Abstract

In this paper, we theoretically propose and experimentally demonstrate the manipulation of a novel degree of freedom in ring resonators, which is the coupling from the clockwise input to the counterclockwise propagating mode (and vice versa). We name this mechanism backcoupling, in contrast with the normal forward-coupling of a directional coupler. It is well known that internal reflections will cause peak splitting in a ring resonator. Our previous research demonstrated that the peak asymmetry will be strongly influenced by the backcoupling. Thus, it is worth manipulating the backcoupling in order to gain full control of a split resonance for the benefit of various resonance-splitting-based applications. While it is difficult to directly manipulate the backcoupling of a conventional directional coupler, here we design a circuit explicitly for manipulating the backcoupling. It can be potentially developed for applications such as single sideband filter, resonance splitting elimination, Fano resonance, and ultrahigh-Q and finesse.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Fundamental suppression of backscattering in silicon microrings

Ang Li and Wim Bogaerts
Opt. Express 25(3) 2092-2099 (2017)

Fast light in silicon ring resonator with resonance-splitting

Qiang Li, Ziyang Zhang, Jing Wang, Min Qiu, and Yikai Su
Opt. Express 17(2) 933-940 (2009)

References

  • View by:
  • |
  • |
  • |

  1. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
    [Crossref]
  2. F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness induced backscattering in optical silicon waveguides,” Phys. Rev. Lett. 104, 033902 (2010).
    [Crossref]
  3. A. Li, Y. Xing, R. Van Laer, R. Baets, and W. Bogaerts, “Extreme spectral transmission fluctuations in silicon nanowires induced by backscattering,” in IEEE 13th International Conference on Group IV Photonics (GFP) (IEEE, 2016), pp. 160–161.
  4. G. Ballesteros, J. Matres, J. Martí, and C. Oton, “Characterizing and modeling backscattering in silicon microring resonators,” Opt. Express 19, 24980–24985 (2011).
    [Crossref]
  5. A. Li, T. Vaerenbergh, P. Heyn, P. Bienstman, and W. Bogaerts, “Backscattering in silicon microring resonators: a quantitative analysis,” Laser Photon. Rev. 10, 420–431 (2016).
    [Crossref]
  6. Q. Li, Z. Zhang, J. Wang, M. Qiu, and Y. Su, “Fast light in silicon ring resonator with resonance-splitting,” Opt. Express 17, 933–940 (2009).
    [Crossref]
  7. T. Y. Ang and N. Q. Ngo, “Tunable fast and slow light in a traveling wave microresonator via interaction of intra-cavity backscattering with dual contrapropagating inputs,” J. Opt. Soc. Am. B 27, 2774–2783 (2010).
    [Crossref]
  8. T. Wang, M. Xu, F. Li, J. Wu, L. Zhou, and Y. Su, “Design of a high-modulation-depth, low-energy silicon modulator based on coupling tuning in a resonance-split microring,” J. Opt. Soc. Am. B 29, 3047–3056 (2012).
    [Crossref]
  9. A. Pandey, S. V. Bhagavatula, V. Supradeepa, and S. K. Selvaraja, “Optical single sideband generation using self-coupled micro ring resonator in SOI,” in European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference (CLEO/Europe-EQEC) (IEEE, 2017), paper CI_P_6.
  10. A. Li and W. Bogaerts, “An actively controlled silicon ring resonator with a fully tunable Fano resonance,” APL Photon. 2, 096101 (2017).
    [Crossref]
  11. G. Gao, D. Li, Y. Zhang, S. Yuan, A. Armghan, Q. Huang, Y. Wang, J. Yu, and J. Xia, “Tuning of resonance spacing over whole free spectral range based on Autler-Townes splitting in a single microring resonator,” Opt. Express 23, 26895–26904 (2015).
    [Crossref]
  12. B. Peng, Ş. K. Özdemir, M. Liertzer, W. Chen, J. Kramer, H. Yılmaz, J. Wiersig, S. Rotter, and L. Yang, “Chiral modes and directional lasing at exceptional points,” Proc. Natl. Acad. Sci. USA 113, 6845–6850 (2016).
    [Crossref]
  13. W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548, 192–196 (2017).
    [Crossref]
  14. A. Li and W. Bogaerts, “Tunable electromagnetically induced transparency in integrated silicon photonics circuit,” Opt. Express 25, 31688–31695 (2017).
    [Crossref]
  15. H. Yu, P. Li, M. Chen, H. Chen, S. Yang, and S. Xie, “Analog photonic link based on the Aulter–Townes splitting induced dual-band filter for OCS and the SOI signal processor,” Opt. Lett. 40, 2225–2228 (2015).
    [Crossref]
  16. D. D. Smith, H. Chang, K. A. Fuller, A. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69, 063804 (2004).
    [Crossref]
  17. J. Wu, B. Liu, J. Peng, J. Mao, X. Jiang, C. Qiu, C. Tremblay, and Y. Su, “On-chip tunable second-order differential-equation solver based on a silicon photonic mode-split microresonator,” J. Lightwave Technol. 33, 3542–3549 (2015).
    [Crossref]
  18. B. Peng, Ş. K. Özdemir, J. Zhu, and L. Yang, “Photonic molecules formed by coupled hybrid resonators,” Opt. Lett. 37, 3435–3437 (2012).
    [Crossref]
  19. Y. Li, F. Abolmaali, K. W. Allen, N. I. Limberopoulos, A. Urbas, Y. Rakovich, A. V. Maslov, and V. N. Astratov, “Whispering gallery mode hybridization in photonic molecules,” Laser Photon. Rev. 11, 1600278 (2017).
    [Crossref]
  20. M. C. Souza, L. A. Barea, F. Vallini, G. F. Rezende, G. S. Wiederhecker, and N. C. Frateschi, “Embedded coupled microrings with high-finesse and close-spaced resonances for optical signal processing,” Opt. Express 22, 10430–10438 (2014).
    [Crossref]
  21. A. Li and W. Bogaerts, “Fundamental suppression of backscattering in silicon microrings,” Opt. Express 25, 2092–2099 (2017).
    [Crossref]
  22. M. Fiers, T. Van Vaerenbergh, K. Caluwaerts, D. V. Ginste, B. Schrauwen, J. Dambre, and P. Bienstman, “Time-domain and frequency-domain modeling of nonlinear optical components at the circuit-level using a node-based approach,” J. Opt. Soc. Am. B 29, 896–900 (2012).
    [Crossref]
  23. “Luceda Photonics,” http://www.lucedaphotonics.com/en (2008).
  24. A. Li, Q. Huang, and W. Bogaerts, “Design of a single all-silicon ring resonator with a 150  nm free spectral range and a 100  nm tuning range around 1550  nm,” Photon. Res. 4, 84–92 (2016).
    [Crossref]
  25. Y. Lu, L. Xu, Y. Yu, P. Wang, and J. Yao, “Double-wavelength Fano resonance and enhanced coupled-resonator-induced transparency in a double-microcavity resonator system,” J. Opt. Soc. Am. A 23, 1718–1721 (2006).
    [Crossref]
  26. P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
    [Crossref]
  27. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23, 401–412 (2005).
    [Crossref]
  28. S. K. Selvaraja, P. De Heyn, G. Winroth, P. Ong, G. Lepage, C. Cailler, A. Rigny, K. K. Bourdelle, W. Bogaerts, D. Van Thourhout, J. Van Campenhout, and P. Absil, “Highly uniform and low-loss passive silicon photonics devices using a 300  mm CMOS platform,” in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2014), pp. 1–3.

2017 (5)

A. Li and W. Bogaerts, “An actively controlled silicon ring resonator with a fully tunable Fano resonance,” APL Photon. 2, 096101 (2017).
[Crossref]

W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548, 192–196 (2017).
[Crossref]

A. Li and W. Bogaerts, “Tunable electromagnetically induced transparency in integrated silicon photonics circuit,” Opt. Express 25, 31688–31695 (2017).
[Crossref]

Y. Li, F. Abolmaali, K. W. Allen, N. I. Limberopoulos, A. Urbas, Y. Rakovich, A. V. Maslov, and V. N. Astratov, “Whispering gallery mode hybridization in photonic molecules,” Laser Photon. Rev. 11, 1600278 (2017).
[Crossref]

A. Li and W. Bogaerts, “Fundamental suppression of backscattering in silicon microrings,” Opt. Express 25, 2092–2099 (2017).
[Crossref]

2016 (3)

A. Li, Q. Huang, and W. Bogaerts, “Design of a single all-silicon ring resonator with a 150  nm free spectral range and a 100  nm tuning range around 1550  nm,” Photon. Res. 4, 84–92 (2016).
[Crossref]

B. Peng, Ş. K. Özdemir, M. Liertzer, W. Chen, J. Kramer, H. Yılmaz, J. Wiersig, S. Rotter, and L. Yang, “Chiral modes and directional lasing at exceptional points,” Proc. Natl. Acad. Sci. USA 113, 6845–6850 (2016).
[Crossref]

A. Li, T. Vaerenbergh, P. Heyn, P. Bienstman, and W. Bogaerts, “Backscattering in silicon microring resonators: a quantitative analysis,” Laser Photon. Rev. 10, 420–431 (2016).
[Crossref]

2015 (3)

2014 (1)

2012 (4)

2011 (1)

2010 (2)

T. Y. Ang and N. Q. Ngo, “Tunable fast and slow light in a traveling wave microresonator via interaction of intra-cavity backscattering with dual contrapropagating inputs,” J. Opt. Soc. Am. B 27, 2774–2783 (2010).
[Crossref]

F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness induced backscattering in optical silicon waveguides,” Phys. Rev. Lett. 104, 033902 (2010).
[Crossref]

2009 (1)

2006 (1)

2005 (1)

2004 (2)

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[Crossref]

D. D. Smith, H. Chang, K. A. Fuller, A. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69, 063804 (2004).
[Crossref]

Abolmaali, F.

Y. Li, F. Abolmaali, K. W. Allen, N. I. Limberopoulos, A. Urbas, Y. Rakovich, A. V. Maslov, and V. N. Astratov, “Whispering gallery mode hybridization in photonic molecules,” Laser Photon. Rev. 11, 1600278 (2017).
[Crossref]

Absil, P.

S. K. Selvaraja, P. De Heyn, G. Winroth, P. Ong, G. Lepage, C. Cailler, A. Rigny, K. K. Bourdelle, W. Bogaerts, D. Van Thourhout, J. Van Campenhout, and P. Absil, “Highly uniform and low-loss passive silicon photonics devices using a 300  mm CMOS platform,” in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2014), pp. 1–3.

Allen, K. W.

Y. Li, F. Abolmaali, K. W. Allen, N. I. Limberopoulos, A. Urbas, Y. Rakovich, A. V. Maslov, and V. N. Astratov, “Whispering gallery mode hybridization in photonic molecules,” Laser Photon. Rev. 11, 1600278 (2017).
[Crossref]

Ang, T. Y.

Armghan, A.

Astratov, V. N.

Y. Li, F. Abolmaali, K. W. Allen, N. I. Limberopoulos, A. Urbas, Y. Rakovich, A. V. Maslov, and V. N. Astratov, “Whispering gallery mode hybridization in photonic molecules,” Laser Photon. Rev. 11, 1600278 (2017).
[Crossref]

Baets, R.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23, 401–412 (2005).
[Crossref]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[Crossref]

A. Li, Y. Xing, R. Van Laer, R. Baets, and W. Bogaerts, “Extreme spectral transmission fluctuations in silicon nanowires induced by backscattering,” in IEEE 13th International Conference on Group IV Photonics (GFP) (IEEE, 2016), pp. 160–161.

Ballesteros, G.

Barea, L. A.

Beckx, S.

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23, 401–412 (2005).
[Crossref]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[Crossref]

Bhagavatula, S. V.

A. Pandey, S. V. Bhagavatula, V. Supradeepa, and S. K. Selvaraja, “Optical single sideband generation using self-coupled micro ring resonator in SOI,” in European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference (CLEO/Europe-EQEC) (IEEE, 2017), paper CI_P_6.

Bienstman, P.

A. Li, T. Vaerenbergh, P. Heyn, P. Bienstman, and W. Bogaerts, “Backscattering in silicon microring resonators: a quantitative analysis,” Laser Photon. Rev. 10, 420–431 (2016).
[Crossref]

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

M. Fiers, T. Van Vaerenbergh, K. Caluwaerts, D. V. Ginste, B. Schrauwen, J. Dambre, and P. Bienstman, “Time-domain and frequency-domain modeling of nonlinear optical components at the circuit-level using a node-based approach,” J. Opt. Soc. Am. B 29, 896–900 (2012).
[Crossref]

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23, 401–412 (2005).
[Crossref]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[Crossref]

Bogaerts, W.

A. Li and W. Bogaerts, “An actively controlled silicon ring resonator with a fully tunable Fano resonance,” APL Photon. 2, 096101 (2017).
[Crossref]

A. Li and W. Bogaerts, “Fundamental suppression of backscattering in silicon microrings,” Opt. Express 25, 2092–2099 (2017).
[Crossref]

A. Li and W. Bogaerts, “Tunable electromagnetically induced transparency in integrated silicon photonics circuit,” Opt. Express 25, 31688–31695 (2017).
[Crossref]

A. Li, Q. Huang, and W. Bogaerts, “Design of a single all-silicon ring resonator with a 150  nm free spectral range and a 100  nm tuning range around 1550  nm,” Photon. Res. 4, 84–92 (2016).
[Crossref]

A. Li, T. Vaerenbergh, P. Heyn, P. Bienstman, and W. Bogaerts, “Backscattering in silicon microring resonators: a quantitative analysis,” Laser Photon. Rev. 10, 420–431 (2016).
[Crossref]

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23, 401–412 (2005).
[Crossref]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[Crossref]

A. Li, Y. Xing, R. Van Laer, R. Baets, and W. Bogaerts, “Extreme spectral transmission fluctuations in silicon nanowires induced by backscattering,” in IEEE 13th International Conference on Group IV Photonics (GFP) (IEEE, 2016), pp. 160–161.

S. K. Selvaraja, P. De Heyn, G. Winroth, P. Ong, G. Lepage, C. Cailler, A. Rigny, K. K. Bourdelle, W. Bogaerts, D. Van Thourhout, J. Van Campenhout, and P. Absil, “Highly uniform and low-loss passive silicon photonics devices using a 300  mm CMOS platform,” in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2014), pp. 1–3.

Bourdelle, K. K.

S. K. Selvaraja, P. De Heyn, G. Winroth, P. Ong, G. Lepage, C. Cailler, A. Rigny, K. K. Bourdelle, W. Bogaerts, D. Van Thourhout, J. Van Campenhout, and P. Absil, “Highly uniform and low-loss passive silicon photonics devices using a 300  mm CMOS platform,” in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2014), pp. 1–3.

Boyd, R. W.

D. D. Smith, H. Chang, K. A. Fuller, A. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69, 063804 (2004).
[Crossref]

Cailler, C.

S. K. Selvaraja, P. De Heyn, G. Winroth, P. Ong, G. Lepage, C. Cailler, A. Rigny, K. K. Bourdelle, W. Bogaerts, D. Van Thourhout, J. Van Campenhout, and P. Absil, “Highly uniform and low-loss passive silicon photonics devices using a 300  mm CMOS platform,” in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2014), pp. 1–3.

Caluwaerts, K.

Canciamilla, A.

F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness induced backscattering in optical silicon waveguides,” Phys. Rev. Lett. 104, 033902 (2010).
[Crossref]

Chang, H.

D. D. Smith, H. Chang, K. A. Fuller, A. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69, 063804 (2004).
[Crossref]

Chen, H.

Chen, M.

Chen, W.

W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548, 192–196 (2017).
[Crossref]

B. Peng, Ş. K. Özdemir, M. Liertzer, W. Chen, J. Kramer, H. Yılmaz, J. Wiersig, S. Rotter, and L. Yang, “Chiral modes and directional lasing at exceptional points,” Proc. Natl. Acad. Sci. USA 113, 6845–6850 (2016).
[Crossref]

Claes, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Dambre, J.

De Heyn, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

S. K. Selvaraja, P. De Heyn, G. Winroth, P. Ong, G. Lepage, C. Cailler, A. Rigny, K. K. Bourdelle, W. Bogaerts, D. Van Thourhout, J. Van Campenhout, and P. Absil, “Highly uniform and low-loss passive silicon photonics devices using a 300  mm CMOS platform,” in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2014), pp. 1–3.

De Vos, K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Dumon, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23, 401–412 (2005).
[Crossref]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[Crossref]

Ferrari, C.

F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness induced backscattering in optical silicon waveguides,” Phys. Rev. Lett. 104, 033902 (2010).
[Crossref]

Fiers, M.

Frateschi, N. C.

Fuller, K. A.

D. D. Smith, H. Chang, K. A. Fuller, A. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69, 063804 (2004).
[Crossref]

Gao, G.

Ginste, D. V.

Heyn, P.

A. Li, T. Vaerenbergh, P. Heyn, P. Bienstman, and W. Bogaerts, “Backscattering in silicon microring resonators: a quantitative analysis,” Laser Photon. Rev. 10, 420–431 (2016).
[Crossref]

Huang, Q.

Jiang, X.

Kramer, J.

B. Peng, Ş. K. Özdemir, M. Liertzer, W. Chen, J. Kramer, H. Yılmaz, J. Wiersig, S. Rotter, and L. Yang, “Chiral modes and directional lasing at exceptional points,” Proc. Natl. Acad. Sci. USA 113, 6845–6850 (2016).
[Crossref]

Kumar Selvaraja, S.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Lepage, G.

S. K. Selvaraja, P. De Heyn, G. Winroth, P. Ong, G. Lepage, C. Cailler, A. Rigny, K. K. Bourdelle, W. Bogaerts, D. Van Thourhout, J. Van Campenhout, and P. Absil, “Highly uniform and low-loss passive silicon photonics devices using a 300  mm CMOS platform,” in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2014), pp. 1–3.

Li, A.

A. Li and W. Bogaerts, “An actively controlled silicon ring resonator with a fully tunable Fano resonance,” APL Photon. 2, 096101 (2017).
[Crossref]

A. Li and W. Bogaerts, “Fundamental suppression of backscattering in silicon microrings,” Opt. Express 25, 2092–2099 (2017).
[Crossref]

A. Li and W. Bogaerts, “Tunable electromagnetically induced transparency in integrated silicon photonics circuit,” Opt. Express 25, 31688–31695 (2017).
[Crossref]

A. Li, Q. Huang, and W. Bogaerts, “Design of a single all-silicon ring resonator with a 150  nm free spectral range and a 100  nm tuning range around 1550  nm,” Photon. Res. 4, 84–92 (2016).
[Crossref]

A. Li, T. Vaerenbergh, P. Heyn, P. Bienstman, and W. Bogaerts, “Backscattering in silicon microring resonators: a quantitative analysis,” Laser Photon. Rev. 10, 420–431 (2016).
[Crossref]

A. Li, Y. Xing, R. Van Laer, R. Baets, and W. Bogaerts, “Extreme spectral transmission fluctuations in silicon nanowires induced by backscattering,” in IEEE 13th International Conference on Group IV Photonics (GFP) (IEEE, 2016), pp. 160–161.

Li, D.

Li, F.

Li, P.

Li, Q.

Li, Y.

Y. Li, F. Abolmaali, K. W. Allen, N. I. Limberopoulos, A. Urbas, Y. Rakovich, A. V. Maslov, and V. N. Astratov, “Whispering gallery mode hybridization in photonic molecules,” Laser Photon. Rev. 11, 1600278 (2017).
[Crossref]

Liertzer, M.

B. Peng, Ş. K. Özdemir, M. Liertzer, W. Chen, J. Kramer, H. Yılmaz, J. Wiersig, S. Rotter, and L. Yang, “Chiral modes and directional lasing at exceptional points,” Proc. Natl. Acad. Sci. USA 113, 6845–6850 (2016).
[Crossref]

Limberopoulos, N. I.

Y. Li, F. Abolmaali, K. W. Allen, N. I. Limberopoulos, A. Urbas, Y. Rakovich, A. V. Maslov, and V. N. Astratov, “Whispering gallery mode hybridization in photonic molecules,” Laser Photon. Rev. 11, 1600278 (2017).
[Crossref]

Liu, B.

Lu, Y.

Luyssaert, B.

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23, 401–412 (2005).
[Crossref]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[Crossref]

Mao, J.

Martí, J.

Martinelli, M.

F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness induced backscattering in optical silicon waveguides,” Phys. Rev. Lett. 104, 033902 (2010).
[Crossref]

Maslov, A. V.

Y. Li, F. Abolmaali, K. W. Allen, N. I. Limberopoulos, A. Urbas, Y. Rakovich, A. V. Maslov, and V. N. Astratov, “Whispering gallery mode hybridization in photonic molecules,” Laser Photon. Rev. 11, 1600278 (2017).
[Crossref]

Matres, J.

Melloni, A.

F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness induced backscattering in optical silicon waveguides,” Phys. Rev. Lett. 104, 033902 (2010).
[Crossref]

Morichetti, F.

F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness induced backscattering in optical silicon waveguides,” Phys. Rev. Lett. 104, 033902 (2010).
[Crossref]

Ngo, N. Q.

Ong, P.

S. K. Selvaraja, P. De Heyn, G. Winroth, P. Ong, G. Lepage, C. Cailler, A. Rigny, K. K. Bourdelle, W. Bogaerts, D. Van Thourhout, J. Van Campenhout, and P. Absil, “Highly uniform and low-loss passive silicon photonics devices using a 300  mm CMOS platform,” in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2014), pp. 1–3.

Oton, C.

Özdemir, S. K.

W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548, 192–196 (2017).
[Crossref]

B. Peng, Ş. K. Özdemir, M. Liertzer, W. Chen, J. Kramer, H. Yılmaz, J. Wiersig, S. Rotter, and L. Yang, “Chiral modes and directional lasing at exceptional points,” Proc. Natl. Acad. Sci. USA 113, 6845–6850 (2016).
[Crossref]

B. Peng, Ş. K. Özdemir, J. Zhu, and L. Yang, “Photonic molecules formed by coupled hybrid resonators,” Opt. Lett. 37, 3435–3437 (2012).
[Crossref]

Pandey, A.

A. Pandey, S. V. Bhagavatula, V. Supradeepa, and S. K. Selvaraja, “Optical single sideband generation using self-coupled micro ring resonator in SOI,” in European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference (CLEO/Europe-EQEC) (IEEE, 2017), paper CI_P_6.

Peng, B.

B. Peng, Ş. K. Özdemir, M. Liertzer, W. Chen, J. Kramer, H. Yılmaz, J. Wiersig, S. Rotter, and L. Yang, “Chiral modes and directional lasing at exceptional points,” Proc. Natl. Acad. Sci. USA 113, 6845–6850 (2016).
[Crossref]

B. Peng, Ş. K. Özdemir, J. Zhu, and L. Yang, “Photonic molecules formed by coupled hybrid resonators,” Opt. Lett. 37, 3435–3437 (2012).
[Crossref]

Peng, J.

Qiu, C.

Qiu, M.

Rakovich, Y.

Y. Li, F. Abolmaali, K. W. Allen, N. I. Limberopoulos, A. Urbas, Y. Rakovich, A. V. Maslov, and V. N. Astratov, “Whispering gallery mode hybridization in photonic molecules,” Laser Photon. Rev. 11, 1600278 (2017).
[Crossref]

Rezende, G. F.

Rigny, A.

S. K. Selvaraja, P. De Heyn, G. Winroth, P. Ong, G. Lepage, C. Cailler, A. Rigny, K. K. Bourdelle, W. Bogaerts, D. Van Thourhout, J. Van Campenhout, and P. Absil, “Highly uniform and low-loss passive silicon photonics devices using a 300  mm CMOS platform,” in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2014), pp. 1–3.

Rosenberger, A.

D. D. Smith, H. Chang, K. A. Fuller, A. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69, 063804 (2004).
[Crossref]

Rotter, S.

B. Peng, Ş. K. Özdemir, M. Liertzer, W. Chen, J. Kramer, H. Yılmaz, J. Wiersig, S. Rotter, and L. Yang, “Chiral modes and directional lasing at exceptional points,” Proc. Natl. Acad. Sci. USA 113, 6845–6850 (2016).
[Crossref]

Schrauwen, B.

Selvaraja, S. K.

A. Pandey, S. V. Bhagavatula, V. Supradeepa, and S. K. Selvaraja, “Optical single sideband generation using self-coupled micro ring resonator in SOI,” in European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference (CLEO/Europe-EQEC) (IEEE, 2017), paper CI_P_6.

S. K. Selvaraja, P. De Heyn, G. Winroth, P. Ong, G. Lepage, C. Cailler, A. Rigny, K. K. Bourdelle, W. Bogaerts, D. Van Thourhout, J. Van Campenhout, and P. Absil, “Highly uniform and low-loss passive silicon photonics devices using a 300  mm CMOS platform,” in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2014), pp. 1–3.

Smith, D. D.

D. D. Smith, H. Chang, K. A. Fuller, A. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69, 063804 (2004).
[Crossref]

Souza, M. C.

Su, Y.

Supradeepa, V.

A. Pandey, S. V. Bhagavatula, V. Supradeepa, and S. K. Selvaraja, “Optical single sideband generation using self-coupled micro ring resonator in SOI,” in European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference (CLEO/Europe-EQEC) (IEEE, 2017), paper CI_P_6.

Taillaert, D.

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23, 401–412 (2005).
[Crossref]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[Crossref]

Torregiani, M.

F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness induced backscattering in optical silicon waveguides,” Phys. Rev. Lett. 104, 033902 (2010).
[Crossref]

Tremblay, C.

Urbas, A.

Y. Li, F. Abolmaali, K. W. Allen, N. I. Limberopoulos, A. Urbas, Y. Rakovich, A. V. Maslov, and V. N. Astratov, “Whispering gallery mode hybridization in photonic molecules,” Laser Photon. Rev. 11, 1600278 (2017).
[Crossref]

Vaerenbergh, T.

A. Li, T. Vaerenbergh, P. Heyn, P. Bienstman, and W. Bogaerts, “Backscattering in silicon microring resonators: a quantitative analysis,” Laser Photon. Rev. 10, 420–431 (2016).
[Crossref]

Vallini, F.

Van Campenhout, J.

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23, 401–412 (2005).
[Crossref]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[Crossref]

S. K. Selvaraja, P. De Heyn, G. Winroth, P. Ong, G. Lepage, C. Cailler, A. Rigny, K. K. Bourdelle, W. Bogaerts, D. Van Thourhout, J. Van Campenhout, and P. Absil, “Highly uniform and low-loss passive silicon photonics devices using a 300  mm CMOS platform,” in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2014), pp. 1–3.

Van Laer, R.

A. Li, Y. Xing, R. Van Laer, R. Baets, and W. Bogaerts, “Extreme spectral transmission fluctuations in silicon nanowires induced by backscattering,” in IEEE 13th International Conference on Group IV Photonics (GFP) (IEEE, 2016), pp. 160–161.

Van Thourhout, D.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23, 401–412 (2005).
[Crossref]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[Crossref]

S. K. Selvaraja, P. De Heyn, G. Winroth, P. Ong, G. Lepage, C. Cailler, A. Rigny, K. K. Bourdelle, W. Bogaerts, D. Van Thourhout, J. Van Campenhout, and P. Absil, “Highly uniform and low-loss passive silicon photonics devices using a 300  mm CMOS platform,” in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2014), pp. 1–3.

Van Vaerenbergh, T.

M. Fiers, T. Van Vaerenbergh, K. Caluwaerts, D. V. Ginste, B. Schrauwen, J. Dambre, and P. Bienstman, “Time-domain and frequency-domain modeling of nonlinear optical components at the circuit-level using a node-based approach,” J. Opt. Soc. Am. B 29, 896–900 (2012).
[Crossref]

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Wang, J.

Wang, P.

Wang, T.

Wang, Y.

Wiaux, V.

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23, 401–412 (2005).
[Crossref]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[Crossref]

Wiederhecker, G. S.

Wiersig, J.

W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548, 192–196 (2017).
[Crossref]

B. Peng, Ş. K. Özdemir, M. Liertzer, W. Chen, J. Kramer, H. Yılmaz, J. Wiersig, S. Rotter, and L. Yang, “Chiral modes and directional lasing at exceptional points,” Proc. Natl. Acad. Sci. USA 113, 6845–6850 (2016).
[Crossref]

Winroth, G.

S. K. Selvaraja, P. De Heyn, G. Winroth, P. Ong, G. Lepage, C. Cailler, A. Rigny, K. K. Bourdelle, W. Bogaerts, D. Van Thourhout, J. Van Campenhout, and P. Absil, “Highly uniform and low-loss passive silicon photonics devices using a 300  mm CMOS platform,” in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2014), pp. 1–3.

Wouters, J.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[Crossref]

Wu, J.

Xia, J.

Xie, S.

Xing, Y.

A. Li, Y. Xing, R. Van Laer, R. Baets, and W. Bogaerts, “Extreme spectral transmission fluctuations in silicon nanowires induced by backscattering,” in IEEE 13th International Conference on Group IV Photonics (GFP) (IEEE, 2016), pp. 160–161.

Xu, L.

Xu, M.

Yang, L.

W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548, 192–196 (2017).
[Crossref]

B. Peng, Ş. K. Özdemir, M. Liertzer, W. Chen, J. Kramer, H. Yılmaz, J. Wiersig, S. Rotter, and L. Yang, “Chiral modes and directional lasing at exceptional points,” Proc. Natl. Acad. Sci. USA 113, 6845–6850 (2016).
[Crossref]

B. Peng, Ş. K. Özdemir, J. Zhu, and L. Yang, “Photonic molecules formed by coupled hybrid resonators,” Opt. Lett. 37, 3435–3437 (2012).
[Crossref]

Yang, S.

Yao, J.

Yilmaz, H.

B. Peng, Ş. K. Özdemir, M. Liertzer, W. Chen, J. Kramer, H. Yılmaz, J. Wiersig, S. Rotter, and L. Yang, “Chiral modes and directional lasing at exceptional points,” Proc. Natl. Acad. Sci. USA 113, 6845–6850 (2016).
[Crossref]

Yu, H.

Yu, J.

Yu, Y.

Yuan, S.

Zhang, Y.

Zhang, Z.

Zhao, G.

W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548, 192–196 (2017).
[Crossref]

Zhou, L.

Zhu, J.

APL Photon. (1)

A. Li and W. Bogaerts, “An actively controlled silicon ring resonator with a fully tunable Fano resonance,” APL Photon. 2, 096101 (2017).
[Crossref]

IEEE Photon. Technol. Lett. (1)

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (3)

Laser Photon. Rev. (3)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

A. Li, T. Vaerenbergh, P. Heyn, P. Bienstman, and W. Bogaerts, “Backscattering in silicon microring resonators: a quantitative analysis,” Laser Photon. Rev. 10, 420–431 (2016).
[Crossref]

Y. Li, F. Abolmaali, K. W. Allen, N. I. Limberopoulos, A. Urbas, Y. Rakovich, A. V. Maslov, and V. N. Astratov, “Whispering gallery mode hybridization in photonic molecules,” Laser Photon. Rev. 11, 1600278 (2017).
[Crossref]

Nature (1)

W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548, 192–196 (2017).
[Crossref]

Opt. Express (6)

Opt. Lett. (2)

Photon. Res. (1)

Phys. Rev. A (1)

D. D. Smith, H. Chang, K. A. Fuller, A. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69, 063804 (2004).
[Crossref]

Phys. Rev. Lett. (1)

F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness induced backscattering in optical silicon waveguides,” Phys. Rev. Lett. 104, 033902 (2010).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

B. Peng, Ş. K. Özdemir, M. Liertzer, W. Chen, J. Kramer, H. Yılmaz, J. Wiersig, S. Rotter, and L. Yang, “Chiral modes and directional lasing at exceptional points,” Proc. Natl. Acad. Sci. USA 113, 6845–6850 (2016).
[Crossref]

Other (4)

A. Pandey, S. V. Bhagavatula, V. Supradeepa, and S. K. Selvaraja, “Optical single sideband generation using self-coupled micro ring resonator in SOI,” in European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference (CLEO/Europe-EQEC) (IEEE, 2017), paper CI_P_6.

A. Li, Y. Xing, R. Van Laer, R. Baets, and W. Bogaerts, “Extreme spectral transmission fluctuations in silicon nanowires induced by backscattering,” in IEEE 13th International Conference on Group IV Photonics (GFP) (IEEE, 2016), pp. 160–161.

“Luceda Photonics,” http://www.lucedaphotonics.com/en (2008).

S. K. Selvaraja, P. De Heyn, G. Winroth, P. Ong, G. Lepage, C. Cailler, A. Rigny, K. K. Bourdelle, W. Bogaerts, D. Van Thourhout, J. Van Campenhout, and P. Absil, “Highly uniform and low-loss passive silicon photonics devices using a 300  mm CMOS platform,” in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2014), pp. 1–3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (20)

Fig. 1.
Fig. 1. (a) Schematic and (b) outputs of an ideal ring resonator.
Fig. 2.
Fig. 2. (a) Illustration of the backcoupling in a 2×2 directional coupler. (b) Ring resonator with this backcoupling.
Fig. 3.
Fig. 3. (a)–(c) Simulations of an all-pass ring resonator with a lumped reflector inside and the backcoupling at the directional coupler. (d) Schematic. f is the ratio of backcoupling over forward-coupling, f=κ/κ.
Fig. 4.
Fig. 4. Designed circuit in order to introduce manipulation backcoupling in a realistic way. An MZI is placed in front of a ring resonator to dynamically control the intensity of light in two inputs of a ring resonator. Each of the inputs will couple to one circulating mode in the ring.
Fig. 5.
Fig. 5. Schematics of the ring resonator with (a) a reflector inside and (b) the tunable reflector.
Fig. 6.
Fig. 6. Simulated results of the influences of manipulating backcoupling on the split resonance. These figures show the results of manipulating PS1 with PS2=0. (a) and (b) Output at out1. (c) and (d) Results at out2.
Fig. 7.
Fig. 7. When backcoupling equals forward-coupling (in1=in2), one of the two peaks in a split resonance can be suppressed. By adding either 0.5π or 1.5π phase shift to PS1, we can also choose which peak to be suppressed.
Fig. 8.
Fig. 8. We fix PS1=0.2π and vary PS2 to change the phase difference between backcoupling and forward-coupling. (a) and (b) Output at out1. (c) and (d) Results at out2.
Fig. 9.
Fig. 9. Schematic and spectra of a coupled-resonator circuit. They are identical at resonant frequency (wavelength). If both are lossy, we get standard resonance splitting, while, when one resonator has gain instead of loss, those sharp asymmetric Fano resonances are generated. This behavior is similar to that of our backcoupling manipulation.
Fig. 10.
Fig. 10. Microscopic images of the devices to manipulate backcoupling. (a) Circuit with a purely circular ring resonator, whose internal reflection is induced by stochastic backscattering. (b) Circuit with a ring resonator that has a tunable reflector inside.
Fig. 11.
Fig. 11. Demonstration of the tunability of resonance splitting caused by internal reflections using PS3 shown in Fig. 10(b). (a) and (b) Results of two devices with different coupling coefficients. In both cases, the splitting can be adjusted and eliminated using PS3.
Fig. 12.
Fig. 12. Without internal reflections and resonance splitting (by tuning PS3 to the correct condition), varying PS1 and PS2 do not have an impact on the resonance shape, which is consistent with former simulation results.
Fig. 13.
Fig. 13. Measured spectra at (a) out1 and (b) out2 for constant PS2=0 and varying PS1. They show good correspondence with simulation results plotted in Fig. 6. Peak splitting can be eliminated at both ports.
Fig. 14.
Fig. 14. Measured spectra at (a) out1 and (b) out2 at fixed PS1=0 with varying PS2. They show good correspondence with the simulation results plotted in Fig. 8.
Fig. 15.
Fig. 15. Measured spectra with varying PS1 and fixed PS2 of a circuit with a circular ring resonator at (a) out1 and (b) out2. Resonance splitting due to stochastic backscattering is present in both cases; it can be suppressed by varying PS1.
Fig. 16.
Fig. 16. Measured spectra with varying PS2 and fixed PS1 of a circuit with a circular ring resonator at (a) out1 and (b) out2.
Fig. 17.
Fig. 17. Details of measured resonances of a ring resonator with coupling gap at 400 nm. All resonances show a Q-factor larger than 300000 and satisfying ER. The FSR of such a resonator is about 2.5 nm. The calculated finesse is around 600.
Fig. 18.
Fig. 18. FDTD simulation of the transmission of the directional coupler consisting of a circular arc with 35 μm bend radius and a bus waveguide with 400 nm gap in between. The coupling coefficient is less than 0.003.
Fig. 19.
Fig. 19. Simulated resonances of a 35 μm bend radius circular ring with loss coefficient of 2  dB/cm and a coupling coefficient of 0.003.
Fig. 20.
Fig. 20. Simulated outputs of the circuit shown in Fig. 4 but with the same parameters in the simulation of a pure circular ring above. Manipulating the backcoupling can increase the extinction ratio of the resonance.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

StSi=112[(μiμi)2j(ωω1)+1τtot+(μi+μi)2j(ωω2)+1τtot],
ω1=ω0+μr,ω2=ω0μr,
μr=rcngL,
μi=κ2cngL=2τi,
μi=κ2cngL=2τi,
1τtot=1τi+1τi+1τl.
Qi=2πngαλ0=λ0α×FSR×R.

Metrics