Abstract

High flatness, wide bandwidth, and high-coherence properties of supercontinuum (SC) generation in fibers are crucial in many applications. It is challenging to achieve SC spectra in a combination of the properties, since special dispersion profiles are required, especially when pump pulses with duration over 100 fs are employed. We propose an all-solid microstructured fiber composed only of hexagonal glass elements. The optimized fiber possesses an ultraflat all-normal dispersion profile, covering a wide wavelength interval of approximately 1.55 μm. An SC spectrum spanning from approximately 1030 to 2030 nm (corresponding to nearly one octave) with flatness <3  dB is numerically generated in the fiber with 200 fs pump pulses at 1.55 μm. The results indicate that the broadband ultraflat SC sources can be all-fiber and miniaturized due to commercially achievable 200-fs fiber lasers. Moreover, the SC pulses feature high coherence and a single pulse in the time domain, which can be compressed to 13.9-fs pulses with high quality even for simple linear chirp compensation. The Fourier-limited pulse duration of the spectrum is 3.19 fs, corresponding to only 0.62 optical cycles.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Super-flat coherent supercontinuum source in As38.8Se61.2 chalcogenide photonic crystal fiber with all-normal dispersion engineering at a very low input energy

Mbaye Diouf, Amine Ben Salem, Rim Cherif, Hamed Saghaei, and Ahmadou Wague
Appl. Opt. 56(2) 163-169 (2017)

Asterisk-shaped microstructured fiber for an octave coherent supercontinuum in a sub-picosecond region

Chunlei Huang, Meisong Liao, Wanjun Bi, Xia Li, Longfei Wang, Tianfeng Xue, Long Zhang, Danping Chen, Lili Hu, Yongzheng Fang, and Weiqing Gao
Opt. Lett. 43(3) 486-489 (2018)

Coherent supercontinuum bandwidth limitations under femtosecond pumping at 2 µm in all-solid soft glass photonic crystal fibers

Mariusz Klimczak, Bartłomiej Siwicki, Binbin Zhou, Morten Bache, Dariusz Pysz, Ole Bang, and Ryszard Buczyński
Opt. Express 24(26) 29406-29416 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [Crossref]
  2. M. Tsuzuki, L. Jin, M. Yamanaka, V. Sonnenchein, H. Tomita, A. Sato, T. Ohara, Y. Sakakibara, E. Omoda, H. Kataura, T. Iguchi, and N. Nishizawa, “Midinfrared optical frequency comb based on difference frequency generation using high repetition rate Er-doped fiber laser with single wall carbon nanotube film,” Photon. Res. 4, 313–317 (2016).
    [Crossref]
  3. M. Klimczak, B. Siwicki, A. Heidt, and R. Buczynski, “Coherent supercontinuum generation in soft glass photonic crystal fibers,” Photon. Res. 5, 710–727 (2017).
    [Crossref]
  4. A. M. Heidt, J. S. Feehan, J. H. V. Price, and T. Feurer, “Limits of coherent supercontinuum generation in normal dispersion fibers,” J. Opt. Soc. Am. B 34, 764–775 (2017).
    [Crossref]
  5. X. Liu, J. Laegsgaard, R. Iegorov, A. S. Svane, F. O. Ilday, H. Tu, S. A. Boppart, and D. Turchinovich, “Nonlinearity-tailored fiber laser technology for low-noise, ultra-wideband tunable femtosecond light generation,” Photon. Res. 5, 750–761 (2017).
    [Crossref]
  6. Z. Zheng, D. Ouyang, J. Zhao, M. Liu, S. Ruan, P. Yan, and J. Wang, “Scaling all-fiber mid-infrared supercontinuum up to 10 W-level based on thermal-spliced silica fiber and zblan fiber,” Photon. Res. 4, 135–139 (2016).
    [Crossref]
  7. S. Vyas, T. Tanabe, M. Tiwari, and G. Singh, “Chalcogenide photonic crystal fiber for ultraflat mid-infrared supercontinuum generation,” Chin. Opt. Lett. 14, 123201 (2016).
    [Crossref]
  8. B. B. Yan, J. H. Yuan, X. X. Sang, K. R. Wang, and C. X. Yu, “Combined nonlinear effects for UV to visible wavelength generation in a photonic crystal fiber,” Chin. Opt. Lett. 14, 050603 (2016).
    [Crossref]
  9. J. C. Knight, “Photonic crystal fibres,” Nature 424, 847–851 (2003).
    [Crossref]
  10. P. St. J. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
    [Crossref]
  11. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
    [Crossref]
  12. M. Chemnitz, J. Wei, C. Jain, B. P. Rodrigues, T. Wieduwilt, J. Kobelke, L. Wondraczek, and M. A. Schmidt, “Octave-spanning supercontinuum generation in hybrid silver metaphosphate/silica step-index fibers,” Opt. Lett. 41, 3519–3522 (2016).
    [Crossref]
  13. M. Liu, B. Zhao, X. Yang, and J. Hou, “Seven-core photonic liquid crystal fibers for simultaneous mode shaping and temperature sensing,” Chin. Opt. Lett. 15, 060601 (2017).
    [Crossref]
  14. P. S. Maji and R. Das, “Designing broadband fiber optic parametric amplifier based on near-zero single ZDW PCF with ultra-flat nature,” Chin. Opt. Lett. 15, 070606 (2017).
    [Crossref]
  15. N. Nishizawa and J. Takayanagi, “Octave spanning high-quality supercontinuum generation in all-fiber system,” J. Opt. Soc. Am. B 24, 1786–1792 (2007).
    [Crossref]
  16. C. Strutynski, P. Froidevaux, F. Desevedavy, J. C. Jules, G. Gadret, A. Bendahmane, K. Tarnowski, B. Kibler, and F. Smektala, “Tailoring supercontinuum generation beyond 2  μm in step-index tellurite fibers,” Opt. Lett. 42, 247–250 (2017).
    [Crossref]
  17. Z. K. Dong, Y. R. Song, R. Q. Xu, Y. Zheng, J. R. Tian, and K. X. Li, “Broadband spectrum generation with compact Yb-doped fiber laser by intra-cavity cascaded Raman scattering,” Chin. Opt. Lett. 15, 071408 (2017).
    [Crossref]
  18. A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901 (2001).
    [Crossref]
  19. A. M. Heidt, “Pulse preserving flat-top supercontinuum generation in all-normal dispersion photonic crystal fibers,” J. Opt. Soc. Am. B 27, 550–559 (2010).
    [Crossref]
  20. S. Demmler, J. Rothhardt, A. M. Heidt, A. Hartung, E. G. Rohwer, H. Bartelt, J. Limpert, and A. Tunnermann, “Generation of high quality, 1.3 cycle pulses by active phase control of an octave spanning supercontinuum,” Opt. Express 19, 20151–20158 (2011).
    [Crossref]
  21. A. Hartung, A. M. Heidt, and H. Bartelt, “Design of all-normal dispersion microstructured optical fibers for pulse-preserving supercontinuum generation,” Opt. Express 19, 7742–7749 (2011).
    [Crossref]
  22. A. M. Heidt, A. Hartung, G. W. Bosman, P. Krok, E. G. Rohwer, H. Schwoerer, and H. Bartelt, “Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers,” Opt. Express 19, 3775–3787 (2011).
    [Crossref]
  23. L. Liu, T. L. Cheng, K. Nagasaka, H. T. Tong, G. S. Qin, T. Suzuki, and Y. Ohishi, “Coherent mid-infrared supercontinuum generation in all-solid chalcogenide microstructured fibers with all-normal dispersion,” Opt. Lett. 41, 392–395 (2016).
    [Crossref]
  24. A. M. Heidt, J. Rothhardt, A. Hartung, H. Bartelt, E. G. Rohwer, J. Limpert, and A. Tunnermann, “High quality sub-two cycle pulses from compression of supercontinuum generated in all-normal dispersion photonic crystal fiber,” Opt. Express 19, 13873–13879 (2011).
    [Crossref]
  25. C. L. Huang, M. S. Liao, W. J. Bi, X. Li, L. F. Wang, T. F. Xue, L. Zhang, D. P. Chen, L. L. Hu, Y. Z. Fang, and W. Q. Gao, “Asterisk-shaped microstructured fiber for an octave coherent supercontinuum in a sub-picosecond region,” Opt. Lett. 43, 486–489 (2018).
    [Crossref]
  26. Y. Liu, Y. B. Zhao, J. Lyngso, S. X. You, W. L. Wilson, H. H. Tu, and S. A. Boppart, “Suppressing short-term polarization noise and related spectral decoherence in all-normal dispersion fiber supercontinuum generation,” J. Lightwave Technol. 33, 1814–1820 (2015).
    [Crossref]
  27. J. J. Miret, E. Silvestre, and P. Andres, “Octave-spanning ultraflat supercontinuum with soft-glass photonic crystal fibers,” Opt. Express 17, 9197–9203 (2009).
    [Crossref]
  28. I. A. Sukhoivanov, S. O. Iakushev, O. V. Shulika, E. Silvestre, and M. V. Andres, “Design of all-normal dispersion microstructured optical fiber on silica platform for generation of pulse-preserving supercontinuum under excitation at 1550  nm,” J. Lightwave Technol. 35, 3772–3779 (2017).
    [Crossref]
  29. S. K. Chatterjee, S. N. Khan, and P. R. Chaudhuri, “Designing a two-octave spanning flat-top supercontinuum source by control of nonlinear dynamics through multi-order dispersion engineering in binary multi-clad microstructured fiber,” J. Opt. Soc. Am. B 32, 1499–1509 (2015).
    [Crossref]
  30. M. Diouf, A. Ben Salem, R. Cherif, H. Saghaei, and A. Wague, “Super-flat coherent supercontinuum source in As38.8Se61.2 chalcogenide photonic crystal fiber with all-normal dispersion engineering at a very low input energy,” Appl. Opt. 56, 163–169 (2017).
    [Crossref]
  31. T. Martynkien, D. Pysz, R. Stepien, and R. Buczynski, “All-solid microstructured fiber with flat normal chromatic dispersion,” Opt. Lett. 39, 2342–2345 (2014).
    [Crossref]
  32. M. Klimczak, B. Siwicki, P. Skibinski, D. Pysz, R. Stepien, A. Heidt, C. Radzewicz, and R. Buczynski, “Coherent supercontinuum generation up to 2.3  μm in all-solid soft-glass photonic crystal fibers with flat all-normal dispersion,” Opt. Express 22, 18824–18832 (2014).
    [Crossref]
  33. K. Tarnowski, T. Martynkien, P. Mergo, K. Poturaj, A. Anuszkiewicz, P. Bejot, F. Billard, O. Faucher, B. Kibler, and W. Urbanczyk, “Polarized all-normal dispersion supercontinuum reaching 2.5  μm generated in a birefringent microstructured silica fiber,” Opt. Express 25, 27452–27463 (2017).
    [Crossref]
  34. K. Tarnowski, T. Martynkien, P. Mergo, K. Poturaj, G. Sobon, and W. Urbanczyk, “Coherent supercontinuum generation up to 2.2  μm in an all-normal dispersion microstructured silica fiber,” Opt. Express 24, 30523–30536 (2016).
    [Crossref]
  35. F. Li, Q. Li, J. H. Yuan, and P. K. A. Wai, “Highly coherent supercontinuum generation with picosecond pulses by using self-similar compression,” Opt. Express 22, 27339–27354 (2014).
    [Crossref]
  36. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).
  37. N. L. Boling, A. J. Glass, and A. Owyoung, “Empirical relationships for predicting non-linear refractive-index changes in optical solids,” IEEE J. Quantum Electron. 14, 601–608 (1978).
    [Crossref]
  38. M. Feng, A. K. Mairaj, D. W. Hewak, and T. M. Monro, “Nonsilica glasses for holey fibers,” J. Lightwave Technol. 23, 2046–2054 (2005).
    [Crossref]
  39. O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
    [Crossref]
  40. V. L. Kalashnikov, E. Sorokin, and I. T. Sorokina, “Raman effects in the infrared supercontinuum generation in soft-glass PCFs,” Appl. Phys. B 87, 37–44 (2007).
    [Crossref]
  41. C. Finot, B. Kibler, L. Provost, and S. Wabnitz, “Beneficial impact of wave-breaking for coherent continuum formation in normally dispersive nonlinear fibers,” J. Opt. Soc. Am. B 25, 1938–1948 (2008).
    [Crossref]
  42. A. M. Heidt, A. Hartung, and H. Bartelt, “Generation of ultrashort and coherent supercontinuum light pulses in all-normal dispersion fibers,” in The Supercontinuum Laser Source, R. R. Alfano, ed. (Springer, 2016), pp. 247–280.
  43. M. H. Frosz, “Validation of input-noise model for simulations of supercontinuum generation and rogue waves,” Opt. Express 18, 14778–14787 (2010).
    [Crossref]
  44. F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81, 163–234 (2009).
    [Crossref]
  45. M. Miranda, T. Fordell, C. Arnold, A. L’Huillier, and H. Crespo, “Simultaneous compression and characterization of ultrashort laser pulses using chirped mirrors and glass wedges,” Opt. Express 20, 688–697 (2012).
    [Crossref]
  46. Y. Liu, H. Tu, and S. A. Boppart, “Wave-breaking-extended fiber supercontinuum generation for high compression ratio transform-limited pulse compression,” Opt. Lett. 37, 2172–2174 (2012).
    [Crossref]

2018 (1)

2017 (10)

I. A. Sukhoivanov, S. O. Iakushev, O. V. Shulika, E. Silvestre, and M. V. Andres, “Design of all-normal dispersion microstructured optical fiber on silica platform for generation of pulse-preserving supercontinuum under excitation at 1550  nm,” J. Lightwave Technol. 35, 3772–3779 (2017).
[Crossref]

K. Tarnowski, T. Martynkien, P. Mergo, K. Poturaj, A. Anuszkiewicz, P. Bejot, F. Billard, O. Faucher, B. Kibler, and W. Urbanczyk, “Polarized all-normal dispersion supercontinuum reaching 2.5  μm generated in a birefringent microstructured silica fiber,” Opt. Express 25, 27452–27463 (2017).
[Crossref]

M. Diouf, A. Ben Salem, R. Cherif, H. Saghaei, and A. Wague, “Super-flat coherent supercontinuum source in As38.8Se61.2 chalcogenide photonic crystal fiber with all-normal dispersion engineering at a very low input energy,” Appl. Opt. 56, 163–169 (2017).
[Crossref]

M. Klimczak, B. Siwicki, A. Heidt, and R. Buczynski, “Coherent supercontinuum generation in soft glass photonic crystal fibers,” Photon. Res. 5, 710–727 (2017).
[Crossref]

A. M. Heidt, J. S. Feehan, J. H. V. Price, and T. Feurer, “Limits of coherent supercontinuum generation in normal dispersion fibers,” J. Opt. Soc. Am. B 34, 764–775 (2017).
[Crossref]

X. Liu, J. Laegsgaard, R. Iegorov, A. S. Svane, F. O. Ilday, H. Tu, S. A. Boppart, and D. Turchinovich, “Nonlinearity-tailored fiber laser technology for low-noise, ultra-wideband tunable femtosecond light generation,” Photon. Res. 5, 750–761 (2017).
[Crossref]

M. Liu, B. Zhao, X. Yang, and J. Hou, “Seven-core photonic liquid crystal fibers for simultaneous mode shaping and temperature sensing,” Chin. Opt. Lett. 15, 060601 (2017).
[Crossref]

P. S. Maji and R. Das, “Designing broadband fiber optic parametric amplifier based on near-zero single ZDW PCF with ultra-flat nature,” Chin. Opt. Lett. 15, 070606 (2017).
[Crossref]

C. Strutynski, P. Froidevaux, F. Desevedavy, J. C. Jules, G. Gadret, A. Bendahmane, K. Tarnowski, B. Kibler, and F. Smektala, “Tailoring supercontinuum generation beyond 2  μm in step-index tellurite fibers,” Opt. Lett. 42, 247–250 (2017).
[Crossref]

Z. K. Dong, Y. R. Song, R. Q. Xu, Y. Zheng, J. R. Tian, and K. X. Li, “Broadband spectrum generation with compact Yb-doped fiber laser by intra-cavity cascaded Raman scattering,” Chin. Opt. Lett. 15, 071408 (2017).
[Crossref]

2016 (7)

M. Chemnitz, J. Wei, C. Jain, B. P. Rodrigues, T. Wieduwilt, J. Kobelke, L. Wondraczek, and M. A. Schmidt, “Octave-spanning supercontinuum generation in hybrid silver metaphosphate/silica step-index fibers,” Opt. Lett. 41, 3519–3522 (2016).
[Crossref]

M. Tsuzuki, L. Jin, M. Yamanaka, V. Sonnenchein, H. Tomita, A. Sato, T. Ohara, Y. Sakakibara, E. Omoda, H. Kataura, T. Iguchi, and N. Nishizawa, “Midinfrared optical frequency comb based on difference frequency generation using high repetition rate Er-doped fiber laser with single wall carbon nanotube film,” Photon. Res. 4, 313–317 (2016).
[Crossref]

Z. Zheng, D. Ouyang, J. Zhao, M. Liu, S. Ruan, P. Yan, and J. Wang, “Scaling all-fiber mid-infrared supercontinuum up to 10 W-level based on thermal-spliced silica fiber and zblan fiber,” Photon. Res. 4, 135–139 (2016).
[Crossref]

S. Vyas, T. Tanabe, M. Tiwari, and G. Singh, “Chalcogenide photonic crystal fiber for ultraflat mid-infrared supercontinuum generation,” Chin. Opt. Lett. 14, 123201 (2016).
[Crossref]

B. B. Yan, J. H. Yuan, X. X. Sang, K. R. Wang, and C. X. Yu, “Combined nonlinear effects for UV to visible wavelength generation in a photonic crystal fiber,” Chin. Opt. Lett. 14, 050603 (2016).
[Crossref]

K. Tarnowski, T. Martynkien, P. Mergo, K. Poturaj, G. Sobon, and W. Urbanczyk, “Coherent supercontinuum generation up to 2.2  μm in an all-normal dispersion microstructured silica fiber,” Opt. Express 24, 30523–30536 (2016).
[Crossref]

L. Liu, T. L. Cheng, K. Nagasaka, H. T. Tong, G. S. Qin, T. Suzuki, and Y. Ohishi, “Coherent mid-infrared supercontinuum generation in all-solid chalcogenide microstructured fibers with all-normal dispersion,” Opt. Lett. 41, 392–395 (2016).
[Crossref]

2015 (2)

2014 (3)

2012 (2)

2011 (4)

2010 (2)

2009 (2)

2008 (1)

2007 (2)

V. L. Kalashnikov, E. Sorokin, and I. T. Sorokina, “Raman effects in the infrared supercontinuum generation in soft-glass PCFs,” Appl. Phys. B 87, 37–44 (2007).
[Crossref]

N. Nishizawa and J. Takayanagi, “Octave spanning high-quality supercontinuum generation in all-fiber system,” J. Opt. Soc. Am. B 24, 1786–1792 (2007).
[Crossref]

2006 (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

2005 (1)

2003 (2)

J. C. Knight, “Photonic crystal fibres,” Nature 424, 847–851 (2003).
[Crossref]

P. St. J. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[Crossref]

2001 (1)

A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901 (2001).
[Crossref]

1996 (2)

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
[Crossref]

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[Crossref]

1978 (1)

N. L. Boling, A. J. Glass, and A. Owyoung, “Empirical relationships for predicting non-linear refractive-index changes in optical solids,” IEEE J. Quantum Electron. 14, 601–608 (1978).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

Andres, M. V.

Andres, P.

Anuszkiewicz, A.

Arnold, C.

Atkin, D. M.

Bartelt, H.

Bejot, P.

Ben Salem, A.

Bendahmane, A.

Bi, W. J.

Billard, F.

Birks, T. A.

Boling, N. L.

N. L. Boling, A. J. Glass, and A. Owyoung, “Empirical relationships for predicting non-linear refractive-index changes in optical solids,” IEEE J. Quantum Electron. 14, 601–608 (1978).
[Crossref]

Boppart, S. A.

Bosman, G. W.

Buczynski, R.

Chatterjee, S. K.

Chaudhuri, P. R.

Chemnitz, M.

Chen, D. P.

Cheng, T. L.

Cherif, R.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Crespo, H.

Das, R.

Demmler, S.

Desevedavy, F.

Diouf, M.

Dong, Z. K.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Fabian, H.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[Crossref]

Fang, Y. Z.

Faucher, O.

Feehan, J. S.

Feng, M.

Feurer, T.

Finot, C.

Fordell, T.

Froidevaux, P.

Frosz, M. H.

Gadret, G.

Gao, W. Q.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Glass, A. J.

N. L. Boling, A. J. Glass, and A. Owyoung, “Empirical relationships for predicting non-linear refractive-index changes in optical solids,” IEEE J. Quantum Electron. 14, 601–608 (1978).
[Crossref]

Grzesik, U.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[Crossref]

Haken, U.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[Crossref]

Hartung, A.

Heidt, A.

Heidt, A. M.

A. M. Heidt, J. S. Feehan, J. H. V. Price, and T. Feurer, “Limits of coherent supercontinuum generation in normal dispersion fibers,” J. Opt. Soc. Am. B 34, 764–775 (2017).
[Crossref]

A. M. Heidt, A. Hartung, G. W. Bosman, P. Krok, E. G. Rohwer, H. Schwoerer, and H. Bartelt, “Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers,” Opt. Express 19, 3775–3787 (2011).
[Crossref]

A. Hartung, A. M. Heidt, and H. Bartelt, “Design of all-normal dispersion microstructured optical fibers for pulse-preserving supercontinuum generation,” Opt. Express 19, 7742–7749 (2011).
[Crossref]

A. M. Heidt, J. Rothhardt, A. Hartung, H. Bartelt, E. G. Rohwer, J. Limpert, and A. Tunnermann, “High quality sub-two cycle pulses from compression of supercontinuum generated in all-normal dispersion photonic crystal fiber,” Opt. Express 19, 13873–13879 (2011).
[Crossref]

S. Demmler, J. Rothhardt, A. M. Heidt, A. Hartung, E. G. Rohwer, H. Bartelt, J. Limpert, and A. Tunnermann, “Generation of high quality, 1.3 cycle pulses by active phase control of an octave spanning supercontinuum,” Opt. Express 19, 20151–20158 (2011).
[Crossref]

A. M. Heidt, “Pulse preserving flat-top supercontinuum generation in all-normal dispersion photonic crystal fibers,” J. Opt. Soc. Am. B 27, 550–559 (2010).
[Crossref]

A. M. Heidt, A. Hartung, and H. Bartelt, “Generation of ultrashort and coherent supercontinuum light pulses in all-normal dispersion fibers,” in The Supercontinuum Laser Source, R. R. Alfano, ed. (Springer, 2016), pp. 247–280.

Heitmann, W.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[Crossref]

Herrmann, J.

A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901 (2001).
[Crossref]

Hewak, D. W.

Hou, J.

Hu, L. L.

Huang, C. L.

Humbach, O.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[Crossref]

Husakou, A. V.

A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901 (2001).
[Crossref]

Iakushev, S. O.

Iegorov, R.

Iguchi, T.

Ilday, F. O.

Ivanov, M.

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81, 163–234 (2009).
[Crossref]

Jain, C.

Jin, L.

Jules, J. C.

Kalashnikov, V. L.

V. L. Kalashnikov, E. Sorokin, and I. T. Sorokina, “Raman effects in the infrared supercontinuum generation in soft-glass PCFs,” Appl. Phys. B 87, 37–44 (2007).
[Crossref]

Kataura, H.

Khan, S. N.

Kibler, B.

Klimczak, M.

Knight, J. C.

Kobelke, J.

Krausz, F.

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81, 163–234 (2009).
[Crossref]

Krok, P.

L’Huillier, A.

Laegsgaard, J.

Li, F.

Li, K. X.

Li, Q.

Li, X.

Liao, M. S.

Limpert, J.

Liu, L.

Liu, M.

Liu, X.

Liu, Y.

Lyngso, J.

Mairaj, A. K.

Maji, P. S.

Martynkien, T.

Mergo, P.

Miranda, M.

Miret, J. J.

Monro, T. M.

Nagasaka, K.

Nishizawa, N.

Ohara, T.

Ohishi, Y.

Omoda, E.

Ouyang, D.

Owyoung, A.

N. L. Boling, A. J. Glass, and A. Owyoung, “Empirical relationships for predicting non-linear refractive-index changes in optical solids,” IEEE J. Quantum Electron. 14, 601–608 (1978).
[Crossref]

Poturaj, K.

Price, J. H. V.

Provost, L.

Pysz, D.

Qin, G. S.

Radzewicz, C.

Rodrigues, B. P.

Rohwer, E. G.

Rothhardt, J.

Ruan, S.

Russell, P. St. J.

Saghaei, H.

Sakakibara, Y.

Sang, X. X.

Sato, A.

Schmidt, M. A.

Schwoerer, H.

Shulika, O. V.

Silvestre, E.

Singh, G.

Siwicki, B.

Skibinski, P.

Smektala, F.

Sobon, G.

Song, Y. R.

Sonnenchein, V.

Sorokin, E.

V. L. Kalashnikov, E. Sorokin, and I. T. Sorokina, “Raman effects in the infrared supercontinuum generation in soft-glass PCFs,” Appl. Phys. B 87, 37–44 (2007).
[Crossref]

Sorokina, I. T.

V. L. Kalashnikov, E. Sorokin, and I. T. Sorokina, “Raman effects in the infrared supercontinuum generation in soft-glass PCFs,” Appl. Phys. B 87, 37–44 (2007).
[Crossref]

Stepien, R.

Strutynski, C.

Sukhoivanov, I. A.

Suzuki, T.

Svane, A. S.

Takayanagi, J.

Tanabe, T.

Tarnowski, K.

Tian, J. R.

Tiwari, M.

Tomita, H.

Tong, H. T.

Tsuzuki, M.

Tu, H.

Tu, H. H.

Tunnermann, A.

Turchinovich, D.

Urbanczyk, W.

Vyas, S.

Wabnitz, S.

Wague, A.

Wai, P. K. A.

Wang, J.

Wang, K. R.

Wang, L. F.

Wei, J.

Wieduwilt, T.

Wilson, W. L.

Wondraczek, L.

Xu, R. Q.

Xue, T. F.

Yamanaka, M.

Yan, B. B.

Yan, P.

Yang, X.

You, S. X.

Yu, C. X.

Yuan, J. H.

Zhang, L.

Zhao, B.

Zhao, J.

Zhao, Y. B.

Zheng, Y.

Zheng, Z.

Appl. Opt. (1)

Appl. Phys. B (1)

V. L. Kalashnikov, E. Sorokin, and I. T. Sorokina, “Raman effects in the infrared supercontinuum generation in soft-glass PCFs,” Appl. Phys. B 87, 37–44 (2007).
[Crossref]

Chin. Opt. Lett. (5)

IEEE J. Quantum Electron. (1)

N. L. Boling, A. J. Glass, and A. Owyoung, “Empirical relationships for predicting non-linear refractive-index changes in optical solids,” IEEE J. Quantum Electron. 14, 601–608 (1978).
[Crossref]

J. Lightwave Technol. (3)

J. Non-Cryst. Solids (1)

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[Crossref]

J. Opt. Soc. Am. B (5)

Nature (1)

J. C. Knight, “Photonic crystal fibres,” Nature 424, 847–851 (2003).
[Crossref]

Opt. Express (11)

M. Klimczak, B. Siwicki, P. Skibinski, D. Pysz, R. Stepien, A. Heidt, C. Radzewicz, and R. Buczynski, “Coherent supercontinuum generation up to 2.3  μm in all-solid soft-glass photonic crystal fibers with flat all-normal dispersion,” Opt. Express 22, 18824–18832 (2014).
[Crossref]

K. Tarnowski, T. Martynkien, P. Mergo, K. Poturaj, A. Anuszkiewicz, P. Bejot, F. Billard, O. Faucher, B. Kibler, and W. Urbanczyk, “Polarized all-normal dispersion supercontinuum reaching 2.5  μm generated in a birefringent microstructured silica fiber,” Opt. Express 25, 27452–27463 (2017).
[Crossref]

K. Tarnowski, T. Martynkien, P. Mergo, K. Poturaj, G. Sobon, and W. Urbanczyk, “Coherent supercontinuum generation up to 2.2  μm in an all-normal dispersion microstructured silica fiber,” Opt. Express 24, 30523–30536 (2016).
[Crossref]

F. Li, Q. Li, J. H. Yuan, and P. K. A. Wai, “Highly coherent supercontinuum generation with picosecond pulses by using self-similar compression,” Opt. Express 22, 27339–27354 (2014).
[Crossref]

S. Demmler, J. Rothhardt, A. M. Heidt, A. Hartung, E. G. Rohwer, H. Bartelt, J. Limpert, and A. Tunnermann, “Generation of high quality, 1.3 cycle pulses by active phase control of an octave spanning supercontinuum,” Opt. Express 19, 20151–20158 (2011).
[Crossref]

A. Hartung, A. M. Heidt, and H. Bartelt, “Design of all-normal dispersion microstructured optical fibers for pulse-preserving supercontinuum generation,” Opt. Express 19, 7742–7749 (2011).
[Crossref]

A. M. Heidt, A. Hartung, G. W. Bosman, P. Krok, E. G. Rohwer, H. Schwoerer, and H. Bartelt, “Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers,” Opt. Express 19, 3775–3787 (2011).
[Crossref]

J. J. Miret, E. Silvestre, and P. Andres, “Octave-spanning ultraflat supercontinuum with soft-glass photonic crystal fibers,” Opt. Express 17, 9197–9203 (2009).
[Crossref]

A. M. Heidt, J. Rothhardt, A. Hartung, H. Bartelt, E. G. Rohwer, J. Limpert, and A. Tunnermann, “High quality sub-two cycle pulses from compression of supercontinuum generated in all-normal dispersion photonic crystal fiber,” Opt. Express 19, 13873–13879 (2011).
[Crossref]

M. H. Frosz, “Validation of input-noise model for simulations of supercontinuum generation and rogue waves,” Opt. Express 18, 14778–14787 (2010).
[Crossref]

M. Miranda, T. Fordell, C. Arnold, A. L’Huillier, and H. Crespo, “Simultaneous compression and characterization of ultrashort laser pulses using chirped mirrors and glass wedges,” Opt. Express 20, 688–697 (2012).
[Crossref]

Opt. Lett. (7)

Y. Liu, H. Tu, and S. A. Boppart, “Wave-breaking-extended fiber supercontinuum generation for high compression ratio transform-limited pulse compression,” Opt. Lett. 37, 2172–2174 (2012).
[Crossref]

C. L. Huang, M. S. Liao, W. J. Bi, X. Li, L. F. Wang, T. F. Xue, L. Zhang, D. P. Chen, L. L. Hu, Y. Z. Fang, and W. Q. Gao, “Asterisk-shaped microstructured fiber for an octave coherent supercontinuum in a sub-picosecond region,” Opt. Lett. 43, 486–489 (2018).
[Crossref]

L. Liu, T. L. Cheng, K. Nagasaka, H. T. Tong, G. S. Qin, T. Suzuki, and Y. Ohishi, “Coherent mid-infrared supercontinuum generation in all-solid chalcogenide microstructured fibers with all-normal dispersion,” Opt. Lett. 41, 392–395 (2016).
[Crossref]

T. Martynkien, D. Pysz, R. Stepien, and R. Buczynski, “All-solid microstructured fiber with flat normal chromatic dispersion,” Opt. Lett. 39, 2342–2345 (2014).
[Crossref]

C. Strutynski, P. Froidevaux, F. Desevedavy, J. C. Jules, G. Gadret, A. Bendahmane, K. Tarnowski, B. Kibler, and F. Smektala, “Tailoring supercontinuum generation beyond 2  μm in step-index tellurite fibers,” Opt. Lett. 42, 247–250 (2017).
[Crossref]

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
[Crossref]

M. Chemnitz, J. Wei, C. Jain, B. P. Rodrigues, T. Wieduwilt, J. Kobelke, L. Wondraczek, and M. A. Schmidt, “Octave-spanning supercontinuum generation in hybrid silver metaphosphate/silica step-index fibers,” Opt. Lett. 41, 3519–3522 (2016).
[Crossref]

Photon. Res. (4)

Phys. Rev. Lett. (1)

A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901 (2001).
[Crossref]

Rev. Mod. Phys. (2)

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81, 163–234 (2009).
[Crossref]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Science (1)

P. St. J. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[Crossref]

Other (2)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

A. M. Heidt, A. Hartung, and H. Bartelt, “Generation of ultrashort and coherent supercontinuum light pulses in all-normal dispersion fibers,” in The Supercontinuum Laser Source, R. R. Alfano, ed. (Springer, 2016), pp. 247–280.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. (a) Schematic cross section and (b) refractive index profile of the all-solid microstructured fiber. The blue lines show the hexagonal elements. (c) Refractive index curves of G1 and G2 glasses.
Fig. 2.
Fig. 2. Calculated spectral dependence of chromatic dispersion for all-solid MOF structures with various parameters of (a) Λ=1.642.44  μm, n=3 and (b) Λ=1.061.86  μm, n=4.
Fig. 3.
Fig. 3. Schematic cross section of (a) fiber #A and (b) fiber #B; (c) calculated spectral dependence of chromatic dispersion of fiber #A and fiber #B.
Fig. 4.
Fig. 4. (a) Schematic cross section of fiber #C; (b) calculated chromatic dispersion and confinement losses of fundamental mode and the first HOM; (c) calculated values of dispersion slope and effective mode area of fundamental mode; (d) electric field distribution of the fundamental mode at 1550 nm.
Fig. 5.
Fig. 5. Pictures of cross sections of (a) the fabricated cane under an optical microscope and (b) the fiber under scanning electron microscope; (c) measured propagation loss of the fiber.
Fig. 6.
Fig. 6. Experimentally recorded and simulated SC spectra after 20 cm of the optical fiber. The pump pulse duration was 50 fs at 1.06 μm in both cases.
Fig. 7.
Fig. 7. (a) Spectral and (b) temporal evolution dependence on propagation distance; spectrum profiles at propagation distances of (c) 3 cm, (d) 5 cm, (e) 40 cm, and (f) 1 m. The green dashed lines in panel (a) chronologically show the location of panel.
Fig. 8.
Fig. 8. SC spectrum profiles after 1 m of propagation with pumping durations of 100 fs (blue dashed line), 200 fs (black solid line), and 300 fs (red dotted line). The peak power is 100 kW at 1.55 μm.
Fig. 9.
Fig. 9. Influence of linear loss on SC generation after a fiber of 1 m in length. The pump pulse durations are 200 fs at 1.55 μm. The peak power is 100 kW and 150 kW, respectively.
Fig. 10.
Fig. 10. (a) Computed modulus of the complex degree of coherence of SC spectrum; (b) achievable pulse width only using linear compression.

Tables (2)

Tables Icon

Table 1. Some Critical Parameters of G1 and G2

Tables Icon

Table 2. Sellmeier Coefficients of G1 and G2

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

n2(λ)1=i=13Biλ2λ2Ci.
n2(1013  m2/W)=68(nd1)(nd2+2)22.387×106n0υd[1.517+(nd2+2)(nd1)×υd6nd]0.5.
Az=α2A+k2ik+1k!βkkATk+iγ(1+iτshockT)×[A(z,T)R(T1)|A(z,TT1)|2dT1],
R(t)=(1fR)δ(t)+fRτ12+τ22τ1τ22exp(tτ2)sin(tτ1).

Metrics