Abstract

The realization of an efficient optical sensor based on a photonic crystal metasurface supporting bound states in the continuum is reported. Liquids with different refractive indices, ranging from 1.4000 to 1.4480, are infiltrated in a microfluidic chamber bonded to the sensing dielectric metasurface. A bulk liquid sensitivity of 178 nm/RIU is achieved, while a Q-factor of about 2000 gives a sensor figure of merit up to 445 in air at both visible and infrared excitations. Furthermore, the detection of ultralow-molecular-weight (186 Da) molecules is demonstrated with a record resonance shift of 6 nm per less than a 1 nm thick single molecular layer. The system exploits a normal-to-the-surface optical launching scheme, with excellent interrogation stability and demonstrates alignment-free performances, overcoming the limits of standard photonic crystals and plasmonic resonant configurations.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Guided-mode resonance photonic crystal slab sensors based on bead monolayer geometry

Lina Shi, Pierre Pottier, Yves-Alain Peter, and Maksim Skorobogatiy
Opt. Express 16(22) 17962-17971 (2008)

Propagating bound states in the continuum at the surface of a photonic crystal

Zhen Hu and Ya Yan Lu
J. Opt. Soc. Am. B 34(9) 1878-1883 (2017)

Photonic crystal slab sensor with enhanced surface area

Christopher Kang, Christopher T. Phare, Yurii A. Vlasov, Solomon Assefa, and Sharon M. Weiss
Opt. Express 18(26) 27930-27937 (2010)

References

  • View by:
  • |
  • |
  • |

  1. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
    [Crossref]
  2. R. J. Green, R. A. Frazier, K. M. Shakesheff, M. C. Davies, C. J. Roberts, and S. J. B. Tendler, “Surface plasmon resonance analysis of dynamic biological interactions with biomaterials,” Biomaterials 21, 1823–1835 (2000).
    [Crossref]
  3. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
    [Crossref]
  4. T. Linnert, P. Mulvaney, and A. Henglein, “Surface chemistry of colloidal silver: surface plasmon damping by chemisorbed iodide, hydrosulfide (SH-), and phenylthiolate,” J. Phys. Chem. 97, 679–682 (1993).
    [Crossref]
  5. R. P. Kooyman, H. Kolkman, J. Van Gent, and J. Greve, “Surface plasmon resonance immunosensors: sensitivity considerations,” Anal. Chim. Acta 213, 35–45 (1988).
    [Crossref]
  6. E. M. Yeatman, “Resolution and sensitivity in surface plasmon microscopy and sensing,” Biosens. Bioelectron. 11, 635–649 (1996).
    [Crossref]
  7. J. Homola, “On the sensitivity of surface plasmon resonance sensors with spectral interrogation,” Sens. Actuators B 41, 207–211 (1997).
    [Crossref]
  8. J. H. H. Liao and C. L. Nehl, “Biomedical applications of plasmon resonant metal nanoparticles,” Nanomedicine 1, 201–208 (2006).
    [Crossref]
  9. J. Anker, W. Paige Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
    [Crossref]
  10. A. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. Wurtz, R. Atkinson, R. Pollard, V. Podolskiy, and A. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
    [Crossref]
  11. J. Wang, B. Yuan, C. Fan, J. He, P. Ding, Q. Xue, and E. Liang, “A novel planar metamaterial design for electromagnetically induced transparency and slow light,” Opt. Express 21, 25159–25166 (2013).
    [Crossref]
  12. W. Cao, R. Singh, I. A. Al-Naib, M. He, A. J. Taylor, and W. Zhang, “Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials,” Opt. Lett. 37, 3366–3368 (2012).
    [Crossref]
  13. Y.-N. Zhang, Y. Zhao, and R.-Q. Lv, “A review for optical sensors based on photonic crystal cavities,” Sens. Actuators A 233, 374–389 (2015).
    [Crossref]
  14. R. D. M. J. Joannopoulos, S. G. Johnson, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University Press, 2008).
  15. T. Sünner, T. Stichel, S.-H. Kwon, T. W. Schlereth, S. Höfling, M. Kamp, and A. Forchel, “Photonic crystal cavity-based gas sensor,” Appl. Phys. Lett. 92, 261112 (2008).
    [Crossref]
  16. A. Di Falco, L. O’Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94, 063503 (2009).
    [Crossref]
  17. S.-H. Kwon, T. Sunner, M. Kamp, and A. Forchel, “Optimization of photonic crystal cavity for chemical sensing,” Opt. Express 16, 11709–11717 (2008).
    [Crossref]
  18. H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities,” Phys. Rev. B 79, 085112 (2009).
    [Crossref]
  19. D. Pergande, T. M. Geppert, A. Von Rhein, S. L. Schweizer, R. B. Wehrspohn, S. Moretton, and A. Lambrecht, “Miniature infrared gas sensors using photonic crystals,” J. Appl. Phys. 109, 083117 (2011).
    [Crossref]
  20. Y. Zou, S. Chakravarty, D. N. Kwong, W. C. Lai, X. Xu, X. Lin, A. Hosseini, and R. T. Chen, “Cavity-waveguide coupling engineered high sensitivity silicon photonic crystal microcavity biosensors with high yield,” IEEE J. Sel. Top. Quantum Electron. 20, 171–180 (2014).
    [Crossref]
  21. J. von Neumann and E. P. Wigner, “Über merkwürdige diskrete Eigenwerte,” Phys. Z. 30, 465–467 (1929).
  22. F. H. Stillinger and D. R. Herrick, “Bound states in the continuum,” Phys. Rev. A 11, 446–454 (1975).
    [Crossref]
  23. Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental observation of optical bound states in the continuum,” Phys. Rev. Lett. 107, 183901 (2011).
    [Crossref]
  24. D. Marinica, A. Borisov, and S. Shabanov, “Bound states in the continuum in photonics,” Phys. Rev. Lett. 100, 183902 (2008).
    [Crossref]
  25. M. I. Molina, A. E. Miroshnichenko, and Y. S. Kivshar, “Surface bound states in the continuum,” Phys. Rev. Lett. 108, 070401 (2012).
    [Crossref]
  26. E. N. Bulgakov and A. F. Sadreev, “Bound states in the continuum in photonic waveguides inspired by defects,” Phys. Rev. B 78, 075105 (2008).
    [Crossref]
  27. R. Porter and D. V. Evans, “Embedded Rayleigh-Bloch surface waves along periodic rectangular arrays,” Wave Motion 43, 29–50 (2005).
    [Crossref]
  28. C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mater. 1, 16048 (2016).
    [Crossref]
  29. V. Mocella and S. Romano, “Giant field enhancement in photonic resonant lattices,” Phys. Rev. B 92, 155117 (2015).
    [Crossref]
  30. A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541, 196–199 (2017).
    [Crossref]
  31. B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljacic, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. USA 110, 13711–13716 (2013).
    [Crossref]
  32. C. Wu, N. Arju, J. Fan, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared fano resonances,” Nat. Commun. 5, 3892 (2016).
    [Crossref]
  33. S. Romano, A. Lamberti, M. Masullo, E. Penzo, S. Cabrini, I. Rendina, and V. Mocella, “Optical biosensors based on photonic crystals supporting bound states in the continuum,” Materials 11, 526 (2018).
    [Crossref]
  34. F. S. Damos, R. C. Luz, and L. T. Kubota, “Determination of thickness, dielectric constant of thiol films, and kinetics of adsorption using surface plasmon resonance,” Langmuir 21, 602–609 (2005).
    [Crossref]
  35. K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15, 621–627 (2016).
    [Crossref]
  36. S. Romano, A. C. De Luca, E. De Tommasi, S. Cabrini, I. Rendina, and V. Mocella, “Observation of resonant states in negative refractive photonic crystals,” J. Eur. Opt. Soc. 9, 14006 (2014).
    [Crossref]
  37. S. Romano, S. Cabrini, I. Rendina, and V. Mocella, “Guided resonance in negative index photonic crystals: a new approach,” Light: Sci. Appl. 3, e120 (2014).
    [Crossref]
  38. E. De Tommasi, A. Chiara De Luca, S. Cabrini, I. Rendina, S. Romano, and V. Mocella, “Plasmon-like surface states in negative refractive index photonic crystals,” Appl. Phys. Lett. 102, 081113 (2013).
    [Crossref]
  39. G. Zito, G. Rusciano, and A. Sasso, “Dark spots along slowly scaling chains of plasmonic nanoparticles,” Opt. Express 24, 13584–13589 (2016).
    [Crossref]
  40. G. Zito, G. Rusciano, and A. Sasso, “Enhancement factor statistics of surface enhanced raman scattering in multiscale heterostructures of nanoparticles,” J. Chem. Phys. 145, 054708 (2016).
    [Crossref]
  41. Y. Xia and G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28, 153–184 (1998).
    [Crossref]
  42. C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
    [Crossref]
  43. A. B. Dahlin, J. O. Tegenfeldt, and F. Höök, “Improving the instrumental resolution of sensors based on localized surface plasmon resonance,” Anal. Chem. 78, 4416–4423 (2006).
    [Crossref]
  44. E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett. 29, 1093–1095 (2004).
    [Crossref]
  45. D. F. Dorfner, T. Hürlimann, T. Zabel, L. H. Frandsen, G. Abstreiter, and J. J. Finley, “Silicon photonic crystal nanostructures for refractive index sensing,” Appl. Phys. Lett. 93, 181103 (2008).
    [Crossref]
  46. Y. Zou, S. Chakravarty, D. N. Kwong, W.-C. Lai, X. Xu, X. Lin, A. Hosseini, and R. T. Chen, “Cavity-waveguide coupling engineered high sensitivity silicon photonic crystal microcavity biosensors with high yield,” IEEE J. Sel. Top. Quantum Electron. 20, 6900710 (2014).
    [Crossref]
  47. J. Pottage, E. Silvestre, and P. S. J. Russell, “Vertical-cavity surface-emitting resonances in photonic crystal films,” J. Opt. Soc. Am. A 18, 442–447 (2001).
    [Crossref]
  48. S. Hu, Y. Zhao, K. Qin, S. T. Retterer, I. I. Kravchenko, and S. M. Weiss, “Enhancing the sensitivity of label-free silicon photonic biosensors through increased probe molecule density,” ACS Photon. 1, 590–597 (2014).
    [Crossref]

2018 (1)

S. Romano, A. Lamberti, M. Masullo, E. Penzo, S. Cabrini, I. Rendina, and V. Mocella, “Optical biosensors based on photonic crystals supporting bound states in the continuum,” Materials 11, 526 (2018).
[Crossref]

2017 (1)

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541, 196–199 (2017).
[Crossref]

2016 (5)

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mater. 1, 16048 (2016).
[Crossref]

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15, 621–627 (2016).
[Crossref]

G. Zito, G. Rusciano, and A. Sasso, “Dark spots along slowly scaling chains of plasmonic nanoparticles,” Opt. Express 24, 13584–13589 (2016).
[Crossref]

G. Zito, G. Rusciano, and A. Sasso, “Enhancement factor statistics of surface enhanced raman scattering in multiscale heterostructures of nanoparticles,” J. Chem. Phys. 145, 054708 (2016).
[Crossref]

C. Wu, N. Arju, J. Fan, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared fano resonances,” Nat. Commun. 5, 3892 (2016).
[Crossref]

2015 (2)

V. Mocella and S. Romano, “Giant field enhancement in photonic resonant lattices,” Phys. Rev. B 92, 155117 (2015).
[Crossref]

Y.-N. Zhang, Y. Zhao, and R.-Q. Lv, “A review for optical sensors based on photonic crystal cavities,” Sens. Actuators A 233, 374–389 (2015).
[Crossref]

2014 (6)

S. Romano, A. C. De Luca, E. De Tommasi, S. Cabrini, I. Rendina, and V. Mocella, “Observation of resonant states in negative refractive photonic crystals,” J. Eur. Opt. Soc. 9, 14006 (2014).
[Crossref]

S. Romano, S. Cabrini, I. Rendina, and V. Mocella, “Guided resonance in negative index photonic crystals: a new approach,” Light: Sci. Appl. 3, e120 (2014).
[Crossref]

Y. Zou, S. Chakravarty, D. N. Kwong, W. C. Lai, X. Xu, X. Lin, A. Hosseini, and R. T. Chen, “Cavity-waveguide coupling engineered high sensitivity silicon photonic crystal microcavity biosensors with high yield,” IEEE J. Sel. Top. Quantum Electron. 20, 171–180 (2014).
[Crossref]

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref]

Y. Zou, S. Chakravarty, D. N. Kwong, W.-C. Lai, X. Xu, X. Lin, A. Hosseini, and R. T. Chen, “Cavity-waveguide coupling engineered high sensitivity silicon photonic crystal microcavity biosensors with high yield,” IEEE J. Sel. Top. Quantum Electron. 20, 6900710 (2014).
[Crossref]

S. Hu, Y. Zhao, K. Qin, S. T. Retterer, I. I. Kravchenko, and S. M. Weiss, “Enhancing the sensitivity of label-free silicon photonic biosensors through increased probe molecule density,” ACS Photon. 1, 590–597 (2014).
[Crossref]

2013 (3)

E. De Tommasi, A. Chiara De Luca, S. Cabrini, I. Rendina, S. Romano, and V. Mocella, “Plasmon-like surface states in negative refractive index photonic crystals,” Appl. Phys. Lett. 102, 081113 (2013).
[Crossref]

B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljacic, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. USA 110, 13711–13716 (2013).
[Crossref]

J. Wang, B. Yuan, C. Fan, J. He, P. Ding, Q. Xue, and E. Liang, “A novel planar metamaterial design for electromagnetically induced transparency and slow light,” Opt. Express 21, 25159–25166 (2013).
[Crossref]

2012 (2)

W. Cao, R. Singh, I. A. Al-Naib, M. He, A. J. Taylor, and W. Zhang, “Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials,” Opt. Lett. 37, 3366–3368 (2012).
[Crossref]

M. I. Molina, A. E. Miroshnichenko, and Y. S. Kivshar, “Surface bound states in the continuum,” Phys. Rev. Lett. 108, 070401 (2012).
[Crossref]

2011 (2)

Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental observation of optical bound states in the continuum,” Phys. Rev. Lett. 107, 183901 (2011).
[Crossref]

D. Pergande, T. M. Geppert, A. Von Rhein, S. L. Schweizer, R. B. Wehrspohn, S. Moretton, and A. Lambrecht, “Miniature infrared gas sensors using photonic crystals,” J. Appl. Phys. 109, 083117 (2011).
[Crossref]

2009 (3)

A. Di Falco, L. O’Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94, 063503 (2009).
[Crossref]

A. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. Wurtz, R. Atkinson, R. Pollard, V. Podolskiy, and A. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[Crossref]

H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities,” Phys. Rev. B 79, 085112 (2009).
[Crossref]

2008 (7)

S.-H. Kwon, T. Sunner, M. Kamp, and A. Forchel, “Optimization of photonic crystal cavity for chemical sensing,” Opt. Express 16, 11709–11717 (2008).
[Crossref]

T. Sünner, T. Stichel, S.-H. Kwon, T. W. Schlereth, S. Höfling, M. Kamp, and A. Forchel, “Photonic crystal cavity-based gas sensor,” Appl. Phys. Lett. 92, 261112 (2008).
[Crossref]

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[Crossref]

J. Anker, W. Paige Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

D. Marinica, A. Borisov, and S. Shabanov, “Bound states in the continuum in photonics,” Phys. Rev. Lett. 100, 183902 (2008).
[Crossref]

E. N. Bulgakov and A. F. Sadreev, “Bound states in the continuum in photonic waveguides inspired by defects,” Phys. Rev. B 78, 075105 (2008).
[Crossref]

D. F. Dorfner, T. Hürlimann, T. Zabel, L. H. Frandsen, G. Abstreiter, and J. J. Finley, “Silicon photonic crystal nanostructures for refractive index sensing,” Appl. Phys. Lett. 93, 181103 (2008).
[Crossref]

2006 (2)

A. B. Dahlin, J. O. Tegenfeldt, and F. Höök, “Improving the instrumental resolution of sensors based on localized surface plasmon resonance,” Anal. Chem. 78, 4416–4423 (2006).
[Crossref]

J. H. H. Liao and C. L. Nehl, “Biomedical applications of plasmon resonant metal nanoparticles,” Nanomedicine 1, 201–208 (2006).
[Crossref]

2005 (2)

R. Porter and D. V. Evans, “Embedded Rayleigh-Bloch surface waves along periodic rectangular arrays,” Wave Motion 43, 29–50 (2005).
[Crossref]

F. S. Damos, R. C. Luz, and L. T. Kubota, “Determination of thickness, dielectric constant of thiol films, and kinetics of adsorption using surface plasmon resonance,” Langmuir 21, 602–609 (2005).
[Crossref]

2004 (1)

2001 (1)

2000 (1)

R. J. Green, R. A. Frazier, K. M. Shakesheff, M. C. Davies, C. J. Roberts, and S. J. B. Tendler, “Surface plasmon resonance analysis of dynamic biological interactions with biomaterials,” Biomaterials 21, 1823–1835 (2000).
[Crossref]

1999 (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
[Crossref]

1998 (1)

Y. Xia and G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28, 153–184 (1998).
[Crossref]

1997 (1)

J. Homola, “On the sensitivity of surface plasmon resonance sensors with spectral interrogation,” Sens. Actuators B 41, 207–211 (1997).
[Crossref]

1996 (1)

E. M. Yeatman, “Resolution and sensitivity in surface plasmon microscopy and sensing,” Biosens. Bioelectron. 11, 635–649 (1996).
[Crossref]

1993 (1)

T. Linnert, P. Mulvaney, and A. Henglein, “Surface chemistry of colloidal silver: surface plasmon damping by chemisorbed iodide, hydrosulfide (SH-), and phenylthiolate,” J. Phys. Chem. 97, 679–682 (1993).
[Crossref]

1988 (1)

R. P. Kooyman, H. Kolkman, J. Van Gent, and J. Greve, “Surface plasmon resonance immunosensors: sensitivity considerations,” Anal. Chim. Acta 213, 35–45 (1988).
[Crossref]

1975 (1)

F. H. Stillinger and D. R. Herrick, “Bound states in the continuum,” Phys. Rev. A 11, 446–454 (1975).
[Crossref]

1929 (1)

J. von Neumann and E. P. Wigner, “Über merkwürdige diskrete Eigenwerte,” Phys. Z. 30, 465–467 (1929).

Abstreiter, G.

D. F. Dorfner, T. Hürlimann, T. Zabel, L. H. Frandsen, G. Abstreiter, and J. J. Finley, “Silicon photonic crystal nanostructures for refractive index sensing,” Appl. Phys. Lett. 93, 181103 (2008).
[Crossref]

Alapan, Y.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15, 621–627 (2016).
[Crossref]

Al-Naib, I. A.

Anker, J.

J. Anker, W. Paige Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Arju, N.

C. Wu, N. Arju, J. Fan, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared fano resonances,” Nat. Commun. 5, 3892 (2016).
[Crossref]

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref]

Asano, T.

H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities,” Phys. Rev. B 79, 085112 (2009).
[Crossref]

Atkinson, R.

A. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. Wurtz, R. Atkinson, R. Pollard, V. Podolskiy, and A. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[Crossref]

Bahari, B.

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541, 196–199 (2017).
[Crossref]

Borisov, A.

D. Marinica, A. Borisov, and S. Shabanov, “Bound states in the continuum in photonics,” Phys. Rev. Lett. 100, 183902 (2008).
[Crossref]

Brener, I.

C. Wu, N. Arju, J. Fan, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared fano resonances,” Nat. Commun. 5, 3892 (2016).
[Crossref]

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref]

Bulgakov, E. N.

E. N. Bulgakov and A. F. Sadreev, “Bound states in the continuum in photonic waveguides inspired by defects,” Phys. Rev. B 78, 075105 (2008).
[Crossref]

Cabrini, S.

S. Romano, A. Lamberti, M. Masullo, E. Penzo, S. Cabrini, I. Rendina, and V. Mocella, “Optical biosensors based on photonic crystals supporting bound states in the continuum,” Materials 11, 526 (2018).
[Crossref]

S. Romano, A. C. De Luca, E. De Tommasi, S. Cabrini, I. Rendina, and V. Mocella, “Observation of resonant states in negative refractive photonic crystals,” J. Eur. Opt. Soc. 9, 14006 (2014).
[Crossref]

S. Romano, S. Cabrini, I. Rendina, and V. Mocella, “Guided resonance in negative index photonic crystals: a new approach,” Light: Sci. Appl. 3, e120 (2014).
[Crossref]

E. De Tommasi, A. Chiara De Luca, S. Cabrini, I. Rendina, S. Romano, and V. Mocella, “Plasmon-like surface states in negative refractive index photonic crystals,” Appl. Phys. Lett. 102, 081113 (2013).
[Crossref]

Cao, W.

Chakravarty, S.

Y. Zou, S. Chakravarty, D. N. Kwong, W.-C. Lai, X. Xu, X. Lin, A. Hosseini, and R. T. Chen, “Cavity-waveguide coupling engineered high sensitivity silicon photonic crystal microcavity biosensors with high yield,” IEEE J. Sel. Top. Quantum Electron. 20, 6900710 (2014).
[Crossref]

Y. Zou, S. Chakravarty, D. N. Kwong, W. C. Lai, X. Xu, X. Lin, A. Hosseini, and R. T. Chen, “Cavity-waveguide coupling engineered high sensitivity silicon photonic crystal microcavity biosensors with high yield,” IEEE J. Sel. Top. Quantum Electron. 20, 171–180 (2014).
[Crossref]

Chen, R. T.

Y. Zou, S. Chakravarty, D. N. Kwong, W. C. Lai, X. Xu, X. Lin, A. Hosseini, and R. T. Chen, “Cavity-waveguide coupling engineered high sensitivity silicon photonic crystal microcavity biosensors with high yield,” IEEE J. Sel. Top. Quantum Electron. 20, 171–180 (2014).
[Crossref]

Y. Zou, S. Chakravarty, D. N. Kwong, W.-C. Lai, X. Xu, X. Lin, A. Hosseini, and R. T. Chen, “Cavity-waveguide coupling engineered high sensitivity silicon photonic crystal microcavity biosensors with high yield,” IEEE J. Sel. Top. Quantum Electron. 20, 6900710 (2014).
[Crossref]

Chiara De Luca, A.

E. De Tommasi, A. Chiara De Luca, S. Cabrini, I. Rendina, S. Romano, and V. Mocella, “Plasmon-like surface states in negative refractive index photonic crystals,” Appl. Phys. Lett. 102, 081113 (2013).
[Crossref]

Chow, E.

Chua, S.-L.

B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljacic, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. USA 110, 13711–13716 (2013).
[Crossref]

Dahlin, A. B.

A. B. Dahlin, J. O. Tegenfeldt, and F. Höök, “Improving the instrumental resolution of sensors based on localized surface plasmon resonance,” Anal. Chem. 78, 4416–4423 (2006).
[Crossref]

Damos, F. S.

F. S. Damos, R. C. Luz, and L. T. Kubota, “Determination of thickness, dielectric constant of thiol films, and kinetics of adsorption using surface plasmon resonance,” Langmuir 21, 602–609 (2005).
[Crossref]

Davies, M. C.

R. J. Green, R. A. Frazier, K. M. Shakesheff, M. C. Davies, C. J. Roberts, and S. J. B. Tendler, “Surface plasmon resonance analysis of dynamic biological interactions with biomaterials,” Biomaterials 21, 1823–1835 (2000).
[Crossref]

De Luca, A.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15, 621–627 (2016).
[Crossref]

De Luca, A. C.

S. Romano, A. C. De Luca, E. De Tommasi, S. Cabrini, I. Rendina, and V. Mocella, “Observation of resonant states in negative refractive photonic crystals,” J. Eur. Opt. Soc. 9, 14006 (2014).
[Crossref]

De Tommasi, E.

S. Romano, A. C. De Luca, E. De Tommasi, S. Cabrini, I. Rendina, and V. Mocella, “Observation of resonant states in negative refractive photonic crystals,” J. Eur. Opt. Soc. 9, 14006 (2014).
[Crossref]

E. De Tommasi, A. Chiara De Luca, S. Cabrini, I. Rendina, S. Romano, and V. Mocella, “Plasmon-like surface states in negative refractive index photonic crystals,” Appl. Phys. Lett. 102, 081113 (2013).
[Crossref]

Di Falco, A.

A. Di Falco, L. O’Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94, 063503 (2009).
[Crossref]

Ding, P.

Dominguez, J.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref]

Dorfner, D. F.

D. F. Dorfner, T. Hürlimann, T. Zabel, L. H. Frandsen, G. Abstreiter, and J. J. Finley, “Silicon photonic crystal nanostructures for refractive index sensing,” Appl. Phys. Lett. 93, 181103 (2008).
[Crossref]

Dreisow, F.

Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental observation of optical bound states in the continuum,” Phys. Rev. Lett. 107, 183901 (2011).
[Crossref]

ElKabbash, M.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15, 621–627 (2016).
[Crossref]

Evans, D. V.

R. Porter and D. V. Evans, “Embedded Rayleigh-Bloch surface waves along periodic rectangular arrays,” Wave Motion 43, 29–50 (2005).
[Crossref]

Evans, P.

A. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. Wurtz, R. Atkinson, R. Pollard, V. Podolskiy, and A. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[Crossref]

Fainman, Y.

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541, 196–199 (2017).
[Crossref]

Fan, C.

Fan, J.

C. Wu, N. Arju, J. Fan, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared fano resonances,” Nat. Commun. 5, 3892 (2016).
[Crossref]

Fan, J. A.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref]

Fan, X.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[Crossref]

Finley, J. J.

D. F. Dorfner, T. Hürlimann, T. Zabel, L. H. Frandsen, G. Abstreiter, and J. J. Finley, “Silicon photonic crystal nanostructures for refractive index sensing,” Appl. Phys. Lett. 93, 181103 (2008).
[Crossref]

Forchel, A.

S.-H. Kwon, T. Sunner, M. Kamp, and A. Forchel, “Optimization of photonic crystal cavity for chemical sensing,” Opt. Express 16, 11709–11717 (2008).
[Crossref]

T. Sünner, T. Stichel, S.-H. Kwon, T. W. Schlereth, S. Höfling, M. Kamp, and A. Forchel, “Photonic crystal cavity-based gas sensor,” Appl. Phys. Lett. 92, 261112 (2008).
[Crossref]

Frandsen, L. H.

D. F. Dorfner, T. Hürlimann, T. Zabel, L. H. Frandsen, G. Abstreiter, and J. J. Finley, “Silicon photonic crystal nanostructures for refractive index sensing,” Appl. Phys. Lett. 93, 181103 (2008).
[Crossref]

Frazier, R. A.

R. J. Green, R. A. Frazier, K. M. Shakesheff, M. C. Davies, C. J. Roberts, and S. J. B. Tendler, “Surface plasmon resonance analysis of dynamic biological interactions with biomaterials,” Biomaterials 21, 1823–1835 (2000).
[Crossref]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
[Crossref]

Geppert, T. M.

D. Pergande, T. M. Geppert, A. Von Rhein, S. L. Schweizer, R. B. Wehrspohn, S. Moretton, and A. Lambrecht, “Miniature infrared gas sensors using photonic crystals,” J. Appl. Phys. 109, 083117 (2011).
[Crossref]

Girolami, G.

Gonzales, E.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref]

Green, R. J.

R. J. Green, R. A. Frazier, K. M. Shakesheff, M. C. Davies, C. J. Roberts, and S. J. B. Tendler, “Surface plasmon resonance analysis of dynamic biological interactions with biomaterials,” Biomaterials 21, 1823–1835 (2000).
[Crossref]

Greve, J.

R. P. Kooyman, H. Kolkman, J. Van Gent, and J. Greve, “Surface plasmon resonance immunosensors: sensitivity considerations,” Anal. Chim. Acta 213, 35–45 (1988).
[Crossref]

Grot, A.

Gu, Q.

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541, 196–199 (2017).
[Crossref]

Gurkan, U. A.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15, 621–627 (2016).
[Crossref]

Hagino, H.

H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities,” Phys. Rev. B 79, 085112 (2009).
[Crossref]

He, J.

He, M.

Heinrich, M.

Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental observation of optical bound states in the continuum,” Phys. Rev. Lett. 107, 183901 (2011).
[Crossref]

Hendren, W.

A. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. Wurtz, R. Atkinson, R. Pollard, V. Podolskiy, and A. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[Crossref]

Henglein, A.

T. Linnert, P. Mulvaney, and A. Henglein, “Surface chemistry of colloidal silver: surface plasmon damping by chemisorbed iodide, hydrosulfide (SH-), and phenylthiolate,” J. Phys. Chem. 97, 679–682 (1993).
[Crossref]

Herrick, D. R.

F. H. Stillinger and D. R. Herrick, “Bound states in the continuum,” Phys. Rev. A 11, 446–454 (1975).
[Crossref]

Hinczewski, M.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15, 621–627 (2016).
[Crossref]

Höfling, S.

T. Sünner, T. Stichel, S.-H. Kwon, T. W. Schlereth, S. Höfling, M. Kamp, and A. Forchel, “Photonic crystal cavity-based gas sensor,” Appl. Phys. Lett. 92, 261112 (2008).
[Crossref]

Homola, J.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
[Crossref]

J. Homola, “On the sensitivity of surface plasmon resonance sensors with spectral interrogation,” Sens. Actuators B 41, 207–211 (1997).
[Crossref]

Höök, F.

A. B. Dahlin, J. O. Tegenfeldt, and F. Höök, “Improving the instrumental resolution of sensors based on localized surface plasmon resonance,” Anal. Chem. 78, 4416–4423 (2006).
[Crossref]

Hosseini, A.

Y. Zou, S. Chakravarty, D. N. Kwong, W.-C. Lai, X. Xu, X. Lin, A. Hosseini, and R. T. Chen, “Cavity-waveguide coupling engineered high sensitivity silicon photonic crystal microcavity biosensors with high yield,” IEEE J. Sel. Top. Quantum Electron. 20, 6900710 (2014).
[Crossref]

Y. Zou, S. Chakravarty, D. N. Kwong, W. C. Lai, X. Xu, X. Lin, A. Hosseini, and R. T. Chen, “Cavity-waveguide coupling engineered high sensitivity silicon photonic crystal microcavity biosensors with high yield,” IEEE J. Sel. Top. Quantum Electron. 20, 171–180 (2014).
[Crossref]

Hsu, C. W.

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mater. 1, 16048 (2016).
[Crossref]

Hu, S.

S. Hu, Y. Zhao, K. Qin, S. T. Retterer, I. I. Kravchenko, and S. M. Weiss, “Enhancing the sensitivity of label-free silicon photonic biosensors through increased probe molecule density,” ACS Photon. 1, 590–597 (2014).
[Crossref]

Hürlimann, T.

D. F. Dorfner, T. Hürlimann, T. Zabel, L. H. Frandsen, G. Abstreiter, and J. J. Finley, “Silicon photonic crystal nanostructures for refractive index sensing,” Appl. Phys. Lett. 93, 181103 (2008).
[Crossref]

Ilker, E.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15, 621–627 (2016).
[Crossref]

Joannopoulos, J. D.

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mater. 1, 16048 (2016).
[Crossref]

B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljacic, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. USA 110, 13711–13716 (2013).
[Crossref]

Joannopoulos, R. D. M. J.

R. D. M. J. Joannopoulos, S. G. Johnson, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University Press, 2008).

Johnson, S. G.

B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljacic, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. USA 110, 13711–13716 (2013).
[Crossref]

R. D. M. J. Joannopoulos, S. G. Johnson, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University Press, 2008).

Kabashin, A.

A. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. Wurtz, R. Atkinson, R. Pollard, V. Podolskiy, and A. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[Crossref]

Kamp, M.

T. Sünner, T. Stichel, S.-H. Kwon, T. W. Schlereth, S. Höfling, M. Kamp, and A. Forchel, “Photonic crystal cavity-based gas sensor,” Appl. Phys. Lett. 92, 261112 (2008).
[Crossref]

S.-H. Kwon, T. Sunner, M. Kamp, and A. Forchel, “Optimization of photonic crystal cavity for chemical sensing,” Opt. Express 16, 11709–11717 (2008).
[Crossref]

Kanté, B.

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541, 196–199 (2017).
[Crossref]

Kelp, G.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref]

Kivshar, Y. S.

M. I. Molina, A. E. Miroshnichenko, and Y. S. Kivshar, “Surface bound states in the continuum,” Phys. Rev. Lett. 108, 070401 (2012).
[Crossref]

Kodigala, A.

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541, 196–199 (2017).
[Crossref]

Kolkman, H.

R. P. Kooyman, H. Kolkman, J. Van Gent, and J. Greve, “Surface plasmon resonance immunosensors: sensitivity considerations,” Anal. Chim. Acta 213, 35–45 (1988).
[Crossref]

Kooyman, R. P.

R. P. Kooyman, H. Kolkman, J. Van Gent, and J. Greve, “Surface plasmon resonance immunosensors: sensitivity considerations,” Anal. Chim. Acta 213, 35–45 (1988).
[Crossref]

Krauss, T. F.

A. Di Falco, L. O’Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94, 063503 (2009).
[Crossref]

Kravchenko, I. I.

S. Hu, Y. Zhao, K. Qin, S. T. Retterer, I. I. Kravchenko, and S. M. Weiss, “Enhancing the sensitivity of label-free silicon photonic biosensors through increased probe molecule density,” ACS Photon. 1, 590–597 (2014).
[Crossref]

Kubota, L. T.

F. S. Damos, R. C. Luz, and L. T. Kubota, “Determination of thickness, dielectric constant of thiol films, and kinetics of adsorption using surface plasmon resonance,” Langmuir 21, 602–609 (2005).
[Crossref]

Kwon, S.-H.

S.-H. Kwon, T. Sunner, M. Kamp, and A. Forchel, “Optimization of photonic crystal cavity for chemical sensing,” Opt. Express 16, 11709–11717 (2008).
[Crossref]

T. Sünner, T. Stichel, S.-H. Kwon, T. W. Schlereth, S. Höfling, M. Kamp, and A. Forchel, “Photonic crystal cavity-based gas sensor,” Appl. Phys. Lett. 92, 261112 (2008).
[Crossref]

Kwong, D. N.

Y. Zou, S. Chakravarty, D. N. Kwong, W.-C. Lai, X. Xu, X. Lin, A. Hosseini, and R. T. Chen, “Cavity-waveguide coupling engineered high sensitivity silicon photonic crystal microcavity biosensors with high yield,” IEEE J. Sel. Top. Quantum Electron. 20, 6900710 (2014).
[Crossref]

Y. Zou, S. Chakravarty, D. N. Kwong, W. C. Lai, X. Xu, X. Lin, A. Hosseini, and R. T. Chen, “Cavity-waveguide coupling engineered high sensitivity silicon photonic crystal microcavity biosensors with high yield,” IEEE J. Sel. Top. Quantum Electron. 20, 171–180 (2014).
[Crossref]

Lai, W. C.

Y. Zou, S. Chakravarty, D. N. Kwong, W. C. Lai, X. Xu, X. Lin, A. Hosseini, and R. T. Chen, “Cavity-waveguide coupling engineered high sensitivity silicon photonic crystal microcavity biosensors with high yield,” IEEE J. Sel. Top. Quantum Electron. 20, 171–180 (2014).
[Crossref]

Lai, W.-C.

Y. Zou, S. Chakravarty, D. N. Kwong, W.-C. Lai, X. Xu, X. Lin, A. Hosseini, and R. T. Chen, “Cavity-waveguide coupling engineered high sensitivity silicon photonic crystal microcavity biosensors with high yield,” IEEE J. Sel. Top. Quantum Electron. 20, 6900710 (2014).
[Crossref]

Lamberti, A.

S. Romano, A. Lamberti, M. Masullo, E. Penzo, S. Cabrini, I. Rendina, and V. Mocella, “Optical biosensors based on photonic crystals supporting bound states in the continuum,” Materials 11, 526 (2018).
[Crossref]

Lambrecht, A.

D. Pergande, T. M. Geppert, A. Von Rhein, S. L. Schweizer, R. B. Wehrspohn, S. Moretton, and A. Lambrecht, “Miniature infrared gas sensors using photonic crystals,” J. Appl. Phys. 109, 083117 (2011).
[Crossref]

Lee, J.

B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljacic, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. USA 110, 13711–13716 (2013).
[Crossref]

Lepetit, T.

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541, 196–199 (2017).
[Crossref]

Liang, E.

Liang, X.

B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljacic, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. USA 110, 13711–13716 (2013).
[Crossref]

Liao, J. H. H.

J. H. H. Liao and C. L. Nehl, “Biomedical applications of plasmon resonant metal nanoparticles,” Nanomedicine 1, 201–208 (2006).
[Crossref]

Lin, X.

Y. Zou, S. Chakravarty, D. N. Kwong, W. C. Lai, X. Xu, X. Lin, A. Hosseini, and R. T. Chen, “Cavity-waveguide coupling engineered high sensitivity silicon photonic crystal microcavity biosensors with high yield,” IEEE J. Sel. Top. Quantum Electron. 20, 171–180 (2014).
[Crossref]

Y. Zou, S. Chakravarty, D. N. Kwong, W.-C. Lai, X. Xu, X. Lin, A. Hosseini, and R. T. Chen, “Cavity-waveguide coupling engineered high sensitivity silicon photonic crystal microcavity biosensors with high yield,” IEEE J. Sel. Top. Quantum Electron. 20, 6900710 (2014).
[Crossref]

Linnert, T.

T. Linnert, P. Mulvaney, and A. Henglein, “Surface chemistry of colloidal silver: surface plasmon damping by chemisorbed iodide, hydrosulfide (SH-), and phenylthiolate,” J. Phys. Chem. 97, 679–682 (1993).
[Crossref]

Luz, R. C.

F. S. Damos, R. C. Luz, and L. T. Kubota, “Determination of thickness, dielectric constant of thiol films, and kinetics of adsorption using surface plasmon resonance,” Langmuir 21, 602–609 (2005).
[Crossref]

Lv, R.-Q.

Y.-N. Zhang, Y. Zhao, and R.-Q. Lv, “A review for optical sensors based on photonic crystal cavities,” Sens. Actuators A 233, 374–389 (2015).
[Crossref]

Lyandres, O.

J. Anker, W. Paige Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Marinica, D.

D. Marinica, A. Borisov, and S. Shabanov, “Bound states in the continuum in photonics,” Phys. Rev. Lett. 100, 183902 (2008).
[Crossref]

Masullo, M.

S. Romano, A. Lamberti, M. Masullo, E. Penzo, S. Cabrini, I. Rendina, and V. Mocella, “Optical biosensors based on photonic crystals supporting bound states in the continuum,” Materials 11, 526 (2018).
[Crossref]

Mirkarimi, L. W.

Miroshnichenko, A. E.

M. I. Molina, A. E. Miroshnichenko, and Y. S. Kivshar, “Surface bound states in the continuum,” Phys. Rev. Lett. 108, 070401 (2012).
[Crossref]

Mocella, V.

S. Romano, A. Lamberti, M. Masullo, E. Penzo, S. Cabrini, I. Rendina, and V. Mocella, “Optical biosensors based on photonic crystals supporting bound states in the continuum,” Materials 11, 526 (2018).
[Crossref]

V. Mocella and S. Romano, “Giant field enhancement in photonic resonant lattices,” Phys. Rev. B 92, 155117 (2015).
[Crossref]

S. Romano, S. Cabrini, I. Rendina, and V. Mocella, “Guided resonance in negative index photonic crystals: a new approach,” Light: Sci. Appl. 3, e120 (2014).
[Crossref]

S. Romano, A. C. De Luca, E. De Tommasi, S. Cabrini, I. Rendina, and V. Mocella, “Observation of resonant states in negative refractive photonic crystals,” J. Eur. Opt. Soc. 9, 14006 (2014).
[Crossref]

E. De Tommasi, A. Chiara De Luca, S. Cabrini, I. Rendina, S. Romano, and V. Mocella, “Plasmon-like surface states in negative refractive index photonic crystals,” Appl. Phys. Lett. 102, 081113 (2013).
[Crossref]

Molina, M. I.

M. I. Molina, A. E. Miroshnichenko, and Y. S. Kivshar, “Surface bound states in the continuum,” Phys. Rev. Lett. 108, 070401 (2012).
[Crossref]

Moretton, S.

D. Pergande, T. M. Geppert, A. Von Rhein, S. L. Schweizer, R. B. Wehrspohn, S. Moretton, and A. Lambrecht, “Miniature infrared gas sensors using photonic crystals,” J. Appl. Phys. 109, 083117 (2011).
[Crossref]

Mulvaney, P.

T. Linnert, P. Mulvaney, and A. Henglein, “Surface chemistry of colloidal silver: surface plasmon damping by chemisorbed iodide, hydrosulfide (SH-), and phenylthiolate,” J. Phys. Chem. 97, 679–682 (1993).
[Crossref]

Nehl, C. L.

J. H. H. Liao and C. L. Nehl, “Biomedical applications of plasmon resonant metal nanoparticles,” Nanomedicine 1, 201–208 (2006).
[Crossref]

Noda, S.

H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities,” Phys. Rev. B 79, 085112 (2009).
[Crossref]

Nolte, S.

Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental observation of optical bound states in the continuum,” Phys. Rev. Lett. 107, 183901 (2011).
[Crossref]

O’Faolain, L.

A. Di Falco, L. O’Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94, 063503 (2009).
[Crossref]

Paige Hall, W.

J. Anker, W. Paige Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Pastkovsky, S.

A. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. Wurtz, R. Atkinson, R. Pollard, V. Podolskiy, and A. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[Crossref]

Peleg, O.

Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental observation of optical bound states in the continuum,” Phys. Rev. Lett. 107, 183901 (2011).
[Crossref]

Penzo, E.

S. Romano, A. Lamberti, M. Masullo, E. Penzo, S. Cabrini, I. Rendina, and V. Mocella, “Optical biosensors based on photonic crystals supporting bound states in the continuum,” Materials 11, 526 (2018).
[Crossref]

Pergande, D.

D. Pergande, T. M. Geppert, A. Von Rhein, S. L. Schweizer, R. B. Wehrspohn, S. Moretton, and A. Lambrecht, “Miniature infrared gas sensors using photonic crystals,” J. Appl. Phys. 109, 083117 (2011).
[Crossref]

Plotnik, Y.

Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental observation of optical bound states in the continuum,” Phys. Rev. Lett. 107, 183901 (2011).
[Crossref]

Podolskiy, V.

A. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. Wurtz, R. Atkinson, R. Pollard, V. Podolskiy, and A. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[Crossref]

Pollard, R.

A. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. Wurtz, R. Atkinson, R. Pollard, V. Podolskiy, and A. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[Crossref]

Porter, R.

R. Porter and D. V. Evans, “Embedded Rayleigh-Bloch surface waves along periodic rectangular arrays,” Wave Motion 43, 29–50 (2005).
[Crossref]

Pottage, J.

Qin, K.

S. Hu, Y. Zhao, K. Qin, S. T. Retterer, I. I. Kravchenko, and S. M. Weiss, “Enhancing the sensitivity of label-free silicon photonic biosensors through increased probe molecule density,” ACS Photon. 1, 590–597 (2014).
[Crossref]

Rendina, I.

S. Romano, A. Lamberti, M. Masullo, E. Penzo, S. Cabrini, I. Rendina, and V. Mocella, “Optical biosensors based on photonic crystals supporting bound states in the continuum,” Materials 11, 526 (2018).
[Crossref]

S. Romano, S. Cabrini, I. Rendina, and V. Mocella, “Guided resonance in negative index photonic crystals: a new approach,” Light: Sci. Appl. 3, e120 (2014).
[Crossref]

S. Romano, A. C. De Luca, E. De Tommasi, S. Cabrini, I. Rendina, and V. Mocella, “Observation of resonant states in negative refractive photonic crystals,” J. Eur. Opt. Soc. 9, 14006 (2014).
[Crossref]

E. De Tommasi, A. Chiara De Luca, S. Cabrini, I. Rendina, S. Romano, and V. Mocella, “Plasmon-like surface states in negative refractive index photonic crystals,” Appl. Phys. Lett. 102, 081113 (2013).
[Crossref]

Retterer, S. T.

S. Hu, Y. Zhao, K. Qin, S. T. Retterer, I. I. Kravchenko, and S. M. Weiss, “Enhancing the sensitivity of label-free silicon photonic biosensors through increased probe molecule density,” ACS Photon. 1, 590–597 (2014).
[Crossref]

Roberts, C. J.

R. J. Green, R. A. Frazier, K. M. Shakesheff, M. C. Davies, C. J. Roberts, and S. J. B. Tendler, “Surface plasmon resonance analysis of dynamic biological interactions with biomaterials,” Biomaterials 21, 1823–1835 (2000).
[Crossref]

Rodriguez, A. W.

B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljacic, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. USA 110, 13711–13716 (2013).
[Crossref]

Romano, S.

S. Romano, A. Lamberti, M. Masullo, E. Penzo, S. Cabrini, I. Rendina, and V. Mocella, “Optical biosensors based on photonic crystals supporting bound states in the continuum,” Materials 11, 526 (2018).
[Crossref]

V. Mocella and S. Romano, “Giant field enhancement in photonic resonant lattices,” Phys. Rev. B 92, 155117 (2015).
[Crossref]

S. Romano, S. Cabrini, I. Rendina, and V. Mocella, “Guided resonance in negative index photonic crystals: a new approach,” Light: Sci. Appl. 3, e120 (2014).
[Crossref]

S. Romano, A. C. De Luca, E. De Tommasi, S. Cabrini, I. Rendina, and V. Mocella, “Observation of resonant states in negative refractive photonic crystals,” J. Eur. Opt. Soc. 9, 14006 (2014).
[Crossref]

E. De Tommasi, A. Chiara De Luca, S. Cabrini, I. Rendina, S. Romano, and V. Mocella, “Plasmon-like surface states in negative refractive index photonic crystals,” Appl. Phys. Lett. 102, 081113 (2013).
[Crossref]

Rusciano, G.

G. Zito, G. Rusciano, and A. Sasso, “Enhancement factor statistics of surface enhanced raman scattering in multiscale heterostructures of nanoparticles,” J. Chem. Phys. 145, 054708 (2016).
[Crossref]

G. Zito, G. Rusciano, and A. Sasso, “Dark spots along slowly scaling chains of plasmonic nanoparticles,” Opt. Express 24, 13584–13589 (2016).
[Crossref]

Russell, P. S. J.

Sadreev, A. F.

E. N. Bulgakov and A. F. Sadreev, “Bound states in the continuum in photonic waveguides inspired by defects,” Phys. Rev. B 78, 075105 (2008).
[Crossref]

Sasso, A.

G. Zito, G. Rusciano, and A. Sasso, “Enhancement factor statistics of surface enhanced raman scattering in multiscale heterostructures of nanoparticles,” J. Chem. Phys. 145, 054708 (2016).
[Crossref]

G. Zito, G. Rusciano, and A. Sasso, “Dark spots along slowly scaling chains of plasmonic nanoparticles,” Opt. Express 24, 13584–13589 (2016).
[Crossref]

Schlereth, T. W.

T. Sünner, T. Stichel, S.-H. Kwon, T. W. Schlereth, S. Höfling, M. Kamp, and A. Forchel, “Photonic crystal cavity-based gas sensor,” Appl. Phys. Lett. 92, 261112 (2008).
[Crossref]

Schweizer, S. L.

D. Pergande, T. M. Geppert, A. Von Rhein, S. L. Schweizer, R. B. Wehrspohn, S. Moretton, and A. Lambrecht, “Miniature infrared gas sensors using photonic crystals,” J. Appl. Phys. 109, 083117 (2011).
[Crossref]

Segev, M.

Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental observation of optical bound states in the continuum,” Phys. Rev. Lett. 107, 183901 (2011).
[Crossref]

Shabanov, S.

D. Marinica, A. Borisov, and S. Shabanov, “Bound states in the continuum in photonics,” Phys. Rev. Lett. 100, 183902 (2008).
[Crossref]

Shah, N. C.

J. Anker, W. Paige Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Shakesheff, K. M.

R. J. Green, R. A. Frazier, K. M. Shakesheff, M. C. Davies, C. J. Roberts, and S. J. B. Tendler, “Surface plasmon resonance analysis of dynamic biological interactions with biomaterials,” Biomaterials 21, 1823–1835 (2000).
[Crossref]

Shapira, O.

B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljacic, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. USA 110, 13711–13716 (2013).
[Crossref]

Shopova, S. I.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[Crossref]

Shvets, G.

C. Wu, N. Arju, J. Fan, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared fano resonances,” Nat. Commun. 5, 3892 (2016).
[Crossref]

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref]

Sigalas, M.

Silvestre, E.

Singh, R.

Soljacic, M.

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mater. 1, 16048 (2016).
[Crossref]

B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljacic, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. USA 110, 13711–13716 (2013).
[Crossref]

Sreekanth, K. V.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15, 621–627 (2016).
[Crossref]

Stichel, T.

T. Sünner, T. Stichel, S.-H. Kwon, T. W. Schlereth, S. Höfling, M. Kamp, and A. Forchel, “Photonic crystal cavity-based gas sensor,” Appl. Phys. Lett. 92, 261112 (2008).
[Crossref]

Stillinger, F. H.

F. H. Stillinger and D. R. Herrick, “Bound states in the continuum,” Phys. Rev. A 11, 446–454 (1975).
[Crossref]

Stone, A. D.

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mater. 1, 16048 (2016).
[Crossref]

Strangi, G.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15, 621–627 (2016).
[Crossref]

Sun, Y.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[Crossref]

Sunner, T.

Sünner, T.

T. Sünner, T. Stichel, S.-H. Kwon, T. W. Schlereth, S. Höfling, M. Kamp, and A. Forchel, “Photonic crystal cavity-based gas sensor,” Appl. Phys. Lett. 92, 261112 (2008).
[Crossref]

Suter, J. D.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[Crossref]

Szameit, A.

Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental observation of optical bound states in the continuum,” Phys. Rev. Lett. 107, 183901 (2011).
[Crossref]

Takahashi, Y.

H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities,” Phys. Rev. B 79, 085112 (2009).
[Crossref]

Tanaka, Y.

H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities,” Phys. Rev. B 79, 085112 (2009).
[Crossref]

Taylor, A. J.

Tegenfeldt, J. O.

A. B. Dahlin, J. O. Tegenfeldt, and F. Höök, “Improving the instrumental resolution of sensors based on localized surface plasmon resonance,” Anal. Chem. 78, 4416–4423 (2006).
[Crossref]

Tendler, S. J. B.

R. J. Green, R. A. Frazier, K. M. Shakesheff, M. C. Davies, C. J. Roberts, and S. J. B. Tendler, “Surface plasmon resonance analysis of dynamic biological interactions with biomaterials,” Biomaterials 21, 1823–1835 (2000).
[Crossref]

Tutuc, E.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref]

Van Duyne, R. P.

J. Anker, W. Paige Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Van Gent, J.

R. P. Kooyman, H. Kolkman, J. Van Gent, and J. Greve, “Surface plasmon resonance immunosensors: sensitivity considerations,” Anal. Chim. Acta 213, 35–45 (1988).
[Crossref]

von Neumann, J.

J. von Neumann and E. P. Wigner, “Über merkwürdige diskrete Eigenwerte,” Phys. Z. 30, 465–467 (1929).

Von Rhein, A.

D. Pergande, T. M. Geppert, A. Von Rhein, S. L. Schweizer, R. B. Wehrspohn, S. Moretton, and A. Lambrecht, “Miniature infrared gas sensors using photonic crystals,” J. Appl. Phys. 109, 083117 (2011).
[Crossref]

Wang, J.

Wehrspohn, R. B.

D. Pergande, T. M. Geppert, A. Von Rhein, S. L. Schweizer, R. B. Wehrspohn, S. Moretton, and A. Lambrecht, “Miniature infrared gas sensors using photonic crystals,” J. Appl. Phys. 109, 083117 (2011).
[Crossref]

Weiss, S. M.

S. Hu, Y. Zhao, K. Qin, S. T. Retterer, I. I. Kravchenko, and S. M. Weiss, “Enhancing the sensitivity of label-free silicon photonic biosensors through increased probe molecule density,” ACS Photon. 1, 590–597 (2014).
[Crossref]

White, I. M.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[Crossref]

Whitesides, G. M.

Y. Xia and G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28, 153–184 (1998).
[Crossref]

Wigner, E. P.

J. von Neumann and E. P. Wigner, “Über merkwürdige diskrete Eigenwerte,” Phys. Z. 30, 465–467 (1929).

Winn, J. N.

R. D. M. J. Joannopoulos, S. G. Johnson, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University Press, 2008).

Wu, C.

C. Wu, N. Arju, J. Fan, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared fano resonances,” Nat. Commun. 5, 3892 (2016).
[Crossref]

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref]

Wurtz, G.

A. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. Wurtz, R. Atkinson, R. Pollard, V. Podolskiy, and A. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[Crossref]

Xia, Y.

Y. Xia and G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28, 153–184 (1998).
[Crossref]

Xu, X.

Y. Zou, S. Chakravarty, D. N. Kwong, W.-C. Lai, X. Xu, X. Lin, A. Hosseini, and R. T. Chen, “Cavity-waveguide coupling engineered high sensitivity silicon photonic crystal microcavity biosensors with high yield,” IEEE J. Sel. Top. Quantum Electron. 20, 6900710 (2014).
[Crossref]

Y. Zou, S. Chakravarty, D. N. Kwong, W. C. Lai, X. Xu, X. Lin, A. Hosseini, and R. T. Chen, “Cavity-waveguide coupling engineered high sensitivity silicon photonic crystal microcavity biosensors with high yield,” IEEE J. Sel. Top. Quantum Electron. 20, 171–180 (2014).
[Crossref]

Xue, Q.

Yeatman, E. M.

E. M. Yeatman, “Resolution and sensitivity in surface plasmon microscopy and sensing,” Biosens. Bioelectron. 11, 635–649 (1996).
[Crossref]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
[Crossref]

Yuan, B.

Zabel, T.

D. F. Dorfner, T. Hürlimann, T. Zabel, L. H. Frandsen, G. Abstreiter, and J. J. Finley, “Silicon photonic crystal nanostructures for refractive index sensing,” Appl. Phys. Lett. 93, 181103 (2008).
[Crossref]

Zayats, A.

A. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. Wurtz, R. Atkinson, R. Pollard, V. Podolskiy, and A. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[Crossref]

Zhang, W.

Zhang, Y.-N.

Y.-N. Zhang, Y. Zhao, and R.-Q. Lv, “A review for optical sensors based on photonic crystal cavities,” Sens. Actuators A 233, 374–389 (2015).
[Crossref]

Zhao, J.

J. Anker, W. Paige Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Zhao, Y.

Y.-N. Zhang, Y. Zhao, and R.-Q. Lv, “A review for optical sensors based on photonic crystal cavities,” Sens. Actuators A 233, 374–389 (2015).
[Crossref]

S. Hu, Y. Zhao, K. Qin, S. T. Retterer, I. I. Kravchenko, and S. M. Weiss, “Enhancing the sensitivity of label-free silicon photonic biosensors through increased probe molecule density,” ACS Photon. 1, 590–597 (2014).
[Crossref]

Zhen, B.

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mater. 1, 16048 (2016).
[Crossref]

B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljacic, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. USA 110, 13711–13716 (2013).
[Crossref]

Zhu, H.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[Crossref]

Zito, G.

G. Zito, G. Rusciano, and A. Sasso, “Enhancement factor statistics of surface enhanced raman scattering in multiscale heterostructures of nanoparticles,” J. Chem. Phys. 145, 054708 (2016).
[Crossref]

G. Zito, G. Rusciano, and A. Sasso, “Dark spots along slowly scaling chains of plasmonic nanoparticles,” Opt. Express 24, 13584–13589 (2016).
[Crossref]

Zou, Y.

Y. Zou, S. Chakravarty, D. N. Kwong, W.-C. Lai, X. Xu, X. Lin, A. Hosseini, and R. T. Chen, “Cavity-waveguide coupling engineered high sensitivity silicon photonic crystal microcavity biosensors with high yield,” IEEE J. Sel. Top. Quantum Electron. 20, 6900710 (2014).
[Crossref]

Y. Zou, S. Chakravarty, D. N. Kwong, W. C. Lai, X. Xu, X. Lin, A. Hosseini, and R. T. Chen, “Cavity-waveguide coupling engineered high sensitivity silicon photonic crystal microcavity biosensors with high yield,” IEEE J. Sel. Top. Quantum Electron. 20, 171–180 (2014).
[Crossref]

ACS Photon. (1)

S. Hu, Y. Zhao, K. Qin, S. T. Retterer, I. I. Kravchenko, and S. M. Weiss, “Enhancing the sensitivity of label-free silicon photonic biosensors through increased probe molecule density,” ACS Photon. 1, 590–597 (2014).
[Crossref]

Anal. Chem. (1)

A. B. Dahlin, J. O. Tegenfeldt, and F. Höök, “Improving the instrumental resolution of sensors based on localized surface plasmon resonance,” Anal. Chem. 78, 4416–4423 (2006).
[Crossref]

Anal. Chim. Acta (2)

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[Crossref]

R. P. Kooyman, H. Kolkman, J. Van Gent, and J. Greve, “Surface plasmon resonance immunosensors: sensitivity considerations,” Anal. Chim. Acta 213, 35–45 (1988).
[Crossref]

Annu. Rev. Mater. Sci. (1)

Y. Xia and G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28, 153–184 (1998).
[Crossref]

Appl. Phys. Lett. (4)

E. De Tommasi, A. Chiara De Luca, S. Cabrini, I. Rendina, S. Romano, and V. Mocella, “Plasmon-like surface states in negative refractive index photonic crystals,” Appl. Phys. Lett. 102, 081113 (2013).
[Crossref]

D. F. Dorfner, T. Hürlimann, T. Zabel, L. H. Frandsen, G. Abstreiter, and J. J. Finley, “Silicon photonic crystal nanostructures for refractive index sensing,” Appl. Phys. Lett. 93, 181103 (2008).
[Crossref]

T. Sünner, T. Stichel, S.-H. Kwon, T. W. Schlereth, S. Höfling, M. Kamp, and A. Forchel, “Photonic crystal cavity-based gas sensor,” Appl. Phys. Lett. 92, 261112 (2008).
[Crossref]

A. Di Falco, L. O’Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94, 063503 (2009).
[Crossref]

Biomaterials (1)

R. J. Green, R. A. Frazier, K. M. Shakesheff, M. C. Davies, C. J. Roberts, and S. J. B. Tendler, “Surface plasmon resonance analysis of dynamic biological interactions with biomaterials,” Biomaterials 21, 1823–1835 (2000).
[Crossref]

Biosens. Bioelectron. (1)

E. M. Yeatman, “Resolution and sensitivity in surface plasmon microscopy and sensing,” Biosens. Bioelectron. 11, 635–649 (1996).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

Y. Zou, S. Chakravarty, D. N. Kwong, W. C. Lai, X. Xu, X. Lin, A. Hosseini, and R. T. Chen, “Cavity-waveguide coupling engineered high sensitivity silicon photonic crystal microcavity biosensors with high yield,” IEEE J. Sel. Top. Quantum Electron. 20, 171–180 (2014).
[Crossref]

Y. Zou, S. Chakravarty, D. N. Kwong, W.-C. Lai, X. Xu, X. Lin, A. Hosseini, and R. T. Chen, “Cavity-waveguide coupling engineered high sensitivity silicon photonic crystal microcavity biosensors with high yield,” IEEE J. Sel. Top. Quantum Electron. 20, 6900710 (2014).
[Crossref]

J. Appl. Phys. (1)

D. Pergande, T. M. Geppert, A. Von Rhein, S. L. Schweizer, R. B. Wehrspohn, S. Moretton, and A. Lambrecht, “Miniature infrared gas sensors using photonic crystals,” J. Appl. Phys. 109, 083117 (2011).
[Crossref]

J. Chem. Phys. (1)

G. Zito, G. Rusciano, and A. Sasso, “Enhancement factor statistics of surface enhanced raman scattering in multiscale heterostructures of nanoparticles,” J. Chem. Phys. 145, 054708 (2016).
[Crossref]

J. Eur. Opt. Soc. (1)

S. Romano, A. C. De Luca, E. De Tommasi, S. Cabrini, I. Rendina, and V. Mocella, “Observation of resonant states in negative refractive photonic crystals,” J. Eur. Opt. Soc. 9, 14006 (2014).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. (1)

T. Linnert, P. Mulvaney, and A. Henglein, “Surface chemistry of colloidal silver: surface plasmon damping by chemisorbed iodide, hydrosulfide (SH-), and phenylthiolate,” J. Phys. Chem. 97, 679–682 (1993).
[Crossref]

Langmuir (1)

F. S. Damos, R. C. Luz, and L. T. Kubota, “Determination of thickness, dielectric constant of thiol films, and kinetics of adsorption using surface plasmon resonance,” Langmuir 21, 602–609 (2005).
[Crossref]

Light: Sci. Appl. (1)

S. Romano, S. Cabrini, I. Rendina, and V. Mocella, “Guided resonance in negative index photonic crystals: a new approach,” Light: Sci. Appl. 3, e120 (2014).
[Crossref]

Materials (1)

S. Romano, A. Lamberti, M. Masullo, E. Penzo, S. Cabrini, I. Rendina, and V. Mocella, “Optical biosensors based on photonic crystals supporting bound states in the continuum,” Materials 11, 526 (2018).
[Crossref]

Nanomedicine (1)

J. H. H. Liao and C. L. Nehl, “Biomedical applications of plasmon resonant metal nanoparticles,” Nanomedicine 1, 201–208 (2006).
[Crossref]

Nat. Commun. (2)

C. Wu, N. Arju, J. Fan, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared fano resonances,” Nat. Commun. 5, 3892 (2016).
[Crossref]

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref]

Nat. Mater. (3)

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15, 621–627 (2016).
[Crossref]

J. Anker, W. Paige Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

A. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. Wurtz, R. Atkinson, R. Pollard, V. Podolskiy, and A. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[Crossref]

Nat. Rev. Mater. (1)

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mater. 1, 16048 (2016).
[Crossref]

Nature (1)

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541, 196–199 (2017).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. A (1)

F. H. Stillinger and D. R. Herrick, “Bound states in the continuum,” Phys. Rev. A 11, 446–454 (1975).
[Crossref]

Phys. Rev. B (3)

V. Mocella and S. Romano, “Giant field enhancement in photonic resonant lattices,” Phys. Rev. B 92, 155117 (2015).
[Crossref]

E. N. Bulgakov and A. F. Sadreev, “Bound states in the continuum in photonic waveguides inspired by defects,” Phys. Rev. B 78, 075105 (2008).
[Crossref]

H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities,” Phys. Rev. B 79, 085112 (2009).
[Crossref]

Phys. Rev. Lett. (3)

Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental observation of optical bound states in the continuum,” Phys. Rev. Lett. 107, 183901 (2011).
[Crossref]

D. Marinica, A. Borisov, and S. Shabanov, “Bound states in the continuum in photonics,” Phys. Rev. Lett. 100, 183902 (2008).
[Crossref]

M. I. Molina, A. E. Miroshnichenko, and Y. S. Kivshar, “Surface bound states in the continuum,” Phys. Rev. Lett. 108, 070401 (2012).
[Crossref]

Phys. Z. (1)

J. von Neumann and E. P. Wigner, “Über merkwürdige diskrete Eigenwerte,” Phys. Z. 30, 465–467 (1929).

Proc. Natl. Acad. Sci. USA (1)

B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljacic, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. USA 110, 13711–13716 (2013).
[Crossref]

Sens. Actuators A (1)

Y.-N. Zhang, Y. Zhao, and R.-Q. Lv, “A review for optical sensors based on photonic crystal cavities,” Sens. Actuators A 233, 374–389 (2015).
[Crossref]

Sens. Actuators B (2)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
[Crossref]

J. Homola, “On the sensitivity of surface plasmon resonance sensors with spectral interrogation,” Sens. Actuators B 41, 207–211 (1997).
[Crossref]

Wave Motion (1)

R. Porter and D. V. Evans, “Embedded Rayleigh-Bloch surface waves along periodic rectangular arrays,” Wave Motion 43, 29–50 (2005).
[Crossref]

Other (1)

R. D. M. J. Joannopoulos, S. G. Johnson, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University Press, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Calculated electric field in resonance condition at the BIC mode at the Γ-point of the Brillouin zone; top view of four unit cells with lattice constant a. (b) BIC amplitude over the PhCM with superimposed arrow maps of the electric field; as clearly visible, the electric field forms a lattice of vortices and antivortices that cannot couple to radiating waves, revealing the bound-in-the-continuum character of the calculated mode. (c) Intensity profile of the electric field (side view of one unit cell) showing that the BIC wave is mostly confined at the interface Si3N4/SiO2, but the electromagnetic field enhancement at Si3N4/air interface is expected to be large enough to provide strong light–matter interaction. Intensity enhancement of the simulation diverges in agreement with an ideal diverging Q-factor of an infinite structure.
Fig. 2.
Fig. 2. (a) Scanning electron microscopy image of the PhCM sample. The design consists of air cylindrical holes arranged in a square lattice (a=521  nm, r=130  nm, h=78  nm). (b) Sketch of the device: a PDMS microfluidic chamber was bonded to the PhCM. The inlet and outlet allow the controlled injection of the fluid.
Fig. 3.
Fig. 3. (a) Sketch of the experimental setup. SC source, supercontinuum source; P1, Glan–Thompson polarizer; R, automatic rotational stage; PhC, photonic crystal sample; P2, Glan–Thompson polarizer; S, spectrometer. (b) Experimental reconstructed band collected for p-polarized incident beam.
Fig. 4.
Fig. 4. (a) BIC resonance excited in the PhC metasurfaces without the micro-chamber by a normally incident incoming beam. By fitting the measured spectrum (blue dots) with a Lorentzian line shape (purple curve), a linewidth and a quality factor as large as c/γ=0.4  nm and Q2×103, respectively, were determined. (b) Two measured transmitted spectra collected from the sensor device corresponding to different RI. (c) Reconstructed sensitivity curve; the linear fit (red curve) to the experimental data (blue dots) revealed a bulk sensitivity S=178  nm/RIU (R-square 0.99). Error bars refer to spectrometer resolution, whereas the statistical error on spectral peak position is within the size of the symbols. (d) Sensitivity curves corresponding to θ=5° (red dots), θ=0° (black squares), and θ=5° (blue triangles). The sensitivities determined by linearly fitting the data were found close to each other.
Fig. 5.
Fig. 5. Reconstructed sensitivity curve in the visible range; the measurements demonstrated the scalability of the device, which reveals a bulk sensitivity S=185  nm/RIU (R-square 0.96).
Fig. 6.
Fig. 6. Cross-polarized transmission spectrum of the PhCM-based sensor prior (black curve) and post-functionalization with the self-assembling monolayer of BPT (red curve). When the BPT monolayer is assembled, a redshift at resonance wavelengths 1 and 2 occurred. A sensitivity of 6 nm of shift after the BPT monolayer formation was measured.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I=|aωω0+iγ|2.
I=|a1+a2ωω0+iγ|2,

Metrics