Abstract

A 850 nm single-mode vertical cavity surface emitting laser (VCSEL)-based data transmission is demonstrated, enabling four-level pulse amplitude modulation (PAM-4) at 64  Gbit/s over 100–300 m in an OM4 multi-mode fiber (MMF). By optimizing the bias of the single-mode VCSEL with a differential resistance of 159 Ω, the related electrical return loss of 5.7  dB is determined to provide an analog modulation bandwidth of 18.9 GHz. After pre-emphasizing the waveform of the PAM-4 format, the PAM-4 data stream can be successfully delivered by the single-mode VCSEL at 64  Gbit/s under back-to-back and 100 m long OM4 MMF conditions. Lengthening the transmission distance worsens the signal-to-noise ratio (SNR) of PAM-4 data to the FEC criterion, as the waveform pre-emphasis of the PAM-4 data stream inevitably induces spectral power compensation from low to high frequencies. Therefore, increasing the OM4 MMF distance from 200 to 300 m significantly reduces the peak-to-peak amplitude of data to suppress the SNR and reduce the transmission capacity from 52 to 48  Gbit/s.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Few-mode VCSEL chip for 100-Gb/s transmission over 100  m multimode fiber

Hsuan-Yun Kao, Yu-Chieh Chi, Cheng-Ting Tsai, Shan-Fong Leong, Chun-Yen Peng, Huai-Yung Wang, Jian Jang Huang, Jau-Ji Jou, Tien-Tsorng Shih, Hao-Chung Kuo, Wood-Hi Cheng, Chao-Hsin Wu, and Gong-Ru Lin
Photon. Res. 5(5) 507-515 (2017)

Four 45 Gbps PAM4 VCSEL based transmission through 300 m wideband OM4 fiber over SWDM4 wavelength grid

Reza Motaghiannezam, Ilya Lyubomirsky, Henry Daghighian, Chris Kocot, Timo Gray, Jim Tatum, Adrian Amezcua-Correa, M. Bigot-Astruc, D. Molin, F. Achten, and P. Sillard
Opt. Express 24(15) 17193-17199 (2016)

Comparison of single-/few-/multi-mode 850 nm VCSELs for optical OFDM transmission

Hsuan-Yun Kao, Cheng-Ting Tsai, Shan-Fong Leong, Chun-Yen Peng, Yu-Chieh Chi, Jian Jang Huang, Hao-Chung Kuo, Tien-Tsorng Shih, Jau-Ji Jou, Wood-Hi Cheng, Chao-Hsin Wu, and Gong-Ru Lin
Opt. Express 25(14) 16347-16363 (2017)

References

  • View by:
  • |
  • |
  • |

  1. P. Westbergh, E. P. Haglund, E. Haglund, R. Safaisini, J. S. Gustavsson, and A. Larsson, “High-speed 850  nm VCSELs operating error free up to 57  Gbit/s,” Electron. Lett. 49, 1021–1023 (2013).
    [Crossref]
  2. D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photon. Technol. Lett. 27, 577–580 (2015).
    [Crossref]
  3. P. Westbergh, J. S. Gustavsson, B. Kögel, A. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40 Gbit/s error-free operation of oxide-confined 850  nm VCSEL,” Electron. Lett. 46, 1014–1016 (2010).
    [Crossref]
  4. S. A. Bolkhin, J. A. Lott, A. Muti, G. Fiol, N. N. Ledentsov, M. V. Maximov, A. M. Nadtochiy, V. A. Shchunkin, and D. Bimberg, “Oxide-confined 850  nm VCSELs operating at bit rates up to 40  Gbit/s,” Electron. Lett. 45, 501–503 (2009).
    [Crossref]
  5. M. Lebby, C. A. Gaw, W. Jiang, P. A. Kiely, C. L. Shieh, P. R. Claisse, J. Ramdani, D. H. Hartman, D. B. Schwartz, and J. Grula, “Characteristics of VCSEL array for parallel optical interconnects,” in Proceedings of the Electronic Components and Technology Conference (1996), pp. 279–291.
  6. P. Westbergh, R. Safaisini, E. Haglund, B. Kögel, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-speed 850  nm VCSELs with 28  GHz modulation bandwidth operating error-free up to 44  Gbit/s,” Electron. Lett. 48, 1145–1147 (2012).
    [Crossref]
  7. H. E. Li and K. Iga, Vertical-Cavity Surface-Emitting Laser Devices (Springer, 2003).
  8. S. J. Trowbridge, “Ethernet and OTN - 400G and beyond,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2015), paper Th3H.1.
  9. T.-T. Shih, Y.-C. Chi, R.-N. Wang, C.-H. Wu, J.-J. Huang, J.-J. Jou, T.-C. Lee, H.-C. Kuo, G.-R. Lin, and W.-H. Cheng, “Efficient heat dissipation of uncooled 400-Gbps (16 × 25-Gbps) optical transceiver employing multimode VCSEL and PD arrays,” Sci. Rep. 7, 46608 (2017).
    [Crossref]
  10. K. Szczerba, P. Westbergh, M. Karlsson, P. A. Andrekson, and A. Larsson, “60  Gbits error-free 4-PAM operation with 850  nm VCSEL,” Electron. Lett. 49, 953–955 (2013).
    [Crossref]
  11. H.-Y. Kao, Y.-C. Chi, C.-Y. Peng, S.-F. Leong, C.-K. Chang, Y.-C. Wu, T.-T. Shih, J. J. Huang, H.-C. Kuo, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Modal linewidth dependent transmission performance of 850-nm VCSELs with encoding PAM-4 over 100-m MMF,” IEEE J. Quantum Electron. 53, 8000408 (2017).
  12. J. M. Castro, R. Pimpinella, B. Kose, Y. Huang, B. Lane, A. A. Correa, M. Bigot, D. Molin, and P. Sillard, “200  m 2 × 50  Gbps PAM-4 SWDM transmission over wideband multimode fiber using VCSELs and pre-distortion signal,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2016), paper Tu2G.2.
  13. J. M. Castro, R. Pimpinella, B. Kose, Y. Huang, B. Lane, K. Szczerba, P. Westbergh, T. Lengyel, J. S. Gustavsson, A. Larsson, and P. A. Andrekson, “50  Gb/s 4-PAM over 200  m of high bandwidth MMF using a 850  nm VCSEL,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2015), paper W1D.1.
  14. J. Lavrencik, S. Varighese, A. Varghese, G. Landry, Y. Sun, R. Shubochkin, and K. Balemarthy, “100  Gbps PAM-4 transmission over 100 m OM4 and wideband fiber using 850  nm VCSELs,” in European Conference and Exhibition on Optical Communication Conference, OSA Technical Digest Series (Optical Society of America, 2016), paper Th.1.C.5.
  15. S. M. R. Motaghiannezam, I. Lyubomirsky, H. Daghighian, C. Kocot, T. Gray, J. Tatum, A. AmezcuaCorrea, M. Bigot-Astruc, D. Molin, F. Achten, and P. Sillard, “180  Gbps PAM4 VCSEL transmission over 300  m wideband OM4 fibre,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2016), paper Th3G.2.
  16. C.-T. Tsai, C.-Y. Peng, C.-Y. Wu, S.-F. Leong, H.-Y. Kao, H.-Y. Wang, Y.-W. Chen, Z.-K. Weng, Y.-C. Chi, H.-C. Kuo, J.-J. Huang, T.-C. Lee, T.-T. Shih, J.-J. Jou, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Multi-mode VCSEL chip with high-indium-density InGaAs/AlGaAs quantum-well pairs for QAM-OFDM in multi-mode fiber,” IEEE J. Quantum Electron. 53, 2400608 (2017).
    [Crossref]
  17. R. B. Nunes, H. R. de O. Rocha, D. A. A. Mello, F. D. Simões, M. E. V. Segatto, and J. A. L. Silva, “Transmission of CE-OFDM signals over MMF links using directly modulated 850-nm VCSELs,” IEEE Photon. Technol. Lett. 27, 315–318 (2015).
    [Crossref]
  18. H.-Y. Kao, Y.-C. Chi, C.-T. Tsai, S.-F. Leong, C.-Y. Peng, H.-Y. Wang, J. J. Huang, J.-J. Jou, T.-T. Shih, H.-C. Kuo, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Few-mode VCSEL chip for 100-Gb/s transmission over 100 m multimode fiber,” Photon. Res. 5, 507–515 (2017).
  19. W. Bo, Z. Xian, M. Yanan, L. Jun, Z. Kangping, Q. Shaofeng, F. Zhiyong, L. Yazhi, M. Agustin, N. Ledentsov, J. Kropp, V. Shchukin, N. N. Ledentsov, I. Eddie, and L. Chao, “Close to 100  Gbps discrete multitone transmission over 100  m of multimode fiber using a single transverse mode 850  nm VCSEL,” Proc. SPIE 9766, 97660K (2016).
    [Crossref]
  20. H.-Y. Kao, C.-T. Tsai, S.-F. Leong, C.-Y. Peng, Y.-C. Chi, J.-J. Huang, H.-C. Kuo, and G.-R. Lin, “Comparison of single-/few-/multi-mode 850  nm VCSELs for optical OFDM transmission,” Opt. Express 25, 16347–16363 (2017).
    [Crossref]
  21. Y.-C. Chi, Y.-C. Li, H.-Y. Wang, P.-C. Peng, H.-H. Lu, and G.-R. Lin, “Optical 16-QAM-52-OFDM transmission at 4  Gbit/s by directly modulating a coherently injection-locked colorless laser diode,” Opt. Express 20, 20071–20077 (2012).
    [Crossref]
  22. J.-J. Liu, K.-L. Chi, C.-C. Wei, T.-C. Lin, C.-Y. Chuang, X.-N. Chen, J.-W. Shi, and J. Chen, “High bit-rate distance product of 128  Gbps·km 4-PAM transmission over 2-km OM4 fiber using an 850-nm VCSEL and a Volterra nonlinear equalizer,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2017), paper W3G.5.
  23. F. Breyer, S. C. J. Lee, S. Randel, and N. Hanik, “Comparison of OOK and PAM-4 modulation for 10  Gbit/s transmission over up to 300  m polymer optical fiber,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2008), paper OWB5.
  24. K. Szczerba, P. Westbergh, E. Agrell, M. Karlsson, P. A. Andrekson, and A. Larsson, “Comparison of intersymbol interference power penalties for OOK and 4-PAM in short-range optical links,” J. Lightwave Technol. 31, 3525–3534 (2013).
    [Crossref]
  25. Y. Sun and R. Lingle, R. Shubochkin, K. Balemarthy, D. Braganza, T. Gray, W. J. Fan, K. Wade, D. Gazula, and J. Tatum, “51.56 Gb/s SWDM PAM4 transmission over next generation wide band multimode optical fiber,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2016), paper Tu2G.3.
  26. A. Gholami, D. Molin, and P. Sillard, “Compensation of chromatic dispersion by modal dispersion in MMF- and VCSEL-based gigabit ethernet transmissions,” IEEE Photon. Technol. Lett. 21, 645–647 (2009).
    [Crossref]
  27. G. Stepniak, A. Lewandowski, J. R. Kropp, N. N. Ledentsov, V. A. Shchukin, N. Ledentsov, G. Schaefer, M. Agustin, and J. P. Turkiewicz, “54 Gbit/s OOK transmission using single mode VCSEL up to 2.2  km MMF,” Electron. Lett. 52, 633–635 (2016).
    [Crossref]
  28. P. Moser, J. A. Lott, and D. Bimberg, “Energy efficiency of directly modulated oxide-confined high bit rate 850  nm VCSELs for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19, 1702212 (2013).
    [Crossref]
  29. Å. Haglund, J. S. Gustavsson, J. Vukusic, P. Modh, and A. Larsson, “Single fundamental-mode output power exceeding 6  mW from VCSELs with a shallow surface relief,” IEEE Photon. Technol. Lett. 16, 368–370 (2004).
    [Crossref]
  30. P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, and D. Bimberg, “85-fJ dissipated energy per bit at 30  Gb/s across 500-m multimode fiber using 850-nm VCSELs,” IEEE Photon. Technol. Lett. 25, 1638–1641 (2013).
    [Crossref]
  31. R. Safaisini, E. Haglund, P. Westbergh, J. S. Gustavsson, and A. Larsson, “20  Gbit/s data transmission over 2  km multimode fibre using 850  nm mode filter VCSEL,” Electron. Lett. 50, 40–42 (2014).
    [Crossref]
  32. M. P. Tan, S. T. M. Fryslie, J. A. Lott, N. N. Ledentsov, D. Bimberg, and K. D. Choquette, “Error-free transmission over 1-km OM4 multimode fiber at 25  Gb/s using a single mode photonic crystal vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 25, 1823–1825 (2013).
    [Crossref]
  33. S. M. R. Motaghiannezam and C. Kocot, “104  Gbps PAM4 transmission over OM3 and OM4 fibers using 850 and 880  nm VCSELs,” in Lasers and Electro-Optics Conference, OSA Technical Digest Series (Optical Society of America, 2016), paper SW4F.8.

2017 (5)

T.-T. Shih, Y.-C. Chi, R.-N. Wang, C.-H. Wu, J.-J. Huang, J.-J. Jou, T.-C. Lee, H.-C. Kuo, G.-R. Lin, and W.-H. Cheng, “Efficient heat dissipation of uncooled 400-Gbps (16 × 25-Gbps) optical transceiver employing multimode VCSEL and PD arrays,” Sci. Rep. 7, 46608 (2017).
[Crossref]

H.-Y. Kao, Y.-C. Chi, C.-Y. Peng, S.-F. Leong, C.-K. Chang, Y.-C. Wu, T.-T. Shih, J. J. Huang, H.-C. Kuo, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Modal linewidth dependent transmission performance of 850-nm VCSELs with encoding PAM-4 over 100-m MMF,” IEEE J. Quantum Electron. 53, 8000408 (2017).

C.-T. Tsai, C.-Y. Peng, C.-Y. Wu, S.-F. Leong, H.-Y. Kao, H.-Y. Wang, Y.-W. Chen, Z.-K. Weng, Y.-C. Chi, H.-C. Kuo, J.-J. Huang, T.-C. Lee, T.-T. Shih, J.-J. Jou, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Multi-mode VCSEL chip with high-indium-density InGaAs/AlGaAs quantum-well pairs for QAM-OFDM in multi-mode fiber,” IEEE J. Quantum Electron. 53, 2400608 (2017).
[Crossref]

H.-Y. Kao, C.-T. Tsai, S.-F. Leong, C.-Y. Peng, Y.-C. Chi, J.-J. Huang, H.-C. Kuo, and G.-R. Lin, “Comparison of single-/few-/multi-mode 850  nm VCSELs for optical OFDM transmission,” Opt. Express 25, 16347–16363 (2017).
[Crossref]

H.-Y. Kao, Y.-C. Chi, C.-T. Tsai, S.-F. Leong, C.-Y. Peng, H.-Y. Wang, J. J. Huang, J.-J. Jou, T.-T. Shih, H.-C. Kuo, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Few-mode VCSEL chip for 100-Gb/s transmission over 100 m multimode fiber,” Photon. Res. 5, 507–515 (2017).

2016 (2)

W. Bo, Z. Xian, M. Yanan, L. Jun, Z. Kangping, Q. Shaofeng, F. Zhiyong, L. Yazhi, M. Agustin, N. Ledentsov, J. Kropp, V. Shchukin, N. N. Ledentsov, I. Eddie, and L. Chao, “Close to 100  Gbps discrete multitone transmission over 100  m of multimode fiber using a single transverse mode 850  nm VCSEL,” Proc. SPIE 9766, 97660K (2016).
[Crossref]

G. Stepniak, A. Lewandowski, J. R. Kropp, N. N. Ledentsov, V. A. Shchukin, N. Ledentsov, G. Schaefer, M. Agustin, and J. P. Turkiewicz, “54 Gbit/s OOK transmission using single mode VCSEL up to 2.2  km MMF,” Electron. Lett. 52, 633–635 (2016).
[Crossref]

2015 (2)

R. B. Nunes, H. R. de O. Rocha, D. A. A. Mello, F. D. Simões, M. E. V. Segatto, and J. A. L. Silva, “Transmission of CE-OFDM signals over MMF links using directly modulated 850-nm VCSELs,” IEEE Photon. Technol. Lett. 27, 315–318 (2015).
[Crossref]

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photon. Technol. Lett. 27, 577–580 (2015).
[Crossref]

2014 (1)

R. Safaisini, E. Haglund, P. Westbergh, J. S. Gustavsson, and A. Larsson, “20  Gbit/s data transmission over 2  km multimode fibre using 850  nm mode filter VCSEL,” Electron. Lett. 50, 40–42 (2014).
[Crossref]

2013 (6)

M. P. Tan, S. T. M. Fryslie, J. A. Lott, N. N. Ledentsov, D. Bimberg, and K. D. Choquette, “Error-free transmission over 1-km OM4 multimode fiber at 25  Gb/s using a single mode photonic crystal vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 25, 1823–1825 (2013).
[Crossref]

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, and D. Bimberg, “85-fJ dissipated energy per bit at 30  Gb/s across 500-m multimode fiber using 850-nm VCSELs,” IEEE Photon. Technol. Lett. 25, 1638–1641 (2013).
[Crossref]

K. Szczerba, P. Westbergh, E. Agrell, M. Karlsson, P. A. Andrekson, and A. Larsson, “Comparison of intersymbol interference power penalties for OOK and 4-PAM in short-range optical links,” J. Lightwave Technol. 31, 3525–3534 (2013).
[Crossref]

P. Moser, J. A. Lott, and D. Bimberg, “Energy efficiency of directly modulated oxide-confined high bit rate 850  nm VCSELs for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19, 1702212 (2013).
[Crossref]

P. Westbergh, E. P. Haglund, E. Haglund, R. Safaisini, J. S. Gustavsson, and A. Larsson, “High-speed 850  nm VCSELs operating error free up to 57  Gbit/s,” Electron. Lett. 49, 1021–1023 (2013).
[Crossref]

K. Szczerba, P. Westbergh, M. Karlsson, P. A. Andrekson, and A. Larsson, “60  Gbits error-free 4-PAM operation with 850  nm VCSEL,” Electron. Lett. 49, 953–955 (2013).
[Crossref]

2012 (2)

P. Westbergh, R. Safaisini, E. Haglund, B. Kögel, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-speed 850  nm VCSELs with 28  GHz modulation bandwidth operating error-free up to 44  Gbit/s,” Electron. Lett. 48, 1145–1147 (2012).
[Crossref]

Y.-C. Chi, Y.-C. Li, H.-Y. Wang, P.-C. Peng, H.-H. Lu, and G.-R. Lin, “Optical 16-QAM-52-OFDM transmission at 4  Gbit/s by directly modulating a coherently injection-locked colorless laser diode,” Opt. Express 20, 20071–20077 (2012).
[Crossref]

2010 (1)

P. Westbergh, J. S. Gustavsson, B. Kögel, A. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40 Gbit/s error-free operation of oxide-confined 850  nm VCSEL,” Electron. Lett. 46, 1014–1016 (2010).
[Crossref]

2009 (2)

S. A. Bolkhin, J. A. Lott, A. Muti, G. Fiol, N. N. Ledentsov, M. V. Maximov, A. M. Nadtochiy, V. A. Shchunkin, and D. Bimberg, “Oxide-confined 850  nm VCSELs operating at bit rates up to 40  Gbit/s,” Electron. Lett. 45, 501–503 (2009).
[Crossref]

A. Gholami, D. Molin, and P. Sillard, “Compensation of chromatic dispersion by modal dispersion in MMF- and VCSEL-based gigabit ethernet transmissions,” IEEE Photon. Technol. Lett. 21, 645–647 (2009).
[Crossref]

2004 (1)

Å. Haglund, J. S. Gustavsson, J. Vukusic, P. Modh, and A. Larsson, “Single fundamental-mode output power exceeding 6  mW from VCSELs with a shallow surface relief,” IEEE Photon. Technol. Lett. 16, 368–370 (2004).
[Crossref]

Achten, F.

S. M. R. Motaghiannezam, I. Lyubomirsky, H. Daghighian, C. Kocot, T. Gray, J. Tatum, A. AmezcuaCorrea, M. Bigot-Astruc, D. Molin, F. Achten, and P. Sillard, “180  Gbps PAM4 VCSEL transmission over 300  m wideband OM4 fibre,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2016), paper Th3G.2.

Agrell, E.

Agustin, M.

W. Bo, Z. Xian, M. Yanan, L. Jun, Z. Kangping, Q. Shaofeng, F. Zhiyong, L. Yazhi, M. Agustin, N. Ledentsov, J. Kropp, V. Shchukin, N. N. Ledentsov, I. Eddie, and L. Chao, “Close to 100  Gbps discrete multitone transmission over 100  m of multimode fiber using a single transverse mode 850  nm VCSEL,” Proc. SPIE 9766, 97660K (2016).
[Crossref]

G. Stepniak, A. Lewandowski, J. R. Kropp, N. N. Ledentsov, V. A. Shchukin, N. Ledentsov, G. Schaefer, M. Agustin, and J. P. Turkiewicz, “54 Gbit/s OOK transmission using single mode VCSEL up to 2.2  km MMF,” Electron. Lett. 52, 633–635 (2016).
[Crossref]

AmezcuaCorrea, A.

S. M. R. Motaghiannezam, I. Lyubomirsky, H. Daghighian, C. Kocot, T. Gray, J. Tatum, A. AmezcuaCorrea, M. Bigot-Astruc, D. Molin, F. Achten, and P. Sillard, “180  Gbps PAM4 VCSEL transmission over 300  m wideband OM4 fibre,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2016), paper Th3G.2.

Andrekson, P. A.

K. Szczerba, P. Westbergh, M. Karlsson, P. A. Andrekson, and A. Larsson, “60  Gbits error-free 4-PAM operation with 850  nm VCSEL,” Electron. Lett. 49, 953–955 (2013).
[Crossref]

K. Szczerba, P. Westbergh, E. Agrell, M. Karlsson, P. A. Andrekson, and A. Larsson, “Comparison of intersymbol interference power penalties for OOK and 4-PAM in short-range optical links,” J. Lightwave Technol. 31, 3525–3534 (2013).
[Crossref]

J. M. Castro, R. Pimpinella, B. Kose, Y. Huang, B. Lane, K. Szczerba, P. Westbergh, T. Lengyel, J. S. Gustavsson, A. Larsson, and P. A. Andrekson, “50  Gb/s 4-PAM over 200  m of high bandwidth MMF using a 850  nm VCSEL,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2015), paper W1D.1.

Baks, C. W.

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photon. Technol. Lett. 27, 577–580 (2015).
[Crossref]

Balemarthy, K.

J. Lavrencik, S. Varighese, A. Varghese, G. Landry, Y. Sun, R. Shubochkin, and K. Balemarthy, “100  Gbps PAM-4 transmission over 100 m OM4 and wideband fiber using 850  nm VCSELs,” in European Conference and Exhibition on Optical Communication Conference, OSA Technical Digest Series (Optical Society of America, 2016), paper Th.1.C.5.

Y. Sun and R. Lingle, R. Shubochkin, K. Balemarthy, D. Braganza, T. Gray, W. J. Fan, K. Wade, D. Gazula, and J. Tatum, “51.56 Gb/s SWDM PAM4 transmission over next generation wide band multimode optical fiber,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2016), paper Tu2G.3.

Bigot, M.

J. M. Castro, R. Pimpinella, B. Kose, Y. Huang, B. Lane, A. A. Correa, M. Bigot, D. Molin, and P. Sillard, “200  m 2 × 50  Gbps PAM-4 SWDM transmission over wideband multimode fiber using VCSELs and pre-distortion signal,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2016), paper Tu2G.2.

Bigot-Astruc, M.

S. M. R. Motaghiannezam, I. Lyubomirsky, H. Daghighian, C. Kocot, T. Gray, J. Tatum, A. AmezcuaCorrea, M. Bigot-Astruc, D. Molin, F. Achten, and P. Sillard, “180  Gbps PAM4 VCSEL transmission over 300  m wideband OM4 fibre,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2016), paper Th3G.2.

Bimberg, D.

P. Moser, J. A. Lott, and D. Bimberg, “Energy efficiency of directly modulated oxide-confined high bit rate 850  nm VCSELs for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19, 1702212 (2013).
[Crossref]

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, and D. Bimberg, “85-fJ dissipated energy per bit at 30  Gb/s across 500-m multimode fiber using 850-nm VCSELs,” IEEE Photon. Technol. Lett. 25, 1638–1641 (2013).
[Crossref]

M. P. Tan, S. T. M. Fryslie, J. A. Lott, N. N. Ledentsov, D. Bimberg, and K. D. Choquette, “Error-free transmission over 1-km OM4 multimode fiber at 25  Gb/s using a single mode photonic crystal vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 25, 1823–1825 (2013).
[Crossref]

P. Westbergh, J. S. Gustavsson, B. Kögel, A. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40 Gbit/s error-free operation of oxide-confined 850  nm VCSEL,” Electron. Lett. 46, 1014–1016 (2010).
[Crossref]

S. A. Bolkhin, J. A. Lott, A. Muti, G. Fiol, N. N. Ledentsov, M. V. Maximov, A. M. Nadtochiy, V. A. Shchunkin, and D. Bimberg, “Oxide-confined 850  nm VCSELs operating at bit rates up to 40  Gbit/s,” Electron. Lett. 45, 501–503 (2009).
[Crossref]

Bo, W.

W. Bo, Z. Xian, M. Yanan, L. Jun, Z. Kangping, Q. Shaofeng, F. Zhiyong, L. Yazhi, M. Agustin, N. Ledentsov, J. Kropp, V. Shchukin, N. N. Ledentsov, I. Eddie, and L. Chao, “Close to 100  Gbps discrete multitone transmission over 100  m of multimode fiber using a single transverse mode 850  nm VCSEL,” Proc. SPIE 9766, 97660K (2016).
[Crossref]

Bolkhin, S. A.

S. A. Bolkhin, J. A. Lott, A. Muti, G. Fiol, N. N. Ledentsov, M. V. Maximov, A. M. Nadtochiy, V. A. Shchunkin, and D. Bimberg, “Oxide-confined 850  nm VCSELs operating at bit rates up to 40  Gbit/s,” Electron. Lett. 45, 501–503 (2009).
[Crossref]

Braganza, D.

Y. Sun and R. Lingle, R. Shubochkin, K. Balemarthy, D. Braganza, T. Gray, W. J. Fan, K. Wade, D. Gazula, and J. Tatum, “51.56 Gb/s SWDM PAM4 transmission over next generation wide band multimode optical fiber,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2016), paper Tu2G.3.

Breyer, F.

F. Breyer, S. C. J. Lee, S. Randel, and N. Hanik, “Comparison of OOK and PAM-4 modulation for 10  Gbit/s transmission over up to 300  m polymer optical fiber,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2008), paper OWB5.

Castro, J. M.

J. M. Castro, R. Pimpinella, B. Kose, Y. Huang, B. Lane, K. Szczerba, P. Westbergh, T. Lengyel, J. S. Gustavsson, A. Larsson, and P. A. Andrekson, “50  Gb/s 4-PAM over 200  m of high bandwidth MMF using a 850  nm VCSEL,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2015), paper W1D.1.

J. M. Castro, R. Pimpinella, B. Kose, Y. Huang, B. Lane, A. A. Correa, M. Bigot, D. Molin, and P. Sillard, “200  m 2 × 50  Gbps PAM-4 SWDM transmission over wideband multimode fiber using VCSELs and pre-distortion signal,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2016), paper Tu2G.2.

Chang, C.-K.

H.-Y. Kao, Y.-C. Chi, C.-Y. Peng, S.-F. Leong, C.-K. Chang, Y.-C. Wu, T.-T. Shih, J. J. Huang, H.-C. Kuo, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Modal linewidth dependent transmission performance of 850-nm VCSELs with encoding PAM-4 over 100-m MMF,” IEEE J. Quantum Electron. 53, 8000408 (2017).

Chao, L.

W. Bo, Z. Xian, M. Yanan, L. Jun, Z. Kangping, Q. Shaofeng, F. Zhiyong, L. Yazhi, M. Agustin, N. Ledentsov, J. Kropp, V. Shchukin, N. N. Ledentsov, I. Eddie, and L. Chao, “Close to 100  Gbps discrete multitone transmission over 100  m of multimode fiber using a single transverse mode 850  nm VCSEL,” Proc. SPIE 9766, 97660K (2016).
[Crossref]

Chen, J.

J.-J. Liu, K.-L. Chi, C.-C. Wei, T.-C. Lin, C.-Y. Chuang, X.-N. Chen, J.-W. Shi, and J. Chen, “High bit-rate distance product of 128  Gbps·km 4-PAM transmission over 2-km OM4 fiber using an 850-nm VCSEL and a Volterra nonlinear equalizer,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2017), paper W3G.5.

Chen, X.-N.

J.-J. Liu, K.-L. Chi, C.-C. Wei, T.-C. Lin, C.-Y. Chuang, X.-N. Chen, J.-W. Shi, and J. Chen, “High bit-rate distance product of 128  Gbps·km 4-PAM transmission over 2-km OM4 fiber using an 850-nm VCSEL and a Volterra nonlinear equalizer,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2017), paper W3G.5.

Chen, Y.-W.

C.-T. Tsai, C.-Y. Peng, C.-Y. Wu, S.-F. Leong, H.-Y. Kao, H.-Y. Wang, Y.-W. Chen, Z.-K. Weng, Y.-C. Chi, H.-C. Kuo, J.-J. Huang, T.-C. Lee, T.-T. Shih, J.-J. Jou, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Multi-mode VCSEL chip with high-indium-density InGaAs/AlGaAs quantum-well pairs for QAM-OFDM in multi-mode fiber,” IEEE J. Quantum Electron. 53, 2400608 (2017).
[Crossref]

Cheng, W.-H.

C.-T. Tsai, C.-Y. Peng, C.-Y. Wu, S.-F. Leong, H.-Y. Kao, H.-Y. Wang, Y.-W. Chen, Z.-K. Weng, Y.-C. Chi, H.-C. Kuo, J.-J. Huang, T.-C. Lee, T.-T. Shih, J.-J. Jou, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Multi-mode VCSEL chip with high-indium-density InGaAs/AlGaAs quantum-well pairs for QAM-OFDM in multi-mode fiber,” IEEE J. Quantum Electron. 53, 2400608 (2017).
[Crossref]

H.-Y. Kao, Y.-C. Chi, C.-Y. Peng, S.-F. Leong, C.-K. Chang, Y.-C. Wu, T.-T. Shih, J. J. Huang, H.-C. Kuo, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Modal linewidth dependent transmission performance of 850-nm VCSELs with encoding PAM-4 over 100-m MMF,” IEEE J. Quantum Electron. 53, 8000408 (2017).

T.-T. Shih, Y.-C. Chi, R.-N. Wang, C.-H. Wu, J.-J. Huang, J.-J. Jou, T.-C. Lee, H.-C. Kuo, G.-R. Lin, and W.-H. Cheng, “Efficient heat dissipation of uncooled 400-Gbps (16 × 25-Gbps) optical transceiver employing multimode VCSEL and PD arrays,” Sci. Rep. 7, 46608 (2017).
[Crossref]

H.-Y. Kao, Y.-C. Chi, C.-T. Tsai, S.-F. Leong, C.-Y. Peng, H.-Y. Wang, J. J. Huang, J.-J. Jou, T.-T. Shih, H.-C. Kuo, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Few-mode VCSEL chip for 100-Gb/s transmission over 100 m multimode fiber,” Photon. Res. 5, 507–515 (2017).

Chi, K.-L.

J.-J. Liu, K.-L. Chi, C.-C. Wei, T.-C. Lin, C.-Y. Chuang, X.-N. Chen, J.-W. Shi, and J. Chen, “High bit-rate distance product of 128  Gbps·km 4-PAM transmission over 2-km OM4 fiber using an 850-nm VCSEL and a Volterra nonlinear equalizer,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2017), paper W3G.5.

Chi, Y.-C.

H.-Y. Kao, C.-T. Tsai, S.-F. Leong, C.-Y. Peng, Y.-C. Chi, J.-J. Huang, H.-C. Kuo, and G.-R. Lin, “Comparison of single-/few-/multi-mode 850  nm VCSELs for optical OFDM transmission,” Opt. Express 25, 16347–16363 (2017).
[Crossref]

H.-Y. Kao, Y.-C. Chi, C.-T. Tsai, S.-F. Leong, C.-Y. Peng, H.-Y. Wang, J. J. Huang, J.-J. Jou, T.-T. Shih, H.-C. Kuo, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Few-mode VCSEL chip for 100-Gb/s transmission over 100 m multimode fiber,” Photon. Res. 5, 507–515 (2017).

T.-T. Shih, Y.-C. Chi, R.-N. Wang, C.-H. Wu, J.-J. Huang, J.-J. Jou, T.-C. Lee, H.-C. Kuo, G.-R. Lin, and W.-H. Cheng, “Efficient heat dissipation of uncooled 400-Gbps (16 × 25-Gbps) optical transceiver employing multimode VCSEL and PD arrays,” Sci. Rep. 7, 46608 (2017).
[Crossref]

H.-Y. Kao, Y.-C. Chi, C.-Y. Peng, S.-F. Leong, C.-K. Chang, Y.-C. Wu, T.-T. Shih, J. J. Huang, H.-C. Kuo, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Modal linewidth dependent transmission performance of 850-nm VCSELs with encoding PAM-4 over 100-m MMF,” IEEE J. Quantum Electron. 53, 8000408 (2017).

C.-T. Tsai, C.-Y. Peng, C.-Y. Wu, S.-F. Leong, H.-Y. Kao, H.-Y. Wang, Y.-W. Chen, Z.-K. Weng, Y.-C. Chi, H.-C. Kuo, J.-J. Huang, T.-C. Lee, T.-T. Shih, J.-J. Jou, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Multi-mode VCSEL chip with high-indium-density InGaAs/AlGaAs quantum-well pairs for QAM-OFDM in multi-mode fiber,” IEEE J. Quantum Electron. 53, 2400608 (2017).
[Crossref]

Y.-C. Chi, Y.-C. Li, H.-Y. Wang, P.-C. Peng, H.-H. Lu, and G.-R. Lin, “Optical 16-QAM-52-OFDM transmission at 4  Gbit/s by directly modulating a coherently injection-locked colorless laser diode,” Opt. Express 20, 20071–20077 (2012).
[Crossref]

Choquette, K. D.

M. P. Tan, S. T. M. Fryslie, J. A. Lott, N. N. Ledentsov, D. Bimberg, and K. D. Choquette, “Error-free transmission over 1-km OM4 multimode fiber at 25  Gb/s using a single mode photonic crystal vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 25, 1823–1825 (2013).
[Crossref]

Chuang, C.-Y.

J.-J. Liu, K.-L. Chi, C.-C. Wei, T.-C. Lin, C.-Y. Chuang, X.-N. Chen, J.-W. Shi, and J. Chen, “High bit-rate distance product of 128  Gbps·km 4-PAM transmission over 2-km OM4 fiber using an 850-nm VCSEL and a Volterra nonlinear equalizer,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2017), paper W3G.5.

Claisse, P. R.

M. Lebby, C. A. Gaw, W. Jiang, P. A. Kiely, C. L. Shieh, P. R. Claisse, J. Ramdani, D. H. Hartman, D. B. Schwartz, and J. Grula, “Characteristics of VCSEL array for parallel optical interconnects,” in Proceedings of the Electronic Components and Technology Conference (1996), pp. 279–291.

Correa, A. A.

J. M. Castro, R. Pimpinella, B. Kose, Y. Huang, B. Lane, A. A. Correa, M. Bigot, D. Molin, and P. Sillard, “200  m 2 × 50  Gbps PAM-4 SWDM transmission over wideband multimode fiber using VCSELs and pre-distortion signal,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2016), paper Tu2G.2.

Daghighian, H.

S. M. R. Motaghiannezam, I. Lyubomirsky, H. Daghighian, C. Kocot, T. Gray, J. Tatum, A. AmezcuaCorrea, M. Bigot-Astruc, D. Molin, F. Achten, and P. Sillard, “180  Gbps PAM4 VCSEL transmission over 300  m wideband OM4 fibre,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2016), paper Th3G.2.

de O. Rocha, H. R.

R. B. Nunes, H. R. de O. Rocha, D. A. A. Mello, F. D. Simões, M. E. V. Segatto, and J. A. L. Silva, “Transmission of CE-OFDM signals over MMF links using directly modulated 850-nm VCSELs,” IEEE Photon. Technol. Lett. 27, 315–318 (2015).
[Crossref]

Doany, F. E.

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photon. Technol. Lett. 27, 577–580 (2015).
[Crossref]

Eddie, I.

W. Bo, Z. Xian, M. Yanan, L. Jun, Z. Kangping, Q. Shaofeng, F. Zhiyong, L. Yazhi, M. Agustin, N. Ledentsov, J. Kropp, V. Shchukin, N. N. Ledentsov, I. Eddie, and L. Chao, “Close to 100  Gbps discrete multitone transmission over 100  m of multimode fiber using a single transverse mode 850  nm VCSEL,” Proc. SPIE 9766, 97660K (2016).
[Crossref]

Fan, W. J.

Y. Sun and R. Lingle, R. Shubochkin, K. Balemarthy, D. Braganza, T. Gray, W. J. Fan, K. Wade, D. Gazula, and J. Tatum, “51.56 Gb/s SWDM PAM4 transmission over next generation wide band multimode optical fiber,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2016), paper Tu2G.3.

Fiol, G.

S. A. Bolkhin, J. A. Lott, A. Muti, G. Fiol, N. N. Ledentsov, M. V. Maximov, A. M. Nadtochiy, V. A. Shchunkin, and D. Bimberg, “Oxide-confined 850  nm VCSELs operating at bit rates up to 40  Gbit/s,” Electron. Lett. 45, 501–503 (2009).
[Crossref]

Fryslie, S. T. M.

M. P. Tan, S. T. M. Fryslie, J. A. Lott, N. N. Ledentsov, D. Bimberg, and K. D. Choquette, “Error-free transmission over 1-km OM4 multimode fiber at 25  Gb/s using a single mode photonic crystal vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 25, 1823–1825 (2013).
[Crossref]

Gaw, C. A.

M. Lebby, C. A. Gaw, W. Jiang, P. A. Kiely, C. L. Shieh, P. R. Claisse, J. Ramdani, D. H. Hartman, D. B. Schwartz, and J. Grula, “Characteristics of VCSEL array for parallel optical interconnects,” in Proceedings of the Electronic Components and Technology Conference (1996), pp. 279–291.

Gazula, D.

Y. Sun and R. Lingle, R. Shubochkin, K. Balemarthy, D. Braganza, T. Gray, W. J. Fan, K. Wade, D. Gazula, and J. Tatum, “51.56 Gb/s SWDM PAM4 transmission over next generation wide band multimode optical fiber,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2016), paper Tu2G.3.

Geen, M.

P. Westbergh, R. Safaisini, E. Haglund, B. Kögel, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-speed 850  nm VCSELs with 28  GHz modulation bandwidth operating error-free up to 44  Gbit/s,” Electron. Lett. 48, 1145–1147 (2012).
[Crossref]

Gholami, A.

A. Gholami, D. Molin, and P. Sillard, “Compensation of chromatic dispersion by modal dispersion in MMF- and VCSEL-based gigabit ethernet transmissions,” IEEE Photon. Technol. Lett. 21, 645–647 (2009).
[Crossref]

Gray, T.

Y. Sun and R. Lingle, R. Shubochkin, K. Balemarthy, D. Braganza, T. Gray, W. J. Fan, K. Wade, D. Gazula, and J. Tatum, “51.56 Gb/s SWDM PAM4 transmission over next generation wide band multimode optical fiber,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2016), paper Tu2G.3.

S. M. R. Motaghiannezam, I. Lyubomirsky, H. Daghighian, C. Kocot, T. Gray, J. Tatum, A. AmezcuaCorrea, M. Bigot-Astruc, D. Molin, F. Achten, and P. Sillard, “180  Gbps PAM4 VCSEL transmission over 300  m wideband OM4 fibre,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2016), paper Th3G.2.

Grula, J.

M. Lebby, C. A. Gaw, W. Jiang, P. A. Kiely, C. L. Shieh, P. R. Claisse, J. Ramdani, D. H. Hartman, D. B. Schwartz, and J. Grula, “Characteristics of VCSEL array for parallel optical interconnects,” in Proceedings of the Electronic Components and Technology Conference (1996), pp. 279–291.

Gustavsson, J. S.

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photon. Technol. Lett. 27, 577–580 (2015).
[Crossref]

R. Safaisini, E. Haglund, P. Westbergh, J. S. Gustavsson, and A. Larsson, “20  Gbit/s data transmission over 2  km multimode fibre using 850  nm mode filter VCSEL,” Electron. Lett. 50, 40–42 (2014).
[Crossref]

P. Westbergh, E. P. Haglund, E. Haglund, R. Safaisini, J. S. Gustavsson, and A. Larsson, “High-speed 850  nm VCSELs operating error free up to 57  Gbit/s,” Electron. Lett. 49, 1021–1023 (2013).
[Crossref]

P. Westbergh, R. Safaisini, E. Haglund, B. Kögel, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-speed 850  nm VCSELs with 28  GHz modulation bandwidth operating error-free up to 44  Gbit/s,” Electron. Lett. 48, 1145–1147 (2012).
[Crossref]

P. Westbergh, J. S. Gustavsson, B. Kögel, A. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40 Gbit/s error-free operation of oxide-confined 850  nm VCSEL,” Electron. Lett. 46, 1014–1016 (2010).
[Crossref]

Å. Haglund, J. S. Gustavsson, J. Vukusic, P. Modh, and A. Larsson, “Single fundamental-mode output power exceeding 6  mW from VCSELs with a shallow surface relief,” IEEE Photon. Technol. Lett. 16, 368–370 (2004).
[Crossref]

J. M. Castro, R. Pimpinella, B. Kose, Y. Huang, B. Lane, K. Szczerba, P. Westbergh, T. Lengyel, J. S. Gustavsson, A. Larsson, and P. A. Andrekson, “50  Gb/s 4-PAM over 200  m of high bandwidth MMF using a 850  nm VCSEL,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2015), paper W1D.1.

Haglund, A.

P. Westbergh, J. S. Gustavsson, B. Kögel, A. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40 Gbit/s error-free operation of oxide-confined 850  nm VCSEL,” Electron. Lett. 46, 1014–1016 (2010).
[Crossref]

Haglund, Å.

Å. Haglund, J. S. Gustavsson, J. Vukusic, P. Modh, and A. Larsson, “Single fundamental-mode output power exceeding 6  mW from VCSELs with a shallow surface relief,” IEEE Photon. Technol. Lett. 16, 368–370 (2004).
[Crossref]

Haglund, E.

R. Safaisini, E. Haglund, P. Westbergh, J. S. Gustavsson, and A. Larsson, “20  Gbit/s data transmission over 2  km multimode fibre using 850  nm mode filter VCSEL,” Electron. Lett. 50, 40–42 (2014).
[Crossref]

P. Westbergh, E. P. Haglund, E. Haglund, R. Safaisini, J. S. Gustavsson, and A. Larsson, “High-speed 850  nm VCSELs operating error free up to 57  Gbit/s,” Electron. Lett. 49, 1021–1023 (2013).
[Crossref]

P. Westbergh, R. Safaisini, E. Haglund, B. Kögel, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-speed 850  nm VCSELs with 28  GHz modulation bandwidth operating error-free up to 44  Gbit/s,” Electron. Lett. 48, 1145–1147 (2012).
[Crossref]

Haglund, E. P.

P. Westbergh, E. P. Haglund, E. Haglund, R. Safaisini, J. S. Gustavsson, and A. Larsson, “High-speed 850  nm VCSELs operating error free up to 57  Gbit/s,” Electron. Lett. 49, 1021–1023 (2013).
[Crossref]

Hanik, N.

F. Breyer, S. C. J. Lee, S. Randel, and N. Hanik, “Comparison of OOK and PAM-4 modulation for 10  Gbit/s transmission over up to 300  m polymer optical fiber,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2008), paper OWB5.

Hartman, D. H.

M. Lebby, C. A. Gaw, W. Jiang, P. A. Kiely, C. L. Shieh, P. R. Claisse, J. Ramdani, D. H. Hartman, D. B. Schwartz, and J. Grula, “Characteristics of VCSEL array for parallel optical interconnects,” in Proceedings of the Electronic Components and Technology Conference (1996), pp. 279–291.

Huang, J. J.

H.-Y. Kao, Y.-C. Chi, C.-Y. Peng, S.-F. Leong, C.-K. Chang, Y.-C. Wu, T.-T. Shih, J. J. Huang, H.-C. Kuo, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Modal linewidth dependent transmission performance of 850-nm VCSELs with encoding PAM-4 over 100-m MMF,” IEEE J. Quantum Electron. 53, 8000408 (2017).

H.-Y. Kao, Y.-C. Chi, C.-T. Tsai, S.-F. Leong, C.-Y. Peng, H.-Y. Wang, J. J. Huang, J.-J. Jou, T.-T. Shih, H.-C. Kuo, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Few-mode VCSEL chip for 100-Gb/s transmission over 100 m multimode fiber,” Photon. Res. 5, 507–515 (2017).

Huang, J.-J.

H.-Y. Kao, C.-T. Tsai, S.-F. Leong, C.-Y. Peng, Y.-C. Chi, J.-J. Huang, H.-C. Kuo, and G.-R. Lin, “Comparison of single-/few-/multi-mode 850  nm VCSELs for optical OFDM transmission,” Opt. Express 25, 16347–16363 (2017).
[Crossref]

C.-T. Tsai, C.-Y. Peng, C.-Y. Wu, S.-F. Leong, H.-Y. Kao, H.-Y. Wang, Y.-W. Chen, Z.-K. Weng, Y.-C. Chi, H.-C. Kuo, J.-J. Huang, T.-C. Lee, T.-T. Shih, J.-J. Jou, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Multi-mode VCSEL chip with high-indium-density InGaAs/AlGaAs quantum-well pairs for QAM-OFDM in multi-mode fiber,” IEEE J. Quantum Electron. 53, 2400608 (2017).
[Crossref]

T.-T. Shih, Y.-C. Chi, R.-N. Wang, C.-H. Wu, J.-J. Huang, J.-J. Jou, T.-C. Lee, H.-C. Kuo, G.-R. Lin, and W.-H. Cheng, “Efficient heat dissipation of uncooled 400-Gbps (16 × 25-Gbps) optical transceiver employing multimode VCSEL and PD arrays,” Sci. Rep. 7, 46608 (2017).
[Crossref]

Huang, Y.

J. M. Castro, R. Pimpinella, B. Kose, Y. Huang, B. Lane, A. A. Correa, M. Bigot, D. Molin, and P. Sillard, “200  m 2 × 50  Gbps PAM-4 SWDM transmission over wideband multimode fiber using VCSELs and pre-distortion signal,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2016), paper Tu2G.2.

J. M. Castro, R. Pimpinella, B. Kose, Y. Huang, B. Lane, K. Szczerba, P. Westbergh, T. Lengyel, J. S. Gustavsson, A. Larsson, and P. A. Andrekson, “50  Gb/s 4-PAM over 200  m of high bandwidth MMF using a 850  nm VCSEL,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2015), paper W1D.1.

Iga, K.

H. E. Li and K. Iga, Vertical-Cavity Surface-Emitting Laser Devices (Springer, 2003).

Jiang, W.

M. Lebby, C. A. Gaw, W. Jiang, P. A. Kiely, C. L. Shieh, P. R. Claisse, J. Ramdani, D. H. Hartman, D. B. Schwartz, and J. Grula, “Characteristics of VCSEL array for parallel optical interconnects,” in Proceedings of the Electronic Components and Technology Conference (1996), pp. 279–291.

Joel, A.

P. Westbergh, R. Safaisini, E. Haglund, B. Kögel, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-speed 850  nm VCSELs with 28  GHz modulation bandwidth operating error-free up to 44  Gbit/s,” Electron. Lett. 48, 1145–1147 (2012).
[Crossref]

P. Westbergh, J. S. Gustavsson, B. Kögel, A. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40 Gbit/s error-free operation of oxide-confined 850  nm VCSEL,” Electron. Lett. 46, 1014–1016 (2010).
[Crossref]

Jou, J.-J.

T.-T. Shih, Y.-C. Chi, R.-N. Wang, C.-H. Wu, J.-J. Huang, J.-J. Jou, T.-C. Lee, H.-C. Kuo, G.-R. Lin, and W.-H. Cheng, “Efficient heat dissipation of uncooled 400-Gbps (16 × 25-Gbps) optical transceiver employing multimode VCSEL and PD arrays,” Sci. Rep. 7, 46608 (2017).
[Crossref]

H.-Y. Kao, Y.-C. Chi, C.-T. Tsai, S.-F. Leong, C.-Y. Peng, H.-Y. Wang, J. J. Huang, J.-J. Jou, T.-T. Shih, H.-C. Kuo, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Few-mode VCSEL chip for 100-Gb/s transmission over 100 m multimode fiber,” Photon. Res. 5, 507–515 (2017).

C.-T. Tsai, C.-Y. Peng, C.-Y. Wu, S.-F. Leong, H.-Y. Kao, H.-Y. Wang, Y.-W. Chen, Z.-K. Weng, Y.-C. Chi, H.-C. Kuo, J.-J. Huang, T.-C. Lee, T.-T. Shih, J.-J. Jou, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Multi-mode VCSEL chip with high-indium-density InGaAs/AlGaAs quantum-well pairs for QAM-OFDM in multi-mode fiber,” IEEE J. Quantum Electron. 53, 2400608 (2017).
[Crossref]

Jun, L.

W. Bo, Z. Xian, M. Yanan, L. Jun, Z. Kangping, Q. Shaofeng, F. Zhiyong, L. Yazhi, M. Agustin, N. Ledentsov, J. Kropp, V. Shchukin, N. N. Ledentsov, I. Eddie, and L. Chao, “Close to 100  Gbps discrete multitone transmission over 100  m of multimode fiber using a single transverse mode 850  nm VCSEL,” Proc. SPIE 9766, 97660K (2016).
[Crossref]

Kangping, Z.

W. Bo, Z. Xian, M. Yanan, L. Jun, Z. Kangping, Q. Shaofeng, F. Zhiyong, L. Yazhi, M. Agustin, N. Ledentsov, J. Kropp, V. Shchukin, N. N. Ledentsov, I. Eddie, and L. Chao, “Close to 100  Gbps discrete multitone transmission over 100  m of multimode fiber using a single transverse mode 850  nm VCSEL,” Proc. SPIE 9766, 97660K (2016).
[Crossref]

Kao, H.-Y.

H.-Y. Kao, C.-T. Tsai, S.-F. Leong, C.-Y. Peng, Y.-C. Chi, J.-J. Huang, H.-C. Kuo, and G.-R. Lin, “Comparison of single-/few-/multi-mode 850  nm VCSELs for optical OFDM transmission,” Opt. Express 25, 16347–16363 (2017).
[Crossref]

H.-Y. Kao, Y.-C. Chi, C.-T. Tsai, S.-F. Leong, C.-Y. Peng, H.-Y. Wang, J. J. Huang, J.-J. Jou, T.-T. Shih, H.-C. Kuo, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Few-mode VCSEL chip for 100-Gb/s transmission over 100 m multimode fiber,” Photon. Res. 5, 507–515 (2017).

H.-Y. Kao, Y.-C. Chi, C.-Y. Peng, S.-F. Leong, C.-K. Chang, Y.-C. Wu, T.-T. Shih, J. J. Huang, H.-C. Kuo, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Modal linewidth dependent transmission performance of 850-nm VCSELs with encoding PAM-4 over 100-m MMF,” IEEE J. Quantum Electron. 53, 8000408 (2017).

C.-T. Tsai, C.-Y. Peng, C.-Y. Wu, S.-F. Leong, H.-Y. Kao, H.-Y. Wang, Y.-W. Chen, Z.-K. Weng, Y.-C. Chi, H.-C. Kuo, J.-J. Huang, T.-C. Lee, T.-T. Shih, J.-J. Jou, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Multi-mode VCSEL chip with high-indium-density InGaAs/AlGaAs quantum-well pairs for QAM-OFDM in multi-mode fiber,” IEEE J. Quantum Electron. 53, 2400608 (2017).
[Crossref]

Karlsson, M.

K. Szczerba, P. Westbergh, M. Karlsson, P. A. Andrekson, and A. Larsson, “60  Gbits error-free 4-PAM operation with 850  nm VCSEL,” Electron. Lett. 49, 953–955 (2013).
[Crossref]

K. Szczerba, P. Westbergh, E. Agrell, M. Karlsson, P. A. Andrekson, and A. Larsson, “Comparison of intersymbol interference power penalties for OOK and 4-PAM in short-range optical links,” J. Lightwave Technol. 31, 3525–3534 (2013).
[Crossref]

Kiely, P. A.

M. Lebby, C. A. Gaw, W. Jiang, P. A. Kiely, C. L. Shieh, P. R. Claisse, J. Ramdani, D. H. Hartman, D. B. Schwartz, and J. Grula, “Characteristics of VCSEL array for parallel optical interconnects,” in Proceedings of the Electronic Components and Technology Conference (1996), pp. 279–291.

Kocot, C.

S. M. R. Motaghiannezam, I. Lyubomirsky, H. Daghighian, C. Kocot, T. Gray, J. Tatum, A. AmezcuaCorrea, M. Bigot-Astruc, D. Molin, F. Achten, and P. Sillard, “180  Gbps PAM4 VCSEL transmission over 300  m wideband OM4 fibre,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2016), paper Th3G.2.

S. M. R. Motaghiannezam and C. Kocot, “104  Gbps PAM4 transmission over OM3 and OM4 fibers using 850 and 880  nm VCSELs,” in Lasers and Electro-Optics Conference, OSA Technical Digest Series (Optical Society of America, 2016), paper SW4F.8.

Kögel, B.

P. Westbergh, R. Safaisini, E. Haglund, B. Kögel, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-speed 850  nm VCSELs with 28  GHz modulation bandwidth operating error-free up to 44  Gbit/s,” Electron. Lett. 48, 1145–1147 (2012).
[Crossref]

P. Westbergh, J. S. Gustavsson, B. Kögel, A. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40 Gbit/s error-free operation of oxide-confined 850  nm VCSEL,” Electron. Lett. 46, 1014–1016 (2010).
[Crossref]

Kose, B.

J. M. Castro, R. Pimpinella, B. Kose, Y. Huang, B. Lane, A. A. Correa, M. Bigot, D. Molin, and P. Sillard, “200  m 2 × 50  Gbps PAM-4 SWDM transmission over wideband multimode fiber using VCSELs and pre-distortion signal,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2016), paper Tu2G.2.

J. M. Castro, R. Pimpinella, B. Kose, Y. Huang, B. Lane, K. Szczerba, P. Westbergh, T. Lengyel, J. S. Gustavsson, A. Larsson, and P. A. Andrekson, “50  Gb/s 4-PAM over 200  m of high bandwidth MMF using a 850  nm VCSEL,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2015), paper W1D.1.

Kropp, J.

W. Bo, Z. Xian, M. Yanan, L. Jun, Z. Kangping, Q. Shaofeng, F. Zhiyong, L. Yazhi, M. Agustin, N. Ledentsov, J. Kropp, V. Shchukin, N. N. Ledentsov, I. Eddie, and L. Chao, “Close to 100  Gbps discrete multitone transmission over 100  m of multimode fiber using a single transverse mode 850  nm VCSEL,” Proc. SPIE 9766, 97660K (2016).
[Crossref]

Kropp, J. R.

G. Stepniak, A. Lewandowski, J. R. Kropp, N. N. Ledentsov, V. A. Shchukin, N. Ledentsov, G. Schaefer, M. Agustin, and J. P. Turkiewicz, “54 Gbit/s OOK transmission using single mode VCSEL up to 2.2  km MMF,” Electron. Lett. 52, 633–635 (2016).
[Crossref]

Kuchta, D. M.

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photon. Technol. Lett. 27, 577–580 (2015).
[Crossref]

Kuo, H.-C.

T.-T. Shih, Y.-C. Chi, R.-N. Wang, C.-H. Wu, J.-J. Huang, J.-J. Jou, T.-C. Lee, H.-C. Kuo, G.-R. Lin, and W.-H. Cheng, “Efficient heat dissipation of uncooled 400-Gbps (16 × 25-Gbps) optical transceiver employing multimode VCSEL and PD arrays,” Sci. Rep. 7, 46608 (2017).
[Crossref]

H.-Y. Kao, Y.-C. Chi, C.-Y. Peng, S.-F. Leong, C.-K. Chang, Y.-C. Wu, T.-T. Shih, J. J. Huang, H.-C. Kuo, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Modal linewidth dependent transmission performance of 850-nm VCSELs with encoding PAM-4 over 100-m MMF,” IEEE J. Quantum Electron. 53, 8000408 (2017).

C.-T. Tsai, C.-Y. Peng, C.-Y. Wu, S.-F. Leong, H.-Y. Kao, H.-Y. Wang, Y.-W. Chen, Z.-K. Weng, Y.-C. Chi, H.-C. Kuo, J.-J. Huang, T.-C. Lee, T.-T. Shih, J.-J. Jou, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Multi-mode VCSEL chip with high-indium-density InGaAs/AlGaAs quantum-well pairs for QAM-OFDM in multi-mode fiber,” IEEE J. Quantum Electron. 53, 2400608 (2017).
[Crossref]

H.-Y. Kao, C.-T. Tsai, S.-F. Leong, C.-Y. Peng, Y.-C. Chi, J.-J. Huang, H.-C. Kuo, and G.-R. Lin, “Comparison of single-/few-/multi-mode 850  nm VCSELs for optical OFDM transmission,” Opt. Express 25, 16347–16363 (2017).
[Crossref]

H.-Y. Kao, Y.-C. Chi, C.-T. Tsai, S.-F. Leong, C.-Y. Peng, H.-Y. Wang, J. J. Huang, J.-J. Jou, T.-T. Shih, H.-C. Kuo, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Few-mode VCSEL chip for 100-Gb/s transmission over 100 m multimode fiber,” Photon. Res. 5, 507–515 (2017).

Landry, G.

J. Lavrencik, S. Varighese, A. Varghese, G. Landry, Y. Sun, R. Shubochkin, and K. Balemarthy, “100  Gbps PAM-4 transmission over 100 m OM4 and wideband fiber using 850  nm VCSELs,” in European Conference and Exhibition on Optical Communication Conference, OSA Technical Digest Series (Optical Society of America, 2016), paper Th.1.C.5.

Lane, B.

J. M. Castro, R. Pimpinella, B. Kose, Y. Huang, B. Lane, A. A. Correa, M. Bigot, D. Molin, and P. Sillard, “200  m 2 × 50  Gbps PAM-4 SWDM transmission over wideband multimode fiber using VCSELs and pre-distortion signal,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2016), paper Tu2G.2.

J. M. Castro, R. Pimpinella, B. Kose, Y. Huang, B. Lane, K. Szczerba, P. Westbergh, T. Lengyel, J. S. Gustavsson, A. Larsson, and P. A. Andrekson, “50  Gb/s 4-PAM over 200  m of high bandwidth MMF using a 850  nm VCSEL,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2015), paper W1D.1.

Larisch, G.

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, and D. Bimberg, “85-fJ dissipated energy per bit at 30  Gb/s across 500-m multimode fiber using 850-nm VCSELs,” IEEE Photon. Technol. Lett. 25, 1638–1641 (2013).
[Crossref]

Larsson, A.

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photon. Technol. Lett. 27, 577–580 (2015).
[Crossref]

R. Safaisini, E. Haglund, P. Westbergh, J. S. Gustavsson, and A. Larsson, “20  Gbit/s data transmission over 2  km multimode fibre using 850  nm mode filter VCSEL,” Electron. Lett. 50, 40–42 (2014).
[Crossref]

K. Szczerba, P. Westbergh, E. Agrell, M. Karlsson, P. A. Andrekson, and A. Larsson, “Comparison of intersymbol interference power penalties for OOK and 4-PAM in short-range optical links,” J. Lightwave Technol. 31, 3525–3534 (2013).
[Crossref]

P. Westbergh, E. P. Haglund, E. Haglund, R. Safaisini, J. S. Gustavsson, and A. Larsson, “High-speed 850  nm VCSELs operating error free up to 57  Gbit/s,” Electron. Lett. 49, 1021–1023 (2013).
[Crossref]

K. Szczerba, P. Westbergh, M. Karlsson, P. A. Andrekson, and A. Larsson, “60  Gbits error-free 4-PAM operation with 850  nm VCSEL,” Electron. Lett. 49, 953–955 (2013).
[Crossref]

P. Westbergh, R. Safaisini, E. Haglund, B. Kögel, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-speed 850  nm VCSELs with 28  GHz modulation bandwidth operating error-free up to 44  Gbit/s,” Electron. Lett. 48, 1145–1147 (2012).
[Crossref]

P. Westbergh, J. S. Gustavsson, B. Kögel, A. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40 Gbit/s error-free operation of oxide-confined 850  nm VCSEL,” Electron. Lett. 46, 1014–1016 (2010).
[Crossref]

Å. Haglund, J. S. Gustavsson, J. Vukusic, P. Modh, and A. Larsson, “Single fundamental-mode output power exceeding 6  mW from VCSELs with a shallow surface relief,” IEEE Photon. Technol. Lett. 16, 368–370 (2004).
[Crossref]

J. M. Castro, R. Pimpinella, B. Kose, Y. Huang, B. Lane, K. Szczerba, P. Westbergh, T. Lengyel, J. S. Gustavsson, A. Larsson, and P. A. Andrekson, “50  Gb/s 4-PAM over 200  m of high bandwidth MMF using a 850  nm VCSEL,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2015), paper W1D.1.

Lavrencik, J.

J. Lavrencik, S. Varighese, A. Varghese, G. Landry, Y. Sun, R. Shubochkin, and K. Balemarthy, “100  Gbps PAM-4 transmission over 100 m OM4 and wideband fiber using 850  nm VCSELs,” in European Conference and Exhibition on Optical Communication Conference, OSA Technical Digest Series (Optical Society of America, 2016), paper Th.1.C.5.

Lawrence, R.

P. Westbergh, R. Safaisini, E. Haglund, B. Kögel, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-speed 850  nm VCSELs with 28  GHz modulation bandwidth operating error-free up to 44  Gbit/s,” Electron. Lett. 48, 1145–1147 (2012).
[Crossref]

Lebby, M.

M. Lebby, C. A. Gaw, W. Jiang, P. A. Kiely, C. L. Shieh, P. R. Claisse, J. Ramdani, D. H. Hartman, D. B. Schwartz, and J. Grula, “Characteristics of VCSEL array for parallel optical interconnects,” in Proceedings of the Electronic Components and Technology Conference (1996), pp. 279–291.

Ledentsov, N.

G. Stepniak, A. Lewandowski, J. R. Kropp, N. N. Ledentsov, V. A. Shchukin, N. Ledentsov, G. Schaefer, M. Agustin, and J. P. Turkiewicz, “54 Gbit/s OOK transmission using single mode VCSEL up to 2.2  km MMF,” Electron. Lett. 52, 633–635 (2016).
[Crossref]

W. Bo, Z. Xian, M. Yanan, L. Jun, Z. Kangping, Q. Shaofeng, F. Zhiyong, L. Yazhi, M. Agustin, N. Ledentsov, J. Kropp, V. Shchukin, N. N. Ledentsov, I. Eddie, and L. Chao, “Close to 100  Gbps discrete multitone transmission over 100  m of multimode fiber using a single transverse mode 850  nm VCSEL,” Proc. SPIE 9766, 97660K (2016).
[Crossref]

Ledentsov, N. N.

W. Bo, Z. Xian, M. Yanan, L. Jun, Z. Kangping, Q. Shaofeng, F. Zhiyong, L. Yazhi, M. Agustin, N. Ledentsov, J. Kropp, V. Shchukin, N. N. Ledentsov, I. Eddie, and L. Chao, “Close to 100  Gbps discrete multitone transmission over 100  m of multimode fiber using a single transverse mode 850  nm VCSEL,” Proc. SPIE 9766, 97660K (2016).
[Crossref]

G. Stepniak, A. Lewandowski, J. R. Kropp, N. N. Ledentsov, V. A. Shchukin, N. Ledentsov, G. Schaefer, M. Agustin, and J. P. Turkiewicz, “54 Gbit/s OOK transmission using single mode VCSEL up to 2.2  km MMF,” Electron. Lett. 52, 633–635 (2016).
[Crossref]

M. P. Tan, S. T. M. Fryslie, J. A. Lott, N. N. Ledentsov, D. Bimberg, and K. D. Choquette, “Error-free transmission over 1-km OM4 multimode fiber at 25  Gb/s using a single mode photonic crystal vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 25, 1823–1825 (2013).
[Crossref]

S. A. Bolkhin, J. A. Lott, A. Muti, G. Fiol, N. N. Ledentsov, M. V. Maximov, A. M. Nadtochiy, V. A. Shchunkin, and D. Bimberg, “Oxide-confined 850  nm VCSELs operating at bit rates up to 40  Gbit/s,” Electron. Lett. 45, 501–503 (2009).
[Crossref]

Lee, S. C. J.

F. Breyer, S. C. J. Lee, S. Randel, and N. Hanik, “Comparison of OOK and PAM-4 modulation for 10  Gbit/s transmission over up to 300  m polymer optical fiber,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2008), paper OWB5.

Lee, T.-C.

T.-T. Shih, Y.-C. Chi, R.-N. Wang, C.-H. Wu, J.-J. Huang, J.-J. Jou, T.-C. Lee, H.-C. Kuo, G.-R. Lin, and W.-H. Cheng, “Efficient heat dissipation of uncooled 400-Gbps (16 × 25-Gbps) optical transceiver employing multimode VCSEL and PD arrays,” Sci. Rep. 7, 46608 (2017).
[Crossref]

C.-T. Tsai, C.-Y. Peng, C.-Y. Wu, S.-F. Leong, H.-Y. Kao, H.-Y. Wang, Y.-W. Chen, Z.-K. Weng, Y.-C. Chi, H.-C. Kuo, J.-J. Huang, T.-C. Lee, T.-T. Shih, J.-J. Jou, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Multi-mode VCSEL chip with high-indium-density InGaAs/AlGaAs quantum-well pairs for QAM-OFDM in multi-mode fiber,” IEEE J. Quantum Electron. 53, 2400608 (2017).
[Crossref]

Lengyel, T.

J. M. Castro, R. Pimpinella, B. Kose, Y. Huang, B. Lane, K. Szczerba, P. Westbergh, T. Lengyel, J. S. Gustavsson, A. Larsson, and P. A. Andrekson, “50  Gb/s 4-PAM over 200  m of high bandwidth MMF using a 850  nm VCSEL,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2015), paper W1D.1.

Leong, S.-F.

H.-Y. Kao, Y.-C. Chi, C.-Y. Peng, S.-F. Leong, C.-K. Chang, Y.-C. Wu, T.-T. Shih, J. J. Huang, H.-C. Kuo, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Modal linewidth dependent transmission performance of 850-nm VCSELs with encoding PAM-4 over 100-m MMF,” IEEE J. Quantum Electron. 53, 8000408 (2017).

C.-T. Tsai, C.-Y. Peng, C.-Y. Wu, S.-F. Leong, H.-Y. Kao, H.-Y. Wang, Y.-W. Chen, Z.-K. Weng, Y.-C. Chi, H.-C. Kuo, J.-J. Huang, T.-C. Lee, T.-T. Shih, J.-J. Jou, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Multi-mode VCSEL chip with high-indium-density InGaAs/AlGaAs quantum-well pairs for QAM-OFDM in multi-mode fiber,” IEEE J. Quantum Electron. 53, 2400608 (2017).
[Crossref]

H.-Y. Kao, C.-T. Tsai, S.-F. Leong, C.-Y. Peng, Y.-C. Chi, J.-J. Huang, H.-C. Kuo, and G.-R. Lin, “Comparison of single-/few-/multi-mode 850  nm VCSELs for optical OFDM transmission,” Opt. Express 25, 16347–16363 (2017).
[Crossref]

H.-Y. Kao, Y.-C. Chi, C.-T. Tsai, S.-F. Leong, C.-Y. Peng, H.-Y. Wang, J. J. Huang, J.-J. Jou, T.-T. Shih, H.-C. Kuo, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Few-mode VCSEL chip for 100-Gb/s transmission over 100 m multimode fiber,” Photon. Res. 5, 507–515 (2017).

Lewandowski, A.

G. Stepniak, A. Lewandowski, J. R. Kropp, N. N. Ledentsov, V. A. Shchukin, N. Ledentsov, G. Schaefer, M. Agustin, and J. P. Turkiewicz, “54 Gbit/s OOK transmission using single mode VCSEL up to 2.2  km MMF,” Electron. Lett. 52, 633–635 (2016).
[Crossref]

Li, H.

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, and D. Bimberg, “85-fJ dissipated energy per bit at 30  Gb/s across 500-m multimode fiber using 850-nm VCSELs,” IEEE Photon. Technol. Lett. 25, 1638–1641 (2013).
[Crossref]

Li, H. E.

H. E. Li and K. Iga, Vertical-Cavity Surface-Emitting Laser Devices (Springer, 2003).

Li, Y.-C.

Lin, G.-R.

H.-Y. Kao, C.-T. Tsai, S.-F. Leong, C.-Y. Peng, Y.-C. Chi, J.-J. Huang, H.-C. Kuo, and G.-R. Lin, “Comparison of single-/few-/multi-mode 850  nm VCSELs for optical OFDM transmission,” Opt. Express 25, 16347–16363 (2017).
[Crossref]

H.-Y. Kao, Y.-C. Chi, C.-T. Tsai, S.-F. Leong, C.-Y. Peng, H.-Y. Wang, J. J. Huang, J.-J. Jou, T.-T. Shih, H.-C. Kuo, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Few-mode VCSEL chip for 100-Gb/s transmission over 100 m multimode fiber,” Photon. Res. 5, 507–515 (2017).

T.-T. Shih, Y.-C. Chi, R.-N. Wang, C.-H. Wu, J.-J. Huang, J.-J. Jou, T.-C. Lee, H.-C. Kuo, G.-R. Lin, and W.-H. Cheng, “Efficient heat dissipation of uncooled 400-Gbps (16 × 25-Gbps) optical transceiver employing multimode VCSEL and PD arrays,” Sci. Rep. 7, 46608 (2017).
[Crossref]

C.-T. Tsai, C.-Y. Peng, C.-Y. Wu, S.-F. Leong, H.-Y. Kao, H.-Y. Wang, Y.-W. Chen, Z.-K. Weng, Y.-C. Chi, H.-C. Kuo, J.-J. Huang, T.-C. Lee, T.-T. Shih, J.-J. Jou, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Multi-mode VCSEL chip with high-indium-density InGaAs/AlGaAs quantum-well pairs for QAM-OFDM in multi-mode fiber,” IEEE J. Quantum Electron. 53, 2400608 (2017).
[Crossref]

H.-Y. Kao, Y.-C. Chi, C.-Y. Peng, S.-F. Leong, C.-K. Chang, Y.-C. Wu, T.-T. Shih, J. J. Huang, H.-C. Kuo, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Modal linewidth dependent transmission performance of 850-nm VCSELs with encoding PAM-4 over 100-m MMF,” IEEE J. Quantum Electron. 53, 8000408 (2017).

Y.-C. Chi, Y.-C. Li, H.-Y. Wang, P.-C. Peng, H.-H. Lu, and G.-R. Lin, “Optical 16-QAM-52-OFDM transmission at 4  Gbit/s by directly modulating a coherently injection-locked colorless laser diode,” Opt. Express 20, 20071–20077 (2012).
[Crossref]

Lin, T.-C.

J.-J. Liu, K.-L. Chi, C.-C. Wei, T.-C. Lin, C.-Y. Chuang, X.-N. Chen, J.-W. Shi, and J. Chen, “High bit-rate distance product of 128  Gbps·km 4-PAM transmission over 2-km OM4 fiber using an 850-nm VCSEL and a Volterra nonlinear equalizer,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2017), paper W3G.5.

Lingle, R.

Y. Sun and R. Lingle, R. Shubochkin, K. Balemarthy, D. Braganza, T. Gray, W. J. Fan, K. Wade, D. Gazula, and J. Tatum, “51.56 Gb/s SWDM PAM4 transmission over next generation wide band multimode optical fiber,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2016), paper Tu2G.3.

Liu, J.-J.

J.-J. Liu, K.-L. Chi, C.-C. Wei, T.-C. Lin, C.-Y. Chuang, X.-N. Chen, J.-W. Shi, and J. Chen, “High bit-rate distance product of 128  Gbps·km 4-PAM transmission over 2-km OM4 fiber using an 850-nm VCSEL and a Volterra nonlinear equalizer,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2017), paper W3G.5.

Lott, J. A.

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, and D. Bimberg, “85-fJ dissipated energy per bit at 30  Gb/s across 500-m multimode fiber using 850-nm VCSELs,” IEEE Photon. Technol. Lett. 25, 1638–1641 (2013).
[Crossref]

P. Moser, J. A. Lott, and D. Bimberg, “Energy efficiency of directly modulated oxide-confined high bit rate 850  nm VCSELs for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19, 1702212 (2013).
[Crossref]

M. P. Tan, S. T. M. Fryslie, J. A. Lott, N. N. Ledentsov, D. Bimberg, and K. D. Choquette, “Error-free transmission over 1-km OM4 multimode fiber at 25  Gb/s using a single mode photonic crystal vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 25, 1823–1825 (2013).
[Crossref]

S. A. Bolkhin, J. A. Lott, A. Muti, G. Fiol, N. N. Ledentsov, M. V. Maximov, A. M. Nadtochiy, V. A. Shchunkin, and D. Bimberg, “Oxide-confined 850  nm VCSELs operating at bit rates up to 40  Gbit/s,” Electron. Lett. 45, 501–503 (2009).
[Crossref]

Lu, H.-H.

Lyubomirsky, I.

S. M. R. Motaghiannezam, I. Lyubomirsky, H. Daghighian, C. Kocot, T. Gray, J. Tatum, A. AmezcuaCorrea, M. Bigot-Astruc, D. Molin, F. Achten, and P. Sillard, “180  Gbps PAM4 VCSEL transmission over 300  m wideband OM4 fibre,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2016), paper Th3G.2.

Maximov, M. V.

S. A. Bolkhin, J. A. Lott, A. Muti, G. Fiol, N. N. Ledentsov, M. V. Maximov, A. M. Nadtochiy, V. A. Shchunkin, and D. Bimberg, “Oxide-confined 850  nm VCSELs operating at bit rates up to 40  Gbit/s,” Electron. Lett. 45, 501–503 (2009).
[Crossref]

Mello, D. A. A.

R. B. Nunes, H. R. de O. Rocha, D. A. A. Mello, F. D. Simões, M. E. V. Segatto, and J. A. L. Silva, “Transmission of CE-OFDM signals over MMF links using directly modulated 850-nm VCSELs,” IEEE Photon. Technol. Lett. 27, 315–318 (2015).
[Crossref]

Modh, P.

Å. Haglund, J. S. Gustavsson, J. Vukusic, P. Modh, and A. Larsson, “Single fundamental-mode output power exceeding 6  mW from VCSELs with a shallow surface relief,” IEEE Photon. Technol. Lett. 16, 368–370 (2004).
[Crossref]

Molin, D.

A. Gholami, D. Molin, and P. Sillard, “Compensation of chromatic dispersion by modal dispersion in MMF- and VCSEL-based gigabit ethernet transmissions,” IEEE Photon. Technol. Lett. 21, 645–647 (2009).
[Crossref]

S. M. R. Motaghiannezam, I. Lyubomirsky, H. Daghighian, C. Kocot, T. Gray, J. Tatum, A. AmezcuaCorrea, M. Bigot-Astruc, D. Molin, F. Achten, and P. Sillard, “180  Gbps PAM4 VCSEL transmission over 300  m wideband OM4 fibre,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2016), paper Th3G.2.

J. M. Castro, R. Pimpinella, B. Kose, Y. Huang, B. Lane, A. A. Correa, M. Bigot, D. Molin, and P. Sillard, “200  m 2 × 50  Gbps PAM-4 SWDM transmission over wideband multimode fiber using VCSELs and pre-distortion signal,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2016), paper Tu2G.2.

Moser, P.

P. Moser, J. A. Lott, and D. Bimberg, “Energy efficiency of directly modulated oxide-confined high bit rate 850  nm VCSELs for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19, 1702212 (2013).
[Crossref]

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, and D. Bimberg, “85-fJ dissipated energy per bit at 30  Gb/s across 500-m multimode fiber using 850-nm VCSELs,” IEEE Photon. Technol. Lett. 25, 1638–1641 (2013).
[Crossref]

Motaghiannezam, S. M. R.

S. M. R. Motaghiannezam and C. Kocot, “104  Gbps PAM4 transmission over OM3 and OM4 fibers using 850 and 880  nm VCSELs,” in Lasers and Electro-Optics Conference, OSA Technical Digest Series (Optical Society of America, 2016), paper SW4F.8.

S. M. R. Motaghiannezam, I. Lyubomirsky, H. Daghighian, C. Kocot, T. Gray, J. Tatum, A. AmezcuaCorrea, M. Bigot-Astruc, D. Molin, F. Achten, and P. Sillard, “180  Gbps PAM4 VCSEL transmission over 300  m wideband OM4 fibre,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2016), paper Th3G.2.

Muti, A.

S. A. Bolkhin, J. A. Lott, A. Muti, G. Fiol, N. N. Ledentsov, M. V. Maximov, A. M. Nadtochiy, V. A. Shchunkin, and D. Bimberg, “Oxide-confined 850  nm VCSELs operating at bit rates up to 40  Gbit/s,” Electron. Lett. 45, 501–503 (2009).
[Crossref]

Mutig, A.

P. Westbergh, J. S. Gustavsson, B. Kögel, A. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40 Gbit/s error-free operation of oxide-confined 850  nm VCSEL,” Electron. Lett. 46, 1014–1016 (2010).
[Crossref]

Nadtochiy, A.

P. Westbergh, J. S. Gustavsson, B. Kögel, A. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40 Gbit/s error-free operation of oxide-confined 850  nm VCSEL,” Electron. Lett. 46, 1014–1016 (2010).
[Crossref]

Nadtochiy, A. M.

S. A. Bolkhin, J. A. Lott, A. Muti, G. Fiol, N. N. Ledentsov, M. V. Maximov, A. M. Nadtochiy, V. A. Shchunkin, and D. Bimberg, “Oxide-confined 850  nm VCSELs operating at bit rates up to 40  Gbit/s,” Electron. Lett. 45, 501–503 (2009).
[Crossref]

Nunes, R. B.

R. B. Nunes, H. R. de O. Rocha, D. A. A. Mello, F. D. Simões, M. E. V. Segatto, and J. A. L. Silva, “Transmission of CE-OFDM signals over MMF links using directly modulated 850-nm VCSELs,” IEEE Photon. Technol. Lett. 27, 315–318 (2015).
[Crossref]

Peng, C.-Y.

C.-T. Tsai, C.-Y. Peng, C.-Y. Wu, S.-F. Leong, H.-Y. Kao, H.-Y. Wang, Y.-W. Chen, Z.-K. Weng, Y.-C. Chi, H.-C. Kuo, J.-J. Huang, T.-C. Lee, T.-T. Shih, J.-J. Jou, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Multi-mode VCSEL chip with high-indium-density InGaAs/AlGaAs quantum-well pairs for QAM-OFDM in multi-mode fiber,” IEEE J. Quantum Electron. 53, 2400608 (2017).
[Crossref]

H.-Y. Kao, Y.-C. Chi, C.-Y. Peng, S.-F. Leong, C.-K. Chang, Y.-C. Wu, T.-T. Shih, J. J. Huang, H.-C. Kuo, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Modal linewidth dependent transmission performance of 850-nm VCSELs with encoding PAM-4 over 100-m MMF,” IEEE J. Quantum Electron. 53, 8000408 (2017).

H.-Y. Kao, C.-T. Tsai, S.-F. Leong, C.-Y. Peng, Y.-C. Chi, J.-J. Huang, H.-C. Kuo, and G.-R. Lin, “Comparison of single-/few-/multi-mode 850  nm VCSELs for optical OFDM transmission,” Opt. Express 25, 16347–16363 (2017).
[Crossref]

H.-Y. Kao, Y.-C. Chi, C.-T. Tsai, S.-F. Leong, C.-Y. Peng, H.-Y. Wang, J. J. Huang, J.-J. Jou, T.-T. Shih, H.-C. Kuo, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Few-mode VCSEL chip for 100-Gb/s transmission over 100 m multimode fiber,” Photon. Res. 5, 507–515 (2017).

Peng, P.-C.

Pimpinella, R.

J. M. Castro, R. Pimpinella, B. Kose, Y. Huang, B. Lane, A. A. Correa, M. Bigot, D. Molin, and P. Sillard, “200  m 2 × 50  Gbps PAM-4 SWDM transmission over wideband multimode fiber using VCSELs and pre-distortion signal,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2016), paper Tu2G.2.

J. M. Castro, R. Pimpinella, B. Kose, Y. Huang, B. Lane, K. Szczerba, P. Westbergh, T. Lengyel, J. S. Gustavsson, A. Larsson, and P. A. Andrekson, “50  Gb/s 4-PAM over 200  m of high bandwidth MMF using a 850  nm VCSEL,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2015), paper W1D.1.

Proesel, J. E.

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photon. Technol. Lett. 27, 577–580 (2015).
[Crossref]

Ramdani, J.

M. Lebby, C. A. Gaw, W. Jiang, P. A. Kiely, C. L. Shieh, P. R. Claisse, J. Ramdani, D. H. Hartman, D. B. Schwartz, and J. Grula, “Characteristics of VCSEL array for parallel optical interconnects,” in Proceedings of the Electronic Components and Technology Conference (1996), pp. 279–291.

Randel, S.

F. Breyer, S. C. J. Lee, S. Randel, and N. Hanik, “Comparison of OOK and PAM-4 modulation for 10  Gbit/s transmission over up to 300  m polymer optical fiber,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2008), paper OWB5.

Rylyakov, A. V.

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photon. Technol. Lett. 27, 577–580 (2015).
[Crossref]

Safaisini, R.

R. Safaisini, E. Haglund, P. Westbergh, J. S. Gustavsson, and A. Larsson, “20  Gbit/s data transmission over 2  km multimode fibre using 850  nm mode filter VCSEL,” Electron. Lett. 50, 40–42 (2014).
[Crossref]

P. Westbergh, E. P. Haglund, E. Haglund, R. Safaisini, J. S. Gustavsson, and A. Larsson, “High-speed 850  nm VCSELs operating error free up to 57  Gbit/s,” Electron. Lett. 49, 1021–1023 (2013).
[Crossref]

P. Westbergh, R. Safaisini, E. Haglund, B. Kögel, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-speed 850  nm VCSELs with 28  GHz modulation bandwidth operating error-free up to 44  Gbit/s,” Electron. Lett. 48, 1145–1147 (2012).
[Crossref]

Schaefer, G.

G. Stepniak, A. Lewandowski, J. R. Kropp, N. N. Ledentsov, V. A. Shchukin, N. Ledentsov, G. Schaefer, M. Agustin, and J. P. Turkiewicz, “54 Gbit/s OOK transmission using single mode VCSEL up to 2.2  km MMF,” Electron. Lett. 52, 633–635 (2016).
[Crossref]

Schow, C. L.

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photon. Technol. Lett. 27, 577–580 (2015).
[Crossref]

Schwartz, D. B.

M. Lebby, C. A. Gaw, W. Jiang, P. A. Kiely, C. L. Shieh, P. R. Claisse, J. Ramdani, D. H. Hartman, D. B. Schwartz, and J. Grula, “Characteristics of VCSEL array for parallel optical interconnects,” in Proceedings of the Electronic Components and Technology Conference (1996), pp. 279–291.

Segatto, M. E. V.

R. B. Nunes, H. R. de O. Rocha, D. A. A. Mello, F. D. Simões, M. E. V. Segatto, and J. A. L. Silva, “Transmission of CE-OFDM signals over MMF links using directly modulated 850-nm VCSELs,” IEEE Photon. Technol. Lett. 27, 315–318 (2015).
[Crossref]

Shaofeng, Q.

W. Bo, Z. Xian, M. Yanan, L. Jun, Z. Kangping, Q. Shaofeng, F. Zhiyong, L. Yazhi, M. Agustin, N. Ledentsov, J. Kropp, V. Shchukin, N. N. Ledentsov, I. Eddie, and L. Chao, “Close to 100  Gbps discrete multitone transmission over 100  m of multimode fiber using a single transverse mode 850  nm VCSEL,” Proc. SPIE 9766, 97660K (2016).
[Crossref]

Shchukin, V.

W. Bo, Z. Xian, M. Yanan, L. Jun, Z. Kangping, Q. Shaofeng, F. Zhiyong, L. Yazhi, M. Agustin, N. Ledentsov, J. Kropp, V. Shchukin, N. N. Ledentsov, I. Eddie, and L. Chao, “Close to 100  Gbps discrete multitone transmission over 100  m of multimode fiber using a single transverse mode 850  nm VCSEL,” Proc. SPIE 9766, 97660K (2016).
[Crossref]

Shchukin, V. A.

G. Stepniak, A. Lewandowski, J. R. Kropp, N. N. Ledentsov, V. A. Shchukin, N. Ledentsov, G. Schaefer, M. Agustin, and J. P. Turkiewicz, “54 Gbit/s OOK transmission using single mode VCSEL up to 2.2  km MMF,” Electron. Lett. 52, 633–635 (2016).
[Crossref]

Shchunkin, V. A.

S. A. Bolkhin, J. A. Lott, A. Muti, G. Fiol, N. N. Ledentsov, M. V. Maximov, A. M. Nadtochiy, V. A. Shchunkin, and D. Bimberg, “Oxide-confined 850  nm VCSELs operating at bit rates up to 40  Gbit/s,” Electron. Lett. 45, 501–503 (2009).
[Crossref]

Shi, J.-W.

J.-J. Liu, K.-L. Chi, C.-C. Wei, T.-C. Lin, C.-Y. Chuang, X.-N. Chen, J.-W. Shi, and J. Chen, “High bit-rate distance product of 128  Gbps·km 4-PAM transmission over 2-km OM4 fiber using an 850-nm VCSEL and a Volterra nonlinear equalizer,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2017), paper W3G.5.

Shieh, C. L.

M. Lebby, C. A. Gaw, W. Jiang, P. A. Kiely, C. L. Shieh, P. R. Claisse, J. Ramdani, D. H. Hartman, D. B. Schwartz, and J. Grula, “Characteristics of VCSEL array for parallel optical interconnects,” in Proceedings of the Electronic Components and Technology Conference (1996), pp. 279–291.

Shih, T.-T.

T.-T. Shih, Y.-C. Chi, R.-N. Wang, C.-H. Wu, J.-J. Huang, J.-J. Jou, T.-C. Lee, H.-C. Kuo, G.-R. Lin, and W.-H. Cheng, “Efficient heat dissipation of uncooled 400-Gbps (16 × 25-Gbps) optical transceiver employing multimode VCSEL and PD arrays,” Sci. Rep. 7, 46608 (2017).
[Crossref]

H.-Y. Kao, Y.-C. Chi, C.-Y. Peng, S.-F. Leong, C.-K. Chang, Y.-C. Wu, T.-T. Shih, J. J. Huang, H.-C. Kuo, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Modal linewidth dependent transmission performance of 850-nm VCSELs with encoding PAM-4 over 100-m MMF,” IEEE J. Quantum Electron. 53, 8000408 (2017).

C.-T. Tsai, C.-Y. Peng, C.-Y. Wu, S.-F. Leong, H.-Y. Kao, H.-Y. Wang, Y.-W. Chen, Z.-K. Weng, Y.-C. Chi, H.-C. Kuo, J.-J. Huang, T.-C. Lee, T.-T. Shih, J.-J. Jou, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Multi-mode VCSEL chip with high-indium-density InGaAs/AlGaAs quantum-well pairs for QAM-OFDM in multi-mode fiber,” IEEE J. Quantum Electron. 53, 2400608 (2017).
[Crossref]

H.-Y. Kao, Y.-C. Chi, C.-T. Tsai, S.-F. Leong, C.-Y. Peng, H.-Y. Wang, J. J. Huang, J.-J. Jou, T.-T. Shih, H.-C. Kuo, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Few-mode VCSEL chip for 100-Gb/s transmission over 100 m multimode fiber,” Photon. Res. 5, 507–515 (2017).

Shubochkin, R.

Y. Sun and R. Lingle, R. Shubochkin, K. Balemarthy, D. Braganza, T. Gray, W. J. Fan, K. Wade, D. Gazula, and J. Tatum, “51.56 Gb/s SWDM PAM4 transmission over next generation wide band multimode optical fiber,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2016), paper Tu2G.3.

J. Lavrencik, S. Varighese, A. Varghese, G. Landry, Y. Sun, R. Shubochkin, and K. Balemarthy, “100  Gbps PAM-4 transmission over 100 m OM4 and wideband fiber using 850  nm VCSELs,” in European Conference and Exhibition on Optical Communication Conference, OSA Technical Digest Series (Optical Society of America, 2016), paper Th.1.C.5.

Sillard, P.

A. Gholami, D. Molin, and P. Sillard, “Compensation of chromatic dispersion by modal dispersion in MMF- and VCSEL-based gigabit ethernet transmissions,” IEEE Photon. Technol. Lett. 21, 645–647 (2009).
[Crossref]

S. M. R. Motaghiannezam, I. Lyubomirsky, H. Daghighian, C. Kocot, T. Gray, J. Tatum, A. AmezcuaCorrea, M. Bigot-Astruc, D. Molin, F. Achten, and P. Sillard, “180  Gbps PAM4 VCSEL transmission over 300  m wideband OM4 fibre,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2016), paper Th3G.2.

J. M. Castro, R. Pimpinella, B. Kose, Y. Huang, B. Lane, A. A. Correa, M. Bigot, D. Molin, and P. Sillard, “200  m 2 × 50  Gbps PAM-4 SWDM transmission over wideband multimode fiber using VCSELs and pre-distortion signal,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2016), paper Tu2G.2.

Silva, J. A. L.

R. B. Nunes, H. R. de O. Rocha, D. A. A. Mello, F. D. Simões, M. E. V. Segatto, and J. A. L. Silva, “Transmission of CE-OFDM signals over MMF links using directly modulated 850-nm VCSELs,” IEEE Photon. Technol. Lett. 27, 315–318 (2015).
[Crossref]

Simões, F. D.

R. B. Nunes, H. R. de O. Rocha, D. A. A. Mello, F. D. Simões, M. E. V. Segatto, and J. A. L. Silva, “Transmission of CE-OFDM signals over MMF links using directly modulated 850-nm VCSELs,” IEEE Photon. Technol. Lett. 27, 315–318 (2015).
[Crossref]

Stepniak, G.

G. Stepniak, A. Lewandowski, J. R. Kropp, N. N. Ledentsov, V. A. Shchukin, N. Ledentsov, G. Schaefer, M. Agustin, and J. P. Turkiewicz, “54 Gbit/s OOK transmission using single mode VCSEL up to 2.2  km MMF,” Electron. Lett. 52, 633–635 (2016).
[Crossref]

Sun, Y.

Y. Sun and R. Lingle, R. Shubochkin, K. Balemarthy, D. Braganza, T. Gray, W. J. Fan, K. Wade, D. Gazula, and J. Tatum, “51.56 Gb/s SWDM PAM4 transmission over next generation wide band multimode optical fiber,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2016), paper Tu2G.3.

J. Lavrencik, S. Varighese, A. Varghese, G. Landry, Y. Sun, R. Shubochkin, and K. Balemarthy, “100  Gbps PAM-4 transmission over 100 m OM4 and wideband fiber using 850  nm VCSELs,” in European Conference and Exhibition on Optical Communication Conference, OSA Technical Digest Series (Optical Society of America, 2016), paper Th.1.C.5.

Szczerba, K.

K. Szczerba, P. Westbergh, M. Karlsson, P. A. Andrekson, and A. Larsson, “60  Gbits error-free 4-PAM operation with 850  nm VCSEL,” Electron. Lett. 49, 953–955 (2013).
[Crossref]

K. Szczerba, P. Westbergh, E. Agrell, M. Karlsson, P. A. Andrekson, and A. Larsson, “Comparison of intersymbol interference power penalties for OOK and 4-PAM in short-range optical links,” J. Lightwave Technol. 31, 3525–3534 (2013).
[Crossref]

J. M. Castro, R. Pimpinella, B. Kose, Y. Huang, B. Lane, K. Szczerba, P. Westbergh, T. Lengyel, J. S. Gustavsson, A. Larsson, and P. A. Andrekson, “50  Gb/s 4-PAM over 200  m of high bandwidth MMF using a 850  nm VCSEL,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2015), paper W1D.1.

Tan, M. P.

M. P. Tan, S. T. M. Fryslie, J. A. Lott, N. N. Ledentsov, D. Bimberg, and K. D. Choquette, “Error-free transmission over 1-km OM4 multimode fiber at 25  Gb/s using a single mode photonic crystal vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 25, 1823–1825 (2013).
[Crossref]

Tatum, J.

Y. Sun and R. Lingle, R. Shubochkin, K. Balemarthy, D. Braganza, T. Gray, W. J. Fan, K. Wade, D. Gazula, and J. Tatum, “51.56 Gb/s SWDM PAM4 transmission over next generation wide band multimode optical fiber,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2016), paper Tu2G.3.

S. M. R. Motaghiannezam, I. Lyubomirsky, H. Daghighian, C. Kocot, T. Gray, J. Tatum, A. AmezcuaCorrea, M. Bigot-Astruc, D. Molin, F. Achten, and P. Sillard, “180  Gbps PAM4 VCSEL transmission over 300  m wideband OM4 fibre,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2016), paper Th3G.2.

Trowbridge, S. J.

S. J. Trowbridge, “Ethernet and OTN - 400G and beyond,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2015), paper Th3H.1.

Tsai, C.-T.

C.-T. Tsai, C.-Y. Peng, C.-Y. Wu, S.-F. Leong, H.-Y. Kao, H.-Y. Wang, Y.-W. Chen, Z.-K. Weng, Y.-C. Chi, H.-C. Kuo, J.-J. Huang, T.-C. Lee, T.-T. Shih, J.-J. Jou, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Multi-mode VCSEL chip with high-indium-density InGaAs/AlGaAs quantum-well pairs for QAM-OFDM in multi-mode fiber,” IEEE J. Quantum Electron. 53, 2400608 (2017).
[Crossref]

H.-Y. Kao, Y.-C. Chi, C.-T. Tsai, S.-F. Leong, C.-Y. Peng, H.-Y. Wang, J. J. Huang, J.-J. Jou, T.-T. Shih, H.-C. Kuo, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Few-mode VCSEL chip for 100-Gb/s transmission over 100 m multimode fiber,” Photon. Res. 5, 507–515 (2017).

H.-Y. Kao, C.-T. Tsai, S.-F. Leong, C.-Y. Peng, Y.-C. Chi, J.-J. Huang, H.-C. Kuo, and G.-R. Lin, “Comparison of single-/few-/multi-mode 850  nm VCSELs for optical OFDM transmission,” Opt. Express 25, 16347–16363 (2017).
[Crossref]

Turkiewicz, J. P.

G. Stepniak, A. Lewandowski, J. R. Kropp, N. N. Ledentsov, V. A. Shchukin, N. Ledentsov, G. Schaefer, M. Agustin, and J. P. Turkiewicz, “54 Gbit/s OOK transmission using single mode VCSEL up to 2.2  km MMF,” Electron. Lett. 52, 633–635 (2016).
[Crossref]

Varghese, A.

J. Lavrencik, S. Varighese, A. Varghese, G. Landry, Y. Sun, R. Shubochkin, and K. Balemarthy, “100  Gbps PAM-4 transmission over 100 m OM4 and wideband fiber using 850  nm VCSELs,” in European Conference and Exhibition on Optical Communication Conference, OSA Technical Digest Series (Optical Society of America, 2016), paper Th.1.C.5.

Varighese, S.

J. Lavrencik, S. Varighese, A. Varghese, G. Landry, Y. Sun, R. Shubochkin, and K. Balemarthy, “100  Gbps PAM-4 transmission over 100 m OM4 and wideband fiber using 850  nm VCSELs,” in European Conference and Exhibition on Optical Communication Conference, OSA Technical Digest Series (Optical Society of America, 2016), paper Th.1.C.5.

Vukusic, J.

Å. Haglund, J. S. Gustavsson, J. Vukusic, P. Modh, and A. Larsson, “Single fundamental-mode output power exceeding 6  mW from VCSELs with a shallow surface relief,” IEEE Photon. Technol. Lett. 16, 368–370 (2004).
[Crossref]

Wade, K.

Y. Sun and R. Lingle, R. Shubochkin, K. Balemarthy, D. Braganza, T. Gray, W. J. Fan, K. Wade, D. Gazula, and J. Tatum, “51.56 Gb/s SWDM PAM4 transmission over next generation wide band multimode optical fiber,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2016), paper Tu2G.3.

Wang, H.-Y.

H.-Y. Kao, Y.-C. Chi, C.-T. Tsai, S.-F. Leong, C.-Y. Peng, H.-Y. Wang, J. J. Huang, J.-J. Jou, T.-T. Shih, H.-C. Kuo, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Few-mode VCSEL chip for 100-Gb/s transmission over 100 m multimode fiber,” Photon. Res. 5, 507–515 (2017).

C.-T. Tsai, C.-Y. Peng, C.-Y. Wu, S.-F. Leong, H.-Y. Kao, H.-Y. Wang, Y.-W. Chen, Z.-K. Weng, Y.-C. Chi, H.-C. Kuo, J.-J. Huang, T.-C. Lee, T.-T. Shih, J.-J. Jou, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Multi-mode VCSEL chip with high-indium-density InGaAs/AlGaAs quantum-well pairs for QAM-OFDM in multi-mode fiber,” IEEE J. Quantum Electron. 53, 2400608 (2017).
[Crossref]

Y.-C. Chi, Y.-C. Li, H.-Y. Wang, P.-C. Peng, H.-H. Lu, and G.-R. Lin, “Optical 16-QAM-52-OFDM transmission at 4  Gbit/s by directly modulating a coherently injection-locked colorless laser diode,” Opt. Express 20, 20071–20077 (2012).
[Crossref]

Wang, R.-N.

T.-T. Shih, Y.-C. Chi, R.-N. Wang, C.-H. Wu, J.-J. Huang, J.-J. Jou, T.-C. Lee, H.-C. Kuo, G.-R. Lin, and W.-H. Cheng, “Efficient heat dissipation of uncooled 400-Gbps (16 × 25-Gbps) optical transceiver employing multimode VCSEL and PD arrays,” Sci. Rep. 7, 46608 (2017).
[Crossref]

Wei, C.-C.

J.-J. Liu, K.-L. Chi, C.-C. Wei, T.-C. Lin, C.-Y. Chuang, X.-N. Chen, J.-W. Shi, and J. Chen, “High bit-rate distance product of 128  Gbps·km 4-PAM transmission over 2-km OM4 fiber using an 850-nm VCSEL and a Volterra nonlinear equalizer,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2017), paper W3G.5.

Weng, Z.-K.

C.-T. Tsai, C.-Y. Peng, C.-Y. Wu, S.-F. Leong, H.-Y. Kao, H.-Y. Wang, Y.-W. Chen, Z.-K. Weng, Y.-C. Chi, H.-C. Kuo, J.-J. Huang, T.-C. Lee, T.-T. Shih, J.-J. Jou, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Multi-mode VCSEL chip with high-indium-density InGaAs/AlGaAs quantum-well pairs for QAM-OFDM in multi-mode fiber,” IEEE J. Quantum Electron. 53, 2400608 (2017).
[Crossref]

Westbergh, P.

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photon. Technol. Lett. 27, 577–580 (2015).
[Crossref]

R. Safaisini, E. Haglund, P. Westbergh, J. S. Gustavsson, and A. Larsson, “20  Gbit/s data transmission over 2  km multimode fibre using 850  nm mode filter VCSEL,” Electron. Lett. 50, 40–42 (2014).
[Crossref]

K. Szczerba, P. Westbergh, E. Agrell, M. Karlsson, P. A. Andrekson, and A. Larsson, “Comparison of intersymbol interference power penalties for OOK and 4-PAM in short-range optical links,” J. Lightwave Technol. 31, 3525–3534 (2013).
[Crossref]

P. Westbergh, E. P. Haglund, E. Haglund, R. Safaisini, J. S. Gustavsson, and A. Larsson, “High-speed 850  nm VCSELs operating error free up to 57  Gbit/s,” Electron. Lett. 49, 1021–1023 (2013).
[Crossref]

K. Szczerba, P. Westbergh, M. Karlsson, P. A. Andrekson, and A. Larsson, “60  Gbits error-free 4-PAM operation with 850  nm VCSEL,” Electron. Lett. 49, 953–955 (2013).
[Crossref]

P. Westbergh, R. Safaisini, E. Haglund, B. Kögel, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-speed 850  nm VCSELs with 28  GHz modulation bandwidth operating error-free up to 44  Gbit/s,” Electron. Lett. 48, 1145–1147 (2012).
[Crossref]

P. Westbergh, J. S. Gustavsson, B. Kögel, A. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40 Gbit/s error-free operation of oxide-confined 850  nm VCSEL,” Electron. Lett. 46, 1014–1016 (2010).
[Crossref]

J. M. Castro, R. Pimpinella, B. Kose, Y. Huang, B. Lane, K. Szczerba, P. Westbergh, T. Lengyel, J. S. Gustavsson, A. Larsson, and P. A. Andrekson, “50  Gb/s 4-PAM over 200  m of high bandwidth MMF using a 850  nm VCSEL,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2015), paper W1D.1.

Wolf, P.

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, and D. Bimberg, “85-fJ dissipated energy per bit at 30  Gb/s across 500-m multimode fiber using 850-nm VCSELs,” IEEE Photon. Technol. Lett. 25, 1638–1641 (2013).
[Crossref]

Wu, C.-H.

H.-Y. Kao, Y.-C. Chi, C.-T. Tsai, S.-F. Leong, C.-Y. Peng, H.-Y. Wang, J. J. Huang, J.-J. Jou, T.-T. Shih, H.-C. Kuo, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Few-mode VCSEL chip for 100-Gb/s transmission over 100 m multimode fiber,” Photon. Res. 5, 507–515 (2017).

H.-Y. Kao, Y.-C. Chi, C.-Y. Peng, S.-F. Leong, C.-K. Chang, Y.-C. Wu, T.-T. Shih, J. J. Huang, H.-C. Kuo, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Modal linewidth dependent transmission performance of 850-nm VCSELs with encoding PAM-4 over 100-m MMF,” IEEE J. Quantum Electron. 53, 8000408 (2017).

C.-T. Tsai, C.-Y. Peng, C.-Y. Wu, S.-F. Leong, H.-Y. Kao, H.-Y. Wang, Y.-W. Chen, Z.-K. Weng, Y.-C. Chi, H.-C. Kuo, J.-J. Huang, T.-C. Lee, T.-T. Shih, J.-J. Jou, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Multi-mode VCSEL chip with high-indium-density InGaAs/AlGaAs quantum-well pairs for QAM-OFDM in multi-mode fiber,” IEEE J. Quantum Electron. 53, 2400608 (2017).
[Crossref]

T.-T. Shih, Y.-C. Chi, R.-N. Wang, C.-H. Wu, J.-J. Huang, J.-J. Jou, T.-C. Lee, H.-C. Kuo, G.-R. Lin, and W.-H. Cheng, “Efficient heat dissipation of uncooled 400-Gbps (16 × 25-Gbps) optical transceiver employing multimode VCSEL and PD arrays,” Sci. Rep. 7, 46608 (2017).
[Crossref]

Wu, C.-Y.

C.-T. Tsai, C.-Y. Peng, C.-Y. Wu, S.-F. Leong, H.-Y. Kao, H.-Y. Wang, Y.-W. Chen, Z.-K. Weng, Y.-C. Chi, H.-C. Kuo, J.-J. Huang, T.-C. Lee, T.-T. Shih, J.-J. Jou, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Multi-mode VCSEL chip with high-indium-density InGaAs/AlGaAs quantum-well pairs for QAM-OFDM in multi-mode fiber,” IEEE J. Quantum Electron. 53, 2400608 (2017).
[Crossref]

Wu, Y.-C.

H.-Y. Kao, Y.-C. Chi, C.-Y. Peng, S.-F. Leong, C.-K. Chang, Y.-C. Wu, T.-T. Shih, J. J. Huang, H.-C. Kuo, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Modal linewidth dependent transmission performance of 850-nm VCSELs with encoding PAM-4 over 100-m MMF,” IEEE J. Quantum Electron. 53, 8000408 (2017).

Xian, Z.

W. Bo, Z. Xian, M. Yanan, L. Jun, Z. Kangping, Q. Shaofeng, F. Zhiyong, L. Yazhi, M. Agustin, N. Ledentsov, J. Kropp, V. Shchukin, N. N. Ledentsov, I. Eddie, and L. Chao, “Close to 100  Gbps discrete multitone transmission over 100  m of multimode fiber using a single transverse mode 850  nm VCSEL,” Proc. SPIE 9766, 97660K (2016).
[Crossref]

Yanan, M.

W. Bo, Z. Xian, M. Yanan, L. Jun, Z. Kangping, Q. Shaofeng, F. Zhiyong, L. Yazhi, M. Agustin, N. Ledentsov, J. Kropp, V. Shchukin, N. N. Ledentsov, I. Eddie, and L. Chao, “Close to 100  Gbps discrete multitone transmission over 100  m of multimode fiber using a single transverse mode 850  nm VCSEL,” Proc. SPIE 9766, 97660K (2016).
[Crossref]

Yazhi, L.

W. Bo, Z. Xian, M. Yanan, L. Jun, Z. Kangping, Q. Shaofeng, F. Zhiyong, L. Yazhi, M. Agustin, N. Ledentsov, J. Kropp, V. Shchukin, N. N. Ledentsov, I. Eddie, and L. Chao, “Close to 100  Gbps discrete multitone transmission over 100  m of multimode fiber using a single transverse mode 850  nm VCSEL,” Proc. SPIE 9766, 97660K (2016).
[Crossref]

Zhiyong, F.

W. Bo, Z. Xian, M. Yanan, L. Jun, Z. Kangping, Q. Shaofeng, F. Zhiyong, L. Yazhi, M. Agustin, N. Ledentsov, J. Kropp, V. Shchukin, N. N. Ledentsov, I. Eddie, and L. Chao, “Close to 100  Gbps discrete multitone transmission over 100  m of multimode fiber using a single transverse mode 850  nm VCSEL,” Proc. SPIE 9766, 97660K (2016).
[Crossref]

Electron. Lett. (7)

P. Westbergh, E. P. Haglund, E. Haglund, R. Safaisini, J. S. Gustavsson, and A. Larsson, “High-speed 850  nm VCSELs operating error free up to 57  Gbit/s,” Electron. Lett. 49, 1021–1023 (2013).
[Crossref]

P. Westbergh, J. S. Gustavsson, B. Kögel, A. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40 Gbit/s error-free operation of oxide-confined 850  nm VCSEL,” Electron. Lett. 46, 1014–1016 (2010).
[Crossref]

S. A. Bolkhin, J. A. Lott, A. Muti, G. Fiol, N. N. Ledentsov, M. V. Maximov, A. M. Nadtochiy, V. A. Shchunkin, and D. Bimberg, “Oxide-confined 850  nm VCSELs operating at bit rates up to 40  Gbit/s,” Electron. Lett. 45, 501–503 (2009).
[Crossref]

K. Szczerba, P. Westbergh, M. Karlsson, P. A. Andrekson, and A. Larsson, “60  Gbits error-free 4-PAM operation with 850  nm VCSEL,” Electron. Lett. 49, 953–955 (2013).
[Crossref]

P. Westbergh, R. Safaisini, E. Haglund, B. Kögel, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-speed 850  nm VCSELs with 28  GHz modulation bandwidth operating error-free up to 44  Gbit/s,” Electron. Lett. 48, 1145–1147 (2012).
[Crossref]

G. Stepniak, A. Lewandowski, J. R. Kropp, N. N. Ledentsov, V. A. Shchukin, N. Ledentsov, G. Schaefer, M. Agustin, and J. P. Turkiewicz, “54 Gbit/s OOK transmission using single mode VCSEL up to 2.2  km MMF,” Electron. Lett. 52, 633–635 (2016).
[Crossref]

R. Safaisini, E. Haglund, P. Westbergh, J. S. Gustavsson, and A. Larsson, “20  Gbit/s data transmission over 2  km multimode fibre using 850  nm mode filter VCSEL,” Electron. Lett. 50, 40–42 (2014).
[Crossref]

IEEE J. Quantum Electron. (2)

H.-Y. Kao, Y.-C. Chi, C.-Y. Peng, S.-F. Leong, C.-K. Chang, Y.-C. Wu, T.-T. Shih, J. J. Huang, H.-C. Kuo, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Modal linewidth dependent transmission performance of 850-nm VCSELs with encoding PAM-4 over 100-m MMF,” IEEE J. Quantum Electron. 53, 8000408 (2017).

C.-T. Tsai, C.-Y. Peng, C.-Y. Wu, S.-F. Leong, H.-Y. Kao, H.-Y. Wang, Y.-W. Chen, Z.-K. Weng, Y.-C. Chi, H.-C. Kuo, J.-J. Huang, T.-C. Lee, T.-T. Shih, J.-J. Jou, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Multi-mode VCSEL chip with high-indium-density InGaAs/AlGaAs quantum-well pairs for QAM-OFDM in multi-mode fiber,” IEEE J. Quantum Electron. 53, 2400608 (2017).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

P. Moser, J. A. Lott, and D. Bimberg, “Energy efficiency of directly modulated oxide-confined high bit rate 850  nm VCSELs for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19, 1702212 (2013).
[Crossref]

IEEE Photon. Technol. Lett. (6)

Å. Haglund, J. S. Gustavsson, J. Vukusic, P. Modh, and A. Larsson, “Single fundamental-mode output power exceeding 6  mW from VCSELs with a shallow surface relief,” IEEE Photon. Technol. Lett. 16, 368–370 (2004).
[Crossref]

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, and D. Bimberg, “85-fJ dissipated energy per bit at 30  Gb/s across 500-m multimode fiber using 850-nm VCSELs,” IEEE Photon. Technol. Lett. 25, 1638–1641 (2013).
[Crossref]

M. P. Tan, S. T. M. Fryslie, J. A. Lott, N. N. Ledentsov, D. Bimberg, and K. D. Choquette, “Error-free transmission over 1-km OM4 multimode fiber at 25  Gb/s using a single mode photonic crystal vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 25, 1823–1825 (2013).
[Crossref]

A. Gholami, D. Molin, and P. Sillard, “Compensation of chromatic dispersion by modal dispersion in MMF- and VCSEL-based gigabit ethernet transmissions,” IEEE Photon. Technol. Lett. 21, 645–647 (2009).
[Crossref]

R. B. Nunes, H. R. de O. Rocha, D. A. A. Mello, F. D. Simões, M. E. V. Segatto, and J. A. L. Silva, “Transmission of CE-OFDM signals over MMF links using directly modulated 850-nm VCSELs,” IEEE Photon. Technol. Lett. 27, 315–318 (2015).
[Crossref]

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photon. Technol. Lett. 27, 577–580 (2015).
[Crossref]

J. Lightwave Technol. (1)

Opt. Express (2)

Photon. Res. (1)

Proc. SPIE (1)

W. Bo, Z. Xian, M. Yanan, L. Jun, Z. Kangping, Q. Shaofeng, F. Zhiyong, L. Yazhi, M. Agustin, N. Ledentsov, J. Kropp, V. Shchukin, N. N. Ledentsov, I. Eddie, and L. Chao, “Close to 100  Gbps discrete multitone transmission over 100  m of multimode fiber using a single transverse mode 850  nm VCSEL,” Proc. SPIE 9766, 97660K (2016).
[Crossref]

Sci. Rep. (1)

T.-T. Shih, Y.-C. Chi, R.-N. Wang, C.-H. Wu, J.-J. Huang, J.-J. Jou, T.-C. Lee, H.-C. Kuo, G.-R. Lin, and W.-H. Cheng, “Efficient heat dissipation of uncooled 400-Gbps (16 × 25-Gbps) optical transceiver employing multimode VCSEL and PD arrays,” Sci. Rep. 7, 46608 (2017).
[Crossref]

Other (11)

S. M. R. Motaghiannezam and C. Kocot, “104  Gbps PAM4 transmission over OM3 and OM4 fibers using 850 and 880  nm VCSELs,” in Lasers and Electro-Optics Conference, OSA Technical Digest Series (Optical Society of America, 2016), paper SW4F.8.

Y. Sun and R. Lingle, R. Shubochkin, K. Balemarthy, D. Braganza, T. Gray, W. J. Fan, K. Wade, D. Gazula, and J. Tatum, “51.56 Gb/s SWDM PAM4 transmission over next generation wide band multimode optical fiber,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2016), paper Tu2G.3.

H. E. Li and K. Iga, Vertical-Cavity Surface-Emitting Laser Devices (Springer, 2003).

S. J. Trowbridge, “Ethernet and OTN - 400G and beyond,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2015), paper Th3H.1.

J.-J. Liu, K.-L. Chi, C.-C. Wei, T.-C. Lin, C.-Y. Chuang, X.-N. Chen, J.-W. Shi, and J. Chen, “High bit-rate distance product of 128  Gbps·km 4-PAM transmission over 2-km OM4 fiber using an 850-nm VCSEL and a Volterra nonlinear equalizer,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2017), paper W3G.5.

F. Breyer, S. C. J. Lee, S. Randel, and N. Hanik, “Comparison of OOK and PAM-4 modulation for 10  Gbit/s transmission over up to 300  m polymer optical fiber,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2008), paper OWB5.

M. Lebby, C. A. Gaw, W. Jiang, P. A. Kiely, C. L. Shieh, P. R. Claisse, J. Ramdani, D. H. Hartman, D. B. Schwartz, and J. Grula, “Characteristics of VCSEL array for parallel optical interconnects,” in Proceedings of the Electronic Components and Technology Conference (1996), pp. 279–291.

J. M. Castro, R. Pimpinella, B. Kose, Y. Huang, B. Lane, A. A. Correa, M. Bigot, D. Molin, and P. Sillard, “200  m 2 × 50  Gbps PAM-4 SWDM transmission over wideband multimode fiber using VCSELs and pre-distortion signal,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2016), paper Tu2G.2.

J. M. Castro, R. Pimpinella, B. Kose, Y. Huang, B. Lane, K. Szczerba, P. Westbergh, T. Lengyel, J. S. Gustavsson, A. Larsson, and P. A. Andrekson, “50  Gb/s 4-PAM over 200  m of high bandwidth MMF using a 850  nm VCSEL,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2015), paper W1D.1.

J. Lavrencik, S. Varighese, A. Varghese, G. Landry, Y. Sun, R. Shubochkin, and K. Balemarthy, “100  Gbps PAM-4 transmission over 100 m OM4 and wideband fiber using 850  nm VCSELs,” in European Conference and Exhibition on Optical Communication Conference, OSA Technical Digest Series (Optical Society of America, 2016), paper Th.1.C.5.

S. M. R. Motaghiannezam, I. Lyubomirsky, H. Daghighian, C. Kocot, T. Gray, J. Tatum, A. AmezcuaCorrea, M. Bigot-Astruc, D. Molin, F. Achten, and P. Sillard, “180  Gbps PAM4 VCSEL transmission over 300  m wideband OM4 fibre,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2016), paper Th3G.2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. (a) Concept of the pre-emphasis technology. (b) Experimental setup of the proposed VCSEL based on 16-QAM OFDM and PAM-4 over 100 m MMF.
Fig. 2.
Fig. 2. (a) 3D structure, (b) P–I curve with corresponding differential resistance, and (c) optical spectrum of the single-mode VCSEL chip.
Fig. 3.
Fig. 3. Frequency response of the single-mode VCSEL under small-signal analog modulation.
Fig. 4.
Fig. 4. BER performance and corresponding eye diagrams of the PAM-4 data directly modulated onto the single-mode VCSEL at different biases.
Fig. 5.
Fig. 5. Amplitude and phase responses of the single-mode VCSEL after BtB, 100, 200, and 300 m MMF transmissions.
Fig. 6.
Fig. 6. RF spectra and corresponding eye diagrams of single-mode VCSEL-carried PAM-4 data at 24 GBaud with and without pre-emphasis after 0, 100, 200, and 300 m MMF transmissions.
Fig. 7.
Fig. 7. Bathtub curves of 24 GBaud PAM-4 data with pre-emphasis after BtB, 100, 200, and 300 m MMF transmissions.
Fig. 8.
Fig. 8. (a) BERs of the single-mode VCSEL-carried and waveform pre-emphasized PAM-4 data at different bandwidths after BtB, 100, 200, and 300 m OM4 MMF transmissions. (b) Eye diagrams of the pre-emphasized PAM-4 data at 32, 32, 27, and 24 GBaud carried by the single-mode VCSEL over BtB, 100, 200, and 300 m OM4 MMF.
Fig. 9.
Fig. 9. Measured BER of BtB, 100, 200, and 300 m MMF transmitted 48  Gbit/s pre-emphasized PAM-4 data carried by the single-mode VCSEL chip.

Tables (1)

Tables Icon

Table 1. Parameters of the Received Eye Diagrams after 0, 100, 200, and 300 m MMF Transmissions

Metrics