse generation from passively mode-locked single section quantum dot laser directly grown on on-axis GaP/Si,” Electron. Lett. 54, 432–433 (2018).
[Crossref]

Liu, Y.

Liu, Z.

Longhi, S.

Lubyshev, D.

A. Y. Liu, C. Zhang, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “MBE growth of P-doped 1.3  μm InAs quantum dot lasers on silicon,” J. Vac. Sci. Technol. B 32, 02C108 (2014).
[Crossref]

Ma, J.

Macfarlane, L.

Maximov, M.

Merckling, C.

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Campenhout, C. Merckling, and D. Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

Michel, J.

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4, e358 (2015).
[Crossref]

Miller, D. A.

D. A. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
[Crossref]

Moiseev, E.

Moore, S. A.

S. A. Moore, L. O’Faolain, M. A. Cataluna, M. B. Flynn, M. V. Kotlyar, and T. F. Krauss, “Reduced surface sidewall recombination and diffusion in quantum-dot lasers,” IEEE Photon. Technol. Lett. 18, 1861–1863 (2006).
[Crossref]

Mowbray, D. J.

R. R. Alexander, D. T. Childs, H. Agarwal, K. M. Groom, H.-Y. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3-μm quantum-dot lasers,” IEEE J. Quantum Electron. 43, 1129–1139 (2007).
[Crossref]

Mukherjee, K.

D. Jung, P. G. Callahan, B. Shin, K. Mukherjee, A. C. Gossard, and J. E. Bowers, “Low threading dislocation density GaAs growth on on-axis GaP/Si (001),” J. Appl. Phys. 122, 225703 (2017).
[Crossref]

Nagarajan, R. L.

R. L. Nagarajan, M. Ishikawa, T. Fukushima, R. S. Geels, and J. E. Bowers, “High speed quantum well lasers and carrier transport effects,” IEEE J. Quantum Electron. 28, 1990–2008 (1992).
[Crossref]

Nakata, Y.

K. Otsubo, N. Hatori, M. Ishida, S. Okumura, T. Akiyama, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Temperature-insensitive eye-opening under 10-Gb/s modulation of 1.3-μm p-doped quantum-dot lasers without current adjustments,” Jpn. J. Appl. Phys. Part 2 43, L1124–L1126 (2004).
[Crossref]

Ng, K. W.

Y. Han, Q. Li, S. Zhu, K. W. Ng, and K. M. Lau, “Continuous-wave lasing from InP/InGaAs nanoridges at telecommunication wavelengths,” Appl. Phys. Lett. 111, 212101 (2017).
[Crossref]

Nishyama, N.

Norman, J.

D. Innoue, D. Jung, J. Norman, Y. Wan, N. Nishyama, S. Arai, A. C. Gossard, and J. E. Bowers, “Directly modulated 1.3  μm quantum dot lasers epitaxially grown on silicon,” Opt. Express 26, 7022–7033 (2018).
[Crossref]

S. Liu, D. Jung, J. Norman, M. Kennedy, A. Gossard, and J. Bowers, “490  fs pulse generation from passively mode-locked single section quantum dot laser directly grown on on-axis GaP/Si,” Electron. Lett. 54, 432–433 (2018).
[Crossref]

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3  μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111, 122107 (2017).
[Crossref]

Y. Wan, J. Norman, D. Jung, C. Shang, L. Macfarlane, Q. Li, M. J. Kennedy, Z. Zhang, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “O-band electrically injected InAs quantum-dot micro-ring lasers on V-groove patterned and unpatterned (001) silicon,” Opt. Express 25, 26853–26860 (2017).
[Crossref]

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3  μm submilliamp threshold quantum dot microlasers on Si,” Optica 4, 940–944 (2017).
[Crossref]

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photon. 5, 1094–1100 (2017).
[Crossref]

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “Sub-mA threshold 1.3 μm CW lasing from electrically pumped micro-rings grown on (001) Si,” in Proceedings of CLEO: Applications and Technology (Optical Society of America, 2017), paper JTh5C.3.

Norman, J. C.

J. C. Norman, D. Jung, Y. Wan, and J. E. Bowers, “Perspective: the future of quantum dot photonic integrated circuits,” APL Photon. 3, 030901 (2018).
[Crossref]

O’Faolain, L.

S. A. Moore, L. O’Faolain, M. A. Cataluna, M. B. Flynn, M. V. Kotlyar, and T. F. Krauss, “Reduced surface sidewall recombination and diffusion in quantum-dot lasers,” IEEE Photon. Technol. Lett. 18, 1861–1863 (2006).
[Crossref]

Okumura, S.

K. Otsubo, N. Hatori, M. Ishida, S. Okumura, T. Akiyama, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Temperature-insensitive eye-opening under 10-Gb/s modulation of 1.3-μm p-doped quantum-dot lasers without current adjustments,” Jpn. J. Appl. Phys. Part 2 43, L1124–L1126 (2004).
[Crossref]

Otsubo, K.

K. Otsubo, N. Hatori, M. Ishida, S. Okumura, T. Akiyama, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Temperature-insensitive eye-opening under 10-Gb/s modulation of 1.3-μm p-doped quantum-dot lasers without current adjustments,” Jpn. J. Appl. Phys. Part 2 43, L1124–L1126 (2004).
[Crossref]

Pantouvaki, M.

Y. Shi, Z. Wang, J. V. Campenhout, M. Pantouvaki, W. Guo, B. Kunert, and D. V. Thourhout, “Optical pumped InGaAs/GaAs nano-ridge laser epitaxially grown on a standard 300-mm Si wafer,” Optica 4, 1468–1473 (2017).
[Crossref]

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Campenhout, C. Merckling, and D. Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

Patel, P.

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photon. 5, 1094–1100 (2017).
[Crossref]

Pohl, U. W.

D. Bimberg and U. W. Pohl, “Quantum dots: promises and accomplishments,” Mater. Today 14, 388–397 (2011).
[Crossref]

Polubavkina, Y.

Ren, X.

J. Wang, H. Hu, H. Yin, Y. Bai, J. Li, X. Wei, Y. Liu, Y. Huang, X. Ren, and H. Liu, “1.3  μm InAs/GaAs quantum dot lasers on silicon with GaInP upper cladding layers,” Photon. Res. 6, 321–325 (2018).
[Crossref]

J. Wang, H. Hu, C. Deng, Y. He, Q. Wang, X. Duan, Y. Huang, and X. Ren, “Defect reduction in GaAs/Si film with InAs quantum-dot dislocation filter grown by metalorganic chemical vapor deposition,” Chin. Phys. B 24, 028101 (2015).
[Crossref]

Ross, I.

Y. Wang, S. Chen, Y. Yu, L. Zhou, L. Liu, C. Yang, M. Liao, M. Tang, Z. Liu, J. Wu, W. Li, I. Ross, A. J. Seeds, H. Liu, and S. Yu, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5, 528–533 (2018).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, A. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Royce, R. J.

R. R. Alexander, D. T. Childs, H. Agarwal, K. M. Groom, H.-Y. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3-μm quantum-dot lasers,” IEEE J. Quantum Electron. 43, 1129–1139 (2007).
[Crossref]

Schwefel, H. G. L.

Seeds, A.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, A. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

M. Tang, S. Chen, J. Wu, Q. Jiang, K. Kennedy, P. Jurczak, M. Liao, R. Beanland, A. Seeds, and H. Liu, “Optimizations of defect filter layers for 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” IEEE J. Sel. Top. Quantum Electron. 22, 50–56 (2016).
[Crossref]

Seeds, A. J.

Sermage, B.

J. Gérard, O. Cabrol, and B. Sermage, “InAs quantum boxes: highly efficient radiative traps for light emitting devices on Si,” Appl. Phys. Lett. 68, 3123–3125 (1996).
[Crossref]

Shang, C.

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3  μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111, 122107 (2017).
[Crossref]

Y. Wan, J. Norman, D. Jung, C. Shang, L. Macfarlane, Q. Li, M. J. Kennedy, Z. Zhang, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “O-band electrically injected InAs quantum-dot micro-ring lasers on V-groove patterned and unpatterned (001) silicon,” Opt. Express 25, 26853–26860 (2017).
[Crossref]

Shchekin, O. B.

O. B. Shchekin and D. G. Deppe, “Low-threshold high-to 1.3-μm InAs quantum-dot lasers due to P-type modulation doping of the active region,” IEEE Photon. Technol. Lett. 14, 1231–1233 (2002).
[Crossref]

Shi, Y.

Shin, B.

D. Jung, P. G. Callahan, B. Shin, K. Mukherjee, A. C. Gossard, and J. E. Bowers, “Low threading dislocation density GaAs growth on on-axis GaP/Si (001),” J. Appl. Phys. 122, 225703 (2017).
[Crossref]

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3  μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111, 122107 (2017).
[Crossref]

Shinohara, S.

Shutts, S.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, A. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Smowton, P.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, A. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Snyder, A.

A. Y. Liu, C. Zhang, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “MBE growth of P-doped 1.3  μm InAs quantum dot lasers on silicon,” J. Vac. Sci. Technol. B 32, 02C108 (2014).
[Crossref]

Sobiesierski, A.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, A. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Sugawara, M.

R. R. Alexander, D. T. Childs, H. Agarwal, K. M. Groom, H.-Y. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3-μm quantum-dot lasers,” IEEE J. Quantum Electron. 43, 1129–1139 (2007).
[Crossref]

K. Otsubo, N. Hatori, M. Ishida, S. Okumura, T. Akiyama, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Temperature-insensitive eye-opening under 10-Gb/s modulation of 1.3-μm p-doped quantum-dot lasers without current adjustments,” Jpn. J. Appl. Phys. Part 2 43, L1124–L1126 (2004).
[Crossref]

T. Kageyama, Q. H. Vo, K. Watanabe, K. Takemasa, M. Sugawara, S. Iwamoto, and Y. Arakawa, “Large modulation bandwidth (13.1  GHz) of 1.3  μm-range quantum dot lasers with high dot density and thin barrier layer,” in Proceedings of the Compound Semiconductor Week (CSW’2016) (2016), paper MoC3–4.

Sunada, S.

Takemasa, K.

T. Kageyama, Q. H. Vo, K. Watanabe, K. Takemasa, M. Sugawara, S. Iwamoto, and Y. Arakawa, “Large modulation bandwidth (13.1  GHz) of 1.3  μm-range quantum dot lasers with high dot density and thin barrier layer,” in Proceedings of the Compound Semiconductor Week (CSW’2016) (2016), paper MoC3–4.

Tang, M.

Y. Wang, S. Chen, Y. Yu, L. Zhou, L. Liu, C. Yang, M. Liao, M. Tang, Z. Liu, J. Wu, W. Li, I. Ross, A. J. Seeds, H. Liu, and S. Yu, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5, 528–533 (2018).
[Crossref]

N. Kryzhanovskaya, E. Moiseev, Y. Polubavkina, M. Maximov, M. Kulagina, S. Troshkov, Y. Zadiranov, Y. Guseva, A. Lipovskii, M. Tang, M. Liao, J. Wu, S. Chen, H. Liu, and A. Zhukov, “Heat-sink free CW operation of injection microdisk lasers grown on Si substrate with emission wavelength beyond 1.3  μm,” Opt. Lett. 42, 3319–3322 (2017).
[Crossref]

M. Tang, S. Chen, J. Wu, Q. Jiang, K. Kennedy, P. Jurczak, M. Liao, R. Beanland, A. Seeds, and H. Liu, “Optimizations of defect filter layers for 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” IEEE J. Sel. Top. Quantum Electron. 22, 50–56 (2016).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, A. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Thourhout, D.

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Campenhout, C. Merckling, and D. Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

Thourhout, D. V.

Tian, B.

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Campenhout, C. Merckling, and D. Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

Torres, A.

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3  μm submilliamp threshold quantum dot microlasers on Si,” Optica 4, 940–944 (2017).
[Crossref]

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “Sub-mA threshold 1.3 μm CW lasing from electrically pumped micro-rings grown on (001) Si,” in Proceedings of CLEO: Applications and Technology (Optical Society of America, 2017), paper JTh5C.3.

Troshkov, S.

Turnlund, K.

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photon. 5, 1094–1100 (2017).
[Crossref]

Vo, Q. H.

T. Kageyama, Q. H. Vo, K. Watanabe, K. Takemasa, M. Sugawara, S. Iwamoto, and Y. Arakawa, “Large modulation bandwidth (13.1  GHz) of 1.3  μm-range quantum dot lasers with high dot density and thin barrier layer,” in Proceedings of the Compound Semiconductor Week (CSW’2016) (2016), paper MoC3–4.

Wan, Y.

D. Innoue, D. Jung, J. Norman, Y. Wan, N. Nishyama, S. Arai, A. C. Gossard, and J. E. Bowers, “Directly modulated 1.3  μm quantum dot lasers epitaxially grown on silicon,” Opt. Express 26, 7022–7033 (2018).
[Crossref]

J. C. Norman, D. Jung, Y. Wan, and J. E. Bowers, “Perspective: the future of quantum dot photonic integrated circuits,” APL Photon. 3, 030901 (2018).
[Crossref]

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photon. 5, 1094–1100 (2017).
[Crossref]

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3  μm submilliamp threshold quantum dot microlasers on Si,” Optica 4, 940–944 (2017).
[Crossref]

Y. Wan, J. Norman, D. Jung, C. Shang, L. Macfarlane, Q. Li, M. J. Kennedy, Z. Zhang, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “O-band electrically injected InAs quantum-dot micro-ring lasers on V-groove patterned and unpatterned (001) silicon,” Opt. Express 25, 26853–26860 (2017).
[Crossref]

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3  μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111, 122107 (2017).
[Crossref]

Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Temperature characteristics of epitaxially grown InAs quantum dot micro-disk lasers on silicon for on-chip light sources,” Appl. Phys. Lett. 109, 011104 (2016).
[Crossref]

Y. Wan, Q. Li, A. Y. Liu, W. W. Chow, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Sub-wavelength InAs quantum dot micro-disk lasers epitaxially grown on exact Si (001) substrates,” Appl. Phys. Lett. 108, 221101 (2016).
[Crossref]

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “Sub-mA threshold 1.3 μm CW lasing from electrically pumped micro-rings grown on (001) Si,” in Proceedings of CLEO: Applications and Technology (Optical Society of America, 2017), paper JTh5C.3.

Wang, J.

J. Wang, H. Hu, H. Yin, Y. Bai, J. Li, X. Wei, Y. Liu, Y. Huang, X. Ren, and H. Liu, “1.3  μm InAs/GaAs quantum dot lasers on silicon with GaInP upper cladding layers,” Photon. Res. 6, 321–325 (2018).
[Crossref]

J. Wang, H. Hu, C. Deng, Y. He, Q. Wang, X. Duan, Y. Huang, and X. Ren, “Defect reduction in GaAs/Si film with InAs quantum-dot dislocation filter grown by metalorganic chemical vapor deposition,” Chin. Phys. B 24, 028101 (2015).
[Crossref]

Wang, Q.

J. Wang, H. Hu, C. Deng, Y. He, Q. Wang, X. Duan, Y. Huang, and X. Ren, “Defect reduction in GaAs/Si film with InAs quantum-dot dislocation filter grown by metalorganic chemical vapor deposition,” Chin. Phys. B 24, 028101 (2015).
[Crossref]

Wang, Y.

Wang, Z.

Y. Shi, Z. Wang, J. V. Campenhout, M. Pantouvaki, W. Guo, B. Kunert, and D. V. Thourhout, “Optical pumped InGaAs/GaAs nano-ridge laser epitaxially grown on a standard 300-mm Si wafer,” Optica 4, 1468–1473 (2017).
[Crossref]

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Campenhout, C. Merckling, and D. Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

Watanabe, K.

J. Kwoen, B. Jang, J. Lee, T. Kageyama, K. Watanabe, and Y. Arakawa, “All MBE grown InAs/GaAs quantum dot lasers on on-axis Si (001),” Opt. Express 26, 11568–11576 (2018).
[Crossref]

T. Kageyama, Q. H. Vo, K. Watanabe, K. Takemasa, M. Sugawara, S. Iwamoto, and Y. Arakawa, “Large modulation bandwidth (13.1  GHz) of 1.3  μm-range quantum dot lasers with high dot density and thin barrier layer,” in Proceedings of the Compound Semiconductor Week (CSW’2016) (2016), paper MoC3–4.

Wei, X.

Wilt, D. P.

J. E. Bowers, B. R. Hemenway, A. H. Gnauck, and D. P. Wilt, “High-speed InGaAsP constricted-mesa lasers,” IEEE J. Quantum Electron. 22, 833–844 (1986).
[Crossref]

Wu, J.

Y. Wang, S. Chen, Y. Yu, L. Zhou, L. Liu, C. Yang, M. Liao, M. Tang, Z. Liu, J. Wu, W. Li, I. Ross, A. J. Seeds, H. Liu, and S. Yu, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5, 528–533 (2018).
[Crossref]

N. Kryzhanovskaya, E. Moiseev, Y. Polubavkina, M. Maximov, M. Kulagina, S. Troshkov, Y. Zadiranov, Y. Guseva, A. Lipovskii, M. Tang, M. Liao, J. Wu, S. Chen, H. Liu, and A. Zhukov, “Heat-sink free CW operation of injection microdisk lasers grown on Si substrate with emission wavelength beyond 1.3  μm,” Opt. Lett. 42, 3319–3322 (2017).
[Crossref]

M. Tang, S. Chen, J. Wu, Q. Jiang, K. Kennedy, P. Jurczak, M. Liao, R. Beanland, A. Seeds, and H. Liu, “Optimizations of defect filter layers for 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” IEEE J. Sel. Top. Quantum Electron. 22, 50–56 (2016).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, A. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Xiao, M.

Yamamoto, T.

R. R. Alexander, D. T. Childs, H. Agarwal, K. M. Groom, H.-Y. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3-μm quantum-dot lasers,” IEEE J. Quantum Electron. 43, 1129–1139 (2007).
[Crossref]

Yang, C.

Yin, B.

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4, e358 (2015).
[Crossref]

Yin, H.

Yu, S.

Yu, Y.

Zadiranov, Y.

Zhang, C.

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3  μm submilliamp threshold quantum dot microlasers on Si,” Optica 4, 940–944 (2017).
[Crossref]

A. Y. Liu, C. Zhang, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “MBE growth of P-doped 1.3  μm InAs quantum dot lasers on silicon,” J. Vac. Sci. Technol. B 32, 02C108 (2014).
[Crossref]

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “Sub-mA threshold 1.3 μm CW lasing from electrically pumped micro-rings grown on (001) Si,” in Proceedings of CLEO: Applications and Technology (Optical Society of America, 2017), paper JTh5C.3.

Zhang, Z.

Zhou, L.

Zhou, Z.

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4, e358 (2015).
[Crossref]

Zhu, S.

Y. Han, Q. Li, S. Zhu, K. W. Ng, and K. M. Lau, “Continuous-wave lasing from InP/InGaAs nanoridges at telecommunication wavelengths,” Appl. Phys. Lett. 111, 212101 (2017).
[Crossref]

Zhukov, A.

ACS Photon. (1)

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photon. 5, 1094–1100 (2017).
[Crossref]

APL Photon. (1)

J. C. Norman, D. Jung, Y. Wan, and J. E. Bowers, “Perspective: the future of quantum dot photonic integrated circuits,” APL Photon. 3, 030901 (2018).
[Crossref]

Appl. Phys. Lett. (5)

Y. Wan, Q. Li, A. Y. Liu, W. W. Chow, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Sub-wavelength InAs quantum dot micro-disk lasers epitaxially grown on exact Si (001) substrates,” Appl. Phys. Lett. 108, 221101 (2016).
[Crossref]

J. Gérard, O. Cabrol, and B. Sermage, “InAs quantum boxes: highly efficient radiative traps for light emitting devices on Si,” Appl. Phys. Lett. 68, 3123–3125 (1996).
[Crossref]

Y. Han, Q. Li, S. Zhu, K. W. Ng, and K. M. Lau, “Continuous-wave lasing from InP/InGaAs nanoridges at telecommunication wavelengths,” Appl. Phys. Lett. 111, 212101 (2017).
[Crossref]

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3  μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111, 122107 (2017).
[Crossref]

Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Temperature characteristics of epitaxially grown InAs quantum dot micro-disk lasers on silicon for on-chip light sources,” Appl. Phys. Lett. 109, 011104 (2016).
[Crossref]

Chin. Phys. B (1)

J. Wang, H. Hu, C. Deng, Y. He, Q. Wang, X. Duan, Y. Huang, and X. Ren, “Defect reduction in GaAs/Si film with InAs quantum-dot dislocation filter grown by metalorganic chemical vapor deposition,” Chin. Phys. B 24, 028101 (2015).
[Crossref]

Electron. Lett. (1)

S. Liu, D. Jung, J. Norman, M. Kennedy, A. Gossard, and J. Bowers, “490  fs pulse generation from passively mode-locked single section quantum dot laser directly grown on on-axis GaP/Si,” Electron. Lett. 54, 432–433 (2018).
[Crossref]

IEEE J. Quantum Electron. (3)

R. R. Alexander, D. T. Childs, H. Agarwal, K. M. Groom, H.-Y. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3-μm quantum-dot lasers,” IEEE J. Quantum Electron. 43, 1129–1139 (2007).
[Crossref]

R. L. Nagarajan, M. Ishikawa, T. Fukushima, R. S. Geels, and J. E. Bowers, “High speed quantum well lasers and carrier transport effects,” IEEE J. Quantum Electron. 28, 1990–2008 (1992).
[Crossref]

J. E. Bowers, B. R. Hemenway, A. H. Gnauck, and D. P. Wilt, “High-speed InGaAsP constricted-mesa lasers,” IEEE J. Quantum Electron. 22, 833–844 (1986).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Tang, S. Chen, J. Wu, Q. Jiang, K. Kennedy, P. Jurczak, M. Liao, R. Beanland, A. Seeds, and H. Liu, “Optimizations of defect filter layers for 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” IEEE J. Sel. Top. Quantum Electron. 22, 50–56 (2016).
[Crossref]

IEEE Photon. Technol. Lett. (2)

O. B. Shchekin and D. G. Deppe, “Low-threshold high-to 1.3-μm InAs quantum-dot lasers due to P-type modulation doping of the active region,” IEEE Photon. Technol. Lett. 14, 1231–1233 (2002).
[Crossref]

S. A. Moore, L. O’Faolain, M. A. Cataluna, M. B. Flynn, M. V. Kotlyar, and T. F. Krauss, “Reduced surface sidewall recombination and diffusion in quantum-dot lasers,” IEEE Photon. Technol. Lett. 18, 1861–1863 (2006).
[Crossref]

J. Appl. Phys. (1)

D. Jung, P. G. Callahan, B. Shin, K. Mukherjee, A. C. Gossard, and J. E. Bowers, “Low threading dislocation density GaAs growth on on-axis GaP/Si (001),” J. Appl. Phys. 122, 225703 (2017).
[Crossref]

J. Vac. Sci. Technol. B (1)

A. Y. Liu, C. Zhang, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “MBE growth of P-doped 1.3  μm InAs quantum dot lasers on silicon,” J. Vac. Sci. Technol. B 32, 02C108 (2014).
[Crossref]

Jpn. J. Appl. Phys. Part 2 (1)

K. Otsubo, N. Hatori, M. Ishida, S. Okumura, T. Akiyama, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Temperature-insensitive eye-opening under 10-Gb/s modulation of 1.3-μm p-doped quantum-dot lasers without current adjustments,” Jpn. J. Appl. Phys. Part 2 43, L1124–L1126 (2004).
[Crossref]

Light Sci. Appl. (1)

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4, e358 (2015).
[Crossref]

Mater. Today (1)

D. Bimberg and U. W. Pohl, “Quantum dots: promises and accomplishments,” Mater. Today 14, 388–397 (2011).
[Crossref]

Nat. Photonics (3)

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, A. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Campenhout, C. Merckling, and D. Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9, 837–842 (2015).
[Crossref]

M. T. Hill and M. C. Gather, “Advances in small lasers,” Nat. Photonics 8, 908–918 (2014).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Optica (3)

Photon. Res. (6)

Proc. IEEE (1)

D. A. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
[Crossref]

Proc. SPIE (1)

D. Arsenijević and D. Bimberg, “Quantum-dot lasers for 35  Gbit/s pulse-amplitude modulation and 160  Gbit/s differential quadrature phase-shift keying,” Proc. SPIE 9892, 98920S (2016).
[Crossref]

Other (2)

T. Kageyama, Q. H. Vo, K. Watanabe, K. Takemasa, M. Sugawara, S. Iwamoto, and Y. Arakawa, “Large modulation bandwidth (13.1  GHz) of 1.3  μm-range quantum dot lasers with high dot density and thin barrier layer,” in Proceedings of the Compound Semiconductor Week (CSW’2016) (2016), paper MoC3–4.

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “Sub-mA threshold 1.3 μm CW lasing from electrically pumped micro-rings grown on (001) Si,” in Proceedings of CLEO: Applications and Technology (Optical Society of America, 2017), paper JTh5C.3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Schematic of the epilayer structure. Inset, AFM morphology of the uncapped dots.
Fig. 2.
Fig. 2. (a) Schematic illustration and (b) tilted SEM image of one fabricated microring laser; (c) top view of the probed microring under infrared imaging.
Fig. 3.
Fig. 3. Measured L-I-V curve of a microring laser with intrinsic active region. The device features an outer ring radius of 15 μm and a ring waveguide width of 4 μm. Inset, zoomed-in view of the L-I curve in the low-injection region.
Fig. 4.
Fig. 4. Emission spectra for the same device in Fig. 3 at various injection currents under CW operation at room temperature. Inset, emission spectrum around lasing threshold.
Fig. 5.
Fig. 5. Measured L-I curves as a function of the heat sink temperature for two microring lasers with (a) an intrinsic active region and (b) a modulation p-doped active region. Both devices have an outer ring radius of 15 μm and a ring waveguide width of 4 μm. (c) Temperature-dependent threshold current versus heat sink temperature for the two microring lasers, where the dashed lines represent the linear fit to the experimental data.
Fig. 6.
Fig. 6. Threshold currents as a function of outer ring radius for microring lasers (a) with an intrinsic active region and a modulation p-doped active region on the GaP/Si, and (b) on GaP/Si substrate and native GaAs substrate with an intrinsic active region.
Fig. 7.
Fig. 7. Small-signal modulation responses of the QD ring laser biased from 21 to 86 mA. The fitting curves are drawn using a three-pole fitting function H(f). Inset, L-I-V characteristics from the same device.
Fig. 8.
Fig. 8. 3 dB bandwidth f3dB and relaxation oscillation frequency fr versus square root of the bias current above threshold. Inset, damping rate γ versus squared relaxation oscillation frequency fr. The maximum 3 dB bandwidth limited by K-factor f3dB,max is 9.7 GHz.
Fig. 9.
Fig. 9. (a) Impedance measurement of QD microring laser on Si; (b) equivalent circuit model used for the fitting. Measured and fitted curves of reflection S11 characteristics for reverse (3  V) and forward (50 mA) biased condition from 0.14 to 5 GHz.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

γ=K·fr2+γ0,