Abstract

We propose and experimentally demonstrate a novel ultracompact dual-mode waveguide crossing based on subwavelength multimode-interference couplers for a densely integrated on-chip mode-division multiplexing system. By engineering the lateral-cladding material index and manipulating phase profiles of light at the nanoscale using an improved inverse design method, a subwavelength structure could theoretically realize the identical beat length for both TE0 and TE1, which can reduce the scale of the device greatly. The fabricated device occupied a footprint of only 4.8  μm×4.8  μm. The measured insertion losses and crosstalks were less than 0.6 dB and 24  dB from 1530 nm to 1590 nm for both TE0 and TE1 modes, respectively. Furthermore, our scheme could also be expanded to design waveguide crossings that support more modes.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Inverse design and demonstration of an ultracompact broadband dual-mode 3 dB power splitter

Weijie Chang, Xinshu Ren, Yingquan Ao, Longhui Lu, Mengfan Cheng, Lei Deng, Deming Liu, and Minming Zhang
Opt. Express 26(18) 24135-24144 (2018)

Ultra-compact mode (de) multiplexer based on subwavelength asymmetric Y-junction

Weijie Chang, Luluzi Lu, Xinshu Ren, Dongyu Li, Zepeng Pan, Mengfan Cheng, Deming Liu, and Minming Zhang
Opt. Express 26(7) 8162-8170 (2018)

Dual-mode waveguide crossing utilizing taper-assisted multimode-interference couplers

Hongnan Xu and Yaocheng Shi
Opt. Lett. 41(22) 5381-5384 (2016)

References

  • View by:
  • |
  • |
  • |

  1. D. Dai and J. E. Bowers, “Silicon-based on-chip multiplexing technologies and devices for peta-bit optical interconnects,” Nanophotonics 3, 283–311 (2014).
    [Crossref]
  2. J. Wang, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division multiplexing,” Laser Photon. Rev. 8, L18–L22 (2014).
    [Crossref]
  3. J. Wang, P. Chen, S. Chen, Y. Shi, and D. Dai, “Improved 8-channel silicon mode demultiplexer with grating polarizers,” Opt. Express 22, 12799–12807 (2014).
    [Crossref]
  4. Y. Ding, J. Xu, F. Da Ros, B. Huang, H. Ou, and C. Peucheret, “On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer,” Opt. Express 21, 10376–10382 (2013).
    [Crossref]
  5. L. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069–3075 (2014).
    [Crossref]
  6. J. B. Driscoll, R. R. Grote, B. Souhan, J. I. Dadap, M. Lu, and R. M. Osgood, “Asymmetric Y junctions in silicon waveguides for on-chip mode-division multiplexing,” Opt. Lett. 38, 1854–1856 (2013).
    [Crossref]
  7. Y. Zhang, Y. He, Q. Zhu, C. Qiu, and Y. Su, “On-chip silicon photonic 2 × 2 mode- and polarization-selective switch with low inter-modal crosstalk,” Photon. Res. 5, 521–526 (2017).
    [Crossref]
  8. Y. Xiong, R. B. Priti, and O. Liboiron-Ladouceur, “High-speed two-mode switch for mode-division multiplexing optical networks,” Optica 4, 1098–1102 (2017).
    [Crossref]
  9. L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun. 3, 1217–1232 (2012).
    [Crossref]
  10. C. Sun, Y. Yu, G. Chen, and X. Zhang, “Ultra-compact bent multimode silicon waveguide with ultralow inter-mode crosstalk,” Opt. Lett. 42, 3004–3007 (2017).
    [Crossref]
  11. H. Xu and Y. Shi, “Dual-mode waveguide crossing utilizing taper-assisted multimode-interference couplers,” Opt. Lett. 41, 5381–5384 (2016).
    [Crossref]
  12. C. Sun, Y. Yu, and X. Zhang, “Ultra-compact waveguide crossing for a mode-division multiplexing optical network,” Opt. Lett. 42, 4913–4916 (2017).
    [Crossref]
  13. P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, D.-X. Xu, S. Janz, A. Densmore, and T. J. Hall, “Subwavelength grating crossings for silicon wire waveguides,” Opt. Express 18, 16146–16155 (2010).
    [Crossref]
  14. A. Maese-Novo, R. Halir, S. Romero-Garcia, D. Perez-Galacho, L. Zavargo-Peche, A. Ortega-Monux, I. Molina-Fernandez, J. G. Wangueemert-Perez, and P. Cheben, “Wavelength independent multimode interference coupler,” Opt. Express 21, 7033–7040 (2013).
    [Crossref]
  15. D. Benedikovic, P. Cheben, J. H. Schmid, D. Xu, B. Lamontagne, S. Wang, J. Lapointe, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “Subwavelength index engineered surface grating coupler with sub-decibel efficiency for 220-nm silicon-on-insulator waveguides,” Opt. Express 23, 22628–22635 (2015).
    [Crossref]
  16. Y. Wang, W. Shi, X. Wang, Z. Lu, M. Caverley, R. Bojko, L. Chrostowski, and N. A. Jaeger, “Design of broadband subwavelength grating couplers with low back reflection,” Opt. Lett. 40, 4647–4650 (2015).
    [Crossref]
  17. A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
    [Crossref]
  18. B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beam splitter with footprint,” Nat. Photonics 9, 378–382 (2015).
    [Crossref]
  19. A. Y. Piggott, J. Lu, T. M. Babinec, K. G. Lagoudakis, J. Petykiewicz, and J. Vučković, “Inverse design and implementation of a wavelength demultiplexing grating coupler,” Sci. Rep. 4, 7210–7214 (2015).
    [Crossref]
  20. L. Lu, D. Liu, F. Zhou, D. Li, M. Cheng, L. Deng, S. Fu, J. Xia, and M. Zhang, “Inverse-designed single-step etched colorless 3  dB couplers based on RIE-lag-insensitive PhC-like subwavelength structures,” Opt. Lett. 41, 5051–5054 (2016).
    [Crossref]
  21. L. B. Soldano and E. C. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
    [Crossref]
  22. C. Chen and C. Chiu, “Taper-integrated multimode-interference based waveguide crossing design,” IEEE J. Quantum Electron. 46, 1656–1661 (2010).
    [Crossref]
  23. L. Lu, M. Zhang, F. Zhou, W. Chang, J. Tang, D. Li, and D. Liu, “Inverse-designed ultra-compact star-crossings based on PhC-like subwavelength structures for optical intercross connect,” Opt. Express 25, 18355–18364 (2017).
    [Crossref]
  24. L. Lalanne and D. Lemercier-Lalanne, “On the effective medium theory of subwavelength periodic structures,” J. Mod. Opt. 43, 2063–2085 (1996).
    [Crossref]
  25. Lumerical FDTD solutions, https://www.lumerical.com .
  26. W. Chang, L. Lu, X. Ren, D. Li, Z. Pan, M. Cheng, D. Liu, and M. Zhang, “Ultra-compact mode (de)multiplexer based on subwavelength asymmetric Y-junction,” Opt. Express 26, 8162–8170 (2018).
    [Crossref]

2018 (1)

2017 (5)

2016 (2)

2015 (5)

D. Benedikovic, P. Cheben, J. H. Schmid, D. Xu, B. Lamontagne, S. Wang, J. Lapointe, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “Subwavelength index engineered surface grating coupler with sub-decibel efficiency for 220-nm silicon-on-insulator waveguides,” Opt. Express 23, 22628–22635 (2015).
[Crossref]

Y. Wang, W. Shi, X. Wang, Z. Lu, M. Caverley, R. Bojko, L. Chrostowski, and N. A. Jaeger, “Design of broadband subwavelength grating couplers with low back reflection,” Opt. Lett. 40, 4647–4650 (2015).
[Crossref]

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
[Crossref]

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beam splitter with footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

A. Y. Piggott, J. Lu, T. M. Babinec, K. G. Lagoudakis, J. Petykiewicz, and J. Vučković, “Inverse design and implementation of a wavelength demultiplexing grating coupler,” Sci. Rep. 4, 7210–7214 (2015).
[Crossref]

2014 (4)

L. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069–3075 (2014).
[Crossref]

D. Dai and J. E. Bowers, “Silicon-based on-chip multiplexing technologies and devices for peta-bit optical interconnects,” Nanophotonics 3, 283–311 (2014).
[Crossref]

J. Wang, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division multiplexing,” Laser Photon. Rev. 8, L18–L22 (2014).
[Crossref]

J. Wang, P. Chen, S. Chen, Y. Shi, and D. Dai, “Improved 8-channel silicon mode demultiplexer with grating polarizers,” Opt. Express 22, 12799–12807 (2014).
[Crossref]

2013 (3)

2012 (1)

L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun. 3, 1217–1232 (2012).
[Crossref]

2010 (2)

1996 (1)

L. Lalanne and D. Lemercier-Lalanne, “On the effective medium theory of subwavelength periodic structures,” J. Mod. Opt. 43, 2063–2085 (1996).
[Crossref]

1995 (1)

L. B. Soldano and E. C. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
[Crossref]

Babinec, T. M.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
[Crossref]

A. Y. Piggott, J. Lu, T. M. Babinec, K. G. Lagoudakis, J. Petykiewicz, and J. Vučković, “Inverse design and implementation of a wavelength demultiplexing grating coupler,” Sci. Rep. 4, 7210–7214 (2015).
[Crossref]

Benedikovic, D.

Bergmen, K.

L. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069–3075 (2014).
[Crossref]

Bock, P. J.

Bojko, R.

Bowers, J. E.

D. Dai and J. E. Bowers, “Silicon-based on-chip multiplexing technologies and devices for peta-bit optical interconnects,” Nanophotonics 3, 283–311 (2014).
[Crossref]

Caverley, M.

Chang, W.

Cheben, P.

Chen, C.

C. Chen and C. Chiu, “Taper-integrated multimode-interference based waveguide crossing design,” IEEE J. Quantum Electron. 46, 1656–1661 (2010).
[Crossref]

Chen, C. P.

L. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069–3075 (2014).
[Crossref]

Chen, G.

Chen, P.

Chen, S.

Cheng, M.

Chiu, C.

C. Chen and C. Chiu, “Taper-integrated multimode-interference based waveguide crossing design,” IEEE J. Quantum Electron. 46, 1656–1661 (2010).
[Crossref]

Chrostowski, L.

Da Ros, F.

Dadap, J. I.

Dado, M.

Dai, D.

J. Wang, P. Chen, S. Chen, Y. Shi, and D. Dai, “Improved 8-channel silicon mode demultiplexer with grating polarizers,” Opt. Express 22, 12799–12807 (2014).
[Crossref]

D. Dai and J. E. Bowers, “Silicon-based on-chip multiplexing technologies and devices for peta-bit optical interconnects,” Nanophotonics 3, 283–311 (2014).
[Crossref]

J. Wang, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division multiplexing,” Laser Photon. Rev. 8, L18–L22 (2014).
[Crossref]

Delâge, A.

Deng, L.

Densmore, A.

Ding, Y.

Driscoll, J. B.

Fu, S.

Gabrielli, L. H.

L. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069–3075 (2014).
[Crossref]

L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun. 3, 1217–1232 (2012).
[Crossref]

Grote, R. R.

Halir, R.

Hall, T. J.

He, S.

J. Wang, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division multiplexing,” Laser Photon. Rev. 8, L18–L22 (2014).
[Crossref]

He, Y.

Huang, B.

Jaeger, N. A.

Janz, S.

Johnson, S. G.

L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun. 3, 1217–1232 (2012).
[Crossref]

Lagoudakis, K. G.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
[Crossref]

A. Y. Piggott, J. Lu, T. M. Babinec, K. G. Lagoudakis, J. Petykiewicz, and J. Vučković, “Inverse design and implementation of a wavelength demultiplexing grating coupler,” Sci. Rep. 4, 7210–7214 (2015).
[Crossref]

Lalanne, L.

L. Lalanne and D. Lemercier-Lalanne, “On the effective medium theory of subwavelength periodic structures,” J. Mod. Opt. 43, 2063–2085 (1996).
[Crossref]

Lamontagne, B.

Lapointe, J.

Lemercier-Lalanne, D.

L. Lalanne and D. Lemercier-Lalanne, “On the effective medium theory of subwavelength periodic structures,” J. Mod. Opt. 43, 2063–2085 (1996).
[Crossref]

Li, D.

Liboiron-Ladouceur, O.

Lipson, M.

L. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069–3075 (2014).
[Crossref]

L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun. 3, 1217–1232 (2012).
[Crossref]

Liu, D.

Lu, J.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
[Crossref]

A. Y. Piggott, J. Lu, T. M. Babinec, K. G. Lagoudakis, J. Petykiewicz, and J. Vučković, “Inverse design and implementation of a wavelength demultiplexing grating coupler,” Sci. Rep. 4, 7210–7214 (2015).
[Crossref]

Lu, L.

Lu, M.

Lu, Z.

Luo, L.

L. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069–3075 (2014).
[Crossref]

Maese-Novo, A.

Menon, R.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beam splitter with footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

Molina-Fernandez, I.

Ophir, N.

L. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069–3075 (2014).
[Crossref]

Ortega-Monux, A.

Ortega-Moñux, A.

Osgood, R. M.

Ou, H.

Pan, Z.

Pennings, E. C.

L. B. Soldano and E. C. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
[Crossref]

Perez-Galacho, D.

Petykiewicz, J.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
[Crossref]

A. Y. Piggott, J. Lu, T. M. Babinec, K. G. Lagoudakis, J. Petykiewicz, and J. Vučković, “Inverse design and implementation of a wavelength demultiplexing grating coupler,” Sci. Rep. 4, 7210–7214 (2015).
[Crossref]

Peucheret, C.

Piggott, A. Y.

A. Y. Piggott, J. Lu, T. M. Babinec, K. G. Lagoudakis, J. Petykiewicz, and J. Vučković, “Inverse design and implementation of a wavelength demultiplexing grating coupler,” Sci. Rep. 4, 7210–7214 (2015).
[Crossref]

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
[Crossref]

Poitras, C. B.

L. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069–3075 (2014).
[Crossref]

Polson, R.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beam splitter with footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

Priti, R. B.

Qiu, C.

Ren, X.

Romero-Garcia, S.

Schmid, J. H.

Shen, B.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beam splitter with footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

Shi, W.

Shi, Y.

Soldano, L. B.

L. B. Soldano and E. C. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
[Crossref]

Souhan, B.

Su, Y.

Sun, C.

Tang, J.

Vuckovic, J.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
[Crossref]

A. Y. Piggott, J. Lu, T. M. Babinec, K. G. Lagoudakis, J. Petykiewicz, and J. Vučković, “Inverse design and implementation of a wavelength demultiplexing grating coupler,” Sci. Rep. 4, 7210–7214 (2015).
[Crossref]

Wang, J.

J. Wang, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division multiplexing,” Laser Photon. Rev. 8, L18–L22 (2014).
[Crossref]

J. Wang, P. Chen, S. Chen, Y. Shi, and D. Dai, “Improved 8-channel silicon mode demultiplexer with grating polarizers,” Opt. Express 22, 12799–12807 (2014).
[Crossref]

Wang, P.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beam splitter with footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

Wang, S.

Wang, X.

Wang, Y.

Wangueemert-Perez, J. G.

Xia, J.

Xiong, Y.

Xu, D.

Xu, D.-X.

Xu, H.

Xu, J.

Yu, Y.

Zavargo-Peche, L.

Zhang, M.

Zhang, X.

Zhang, Y.

Zhou, F.

Zhu, Q.

IEEE J. Quantum Electron. (1)

C. Chen and C. Chiu, “Taper-integrated multimode-interference based waveguide crossing design,” IEEE J. Quantum Electron. 46, 1656–1661 (2010).
[Crossref]

J. Lightwave Technol. (1)

L. B. Soldano and E. C. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
[Crossref]

J. Mod. Opt. (1)

L. Lalanne and D. Lemercier-Lalanne, “On the effective medium theory of subwavelength periodic structures,” J. Mod. Opt. 43, 2063–2085 (1996).
[Crossref]

Laser Photon. Rev. (1)

J. Wang, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division multiplexing,” Laser Photon. Rev. 8, L18–L22 (2014).
[Crossref]

Nanophotonics (1)

D. Dai and J. E. Bowers, “Silicon-based on-chip multiplexing technologies and devices for peta-bit optical interconnects,” Nanophotonics 3, 283–311 (2014).
[Crossref]

Nat. Commun. (2)

L. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069–3075 (2014).
[Crossref]

L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun. 3, 1217–1232 (2012).
[Crossref]

Nat. Photonics (2)

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
[Crossref]

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beam splitter with footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

Opt. Express (7)

P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, D.-X. Xu, S. Janz, A. Densmore, and T. J. Hall, “Subwavelength grating crossings for silicon wire waveguides,” Opt. Express 18, 16146–16155 (2010).
[Crossref]

A. Maese-Novo, R. Halir, S. Romero-Garcia, D. Perez-Galacho, L. Zavargo-Peche, A. Ortega-Monux, I. Molina-Fernandez, J. G. Wangueemert-Perez, and P. Cheben, “Wavelength independent multimode interference coupler,” Opt. Express 21, 7033–7040 (2013).
[Crossref]

D. Benedikovic, P. Cheben, J. H. Schmid, D. Xu, B. Lamontagne, S. Wang, J. Lapointe, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “Subwavelength index engineered surface grating coupler with sub-decibel efficiency for 220-nm silicon-on-insulator waveguides,” Opt. Express 23, 22628–22635 (2015).
[Crossref]

J. Wang, P. Chen, S. Chen, Y. Shi, and D. Dai, “Improved 8-channel silicon mode demultiplexer with grating polarizers,” Opt. Express 22, 12799–12807 (2014).
[Crossref]

Y. Ding, J. Xu, F. Da Ros, B. Huang, H. Ou, and C. Peucheret, “On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer,” Opt. Express 21, 10376–10382 (2013).
[Crossref]

W. Chang, L. Lu, X. Ren, D. Li, Z. Pan, M. Cheng, D. Liu, and M. Zhang, “Ultra-compact mode (de)multiplexer based on subwavelength asymmetric Y-junction,” Opt. Express 26, 8162–8170 (2018).
[Crossref]

L. Lu, M. Zhang, F. Zhou, W. Chang, J. Tang, D. Li, and D. Liu, “Inverse-designed ultra-compact star-crossings based on PhC-like subwavelength structures for optical intercross connect,” Opt. Express 25, 18355–18364 (2017).
[Crossref]

Opt. Lett. (6)

Optica (1)

Photon. Res. (1)

Sci. Rep. (1)

A. Y. Piggott, J. Lu, T. M. Babinec, K. G. Lagoudakis, J. Petykiewicz, and J. Vučković, “Inverse design and implementation of a wavelength demultiplexing grating coupler,” Sci. Rep. 4, 7210–7214 (2015).
[Crossref]

Other (1)

Lumerical FDTD solutions, https://www.lumerical.com .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Schematic illustration of the dual-mode waveguide crossing. (b) and (c) Self-image beat lengths of both modes for the conventional waveguide-based MMI coupler and SW-structure-assisted one as a function of W1, respectively.
Fig. 2.
Fig. 2. (a) Schematic of the dual-mode crossings based on SW-structure MMI couplers. (b)–(e) Manually set and random initial patterns. (f)–(i) Optimized patterns for the manually set and random initials. (j) Calculated FOMs after every iteration for the manual and random initial patterns. (k) and (l) Transmission spectra for TE0 and TE1 of the four optimized devices with different initial patterns, respectively.
Fig. 3.
Fig. 3. (a) and (b) Simulated magnetic field distributions of Hz for TE0 and TE1 at the wavelength of 1560 nm, respectively. (c) and (d) Simulated transmission spectra for TE0 and TE1, respectively.
Fig. 4.
Fig. 4. (a) SEM image for the fabricated device composed of a dual-mode waveguide crossing and four (DE)MUXs. (b) SEM picture for the reference MDM system. (c) and (d) Detailed SEM images for dual-mode waveguide crossing and MUX. (e) and (f) Normalized measured transmission spectra for the fabricated reference MDM link and the entire fabricated device consisting of our proposed crossing and a pair of (DE)MUXs, respectively.
Fig. 5.
Fig. 5. (a) and (b) Measured transmission spectra with different numbers of cascaded crossings for TE0 and TE1, respectively. (c) and (d) Measured ILs at 1560 nm as a function of cascaded crossing numbers for TE0 and TE1, respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

LB,n=2πβTEnβTEn+2,
FOM=12M·(|t1|+|t2|),

Metrics