Abstract

To achieve photon-pair generation scaling, we optimize the quality factor of microring resonators for efficient continuous-wave-pumped spontaneous four-wave mixing. Numerical studies indicate that a high intrinsic quality factor makes high pair rate and pair brightness possible, in which the maximums take place under overcoupling and critical-coupling conditions, respectively. We fabricate six all-pass-type microring resonator samples on a silicon-on-insulator chip involving gap width as the only degree of freedom. The signal count rate, pair brightness, and coincidence rate of all the samples are characterized, which are then compared with the modified simulations by taking the detector saturation and nonlinear loss into account. Being experimentally validated for the first time to the best of our knowledge, this work explicitly demonstrates that reducing the round-trip loss in a ring cavity and designing the corresponding optimized gap width are more effective to generate high-rate or high-brightness photon pairs than the conventional strategy of simply increasing the quality factor.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Silicon photonic entangled photon-pair and heralded single photon generation with CAR > 12,000 and g(2)(0) < 0.006

Chaoxuan Ma, Xiaoxi Wang, Vikas Anant, Andrew D. Beyer, Matthew D. Shaw, and Shayan Mookherjea
Opt. Express 25(26) 32995-33006 (2017)

Path to increasing the coincidence efficiency of integrated resonant photon sources

C. C. Tison, J. A. Steidle, M. L. Fanto, Z. Wang, N. A. Mogent, A. Rizzo, S. F. Preble, and P. M. Alsing
Opt. Express 25(26) 33088-33096 (2017)

Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement

Erman Engin, Damien Bonneau, Chandra M. Natarajan, Alex S. Clark, M. G. Tanner, R. H. Hadfield, Sanders N. Dorenbos, Val Zwiller, Kazuya Ohira, Nobuo Suzuki, Haruhiko Yoshida, Norio Iizuka, Mizunori Ezaki, Jeremy L. O’Brien, and Mark G. Thompson
Opt. Express 21(23) 27826-27834 (2013)

References

  • View by:
  • |
  • |
  • |

  1. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
    [Crossref]
  2. N. Gisin and R. Thew, “Quantum communication,” Nat. Photonics 1, 165–171 (2007).
    [Crossref]
  3. A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
    [Crossref]
  4. C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett. 68, 557–559 (1992).
    [Crossref]
  5. I. Ali-Khan, C. J. Broadbent, and J. C. Howell, “Large-alphabet quantum key distribution using energy-time entangled bipartite states,” Phys. Rev. Lett. 98, 060503 (2007).
    [Crossref]
  6. X. Ding, Y. He, Z. Duan, N. Gregersen, M. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C. Lu, and J. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116, 020401 (2016).
    [Crossref]
  7. D. Aktas, B. Fedrici, F. Kaiser, T. Lunghi, L. Labonte, and S. Tanzilli, “Entanglement distribution over 150  km in wavelength division multiplexed channels for quantum cryptography,” Laser Photon. Rev. 10, 451–457 (2016).
    [Crossref]
  8. X. Li, J. Chen, P. Voss, J. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications: improved generation of correlated photons,” Opt. Express 12, 3737–3744 (2004).
    [Crossref]
  9. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
    [Crossref]
  10. S. Tanzilli, H. De Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–28 (2001).
    [Crossref]
  11. S. D. Dyer, B. Baek, and S. W. Nam, “High-brightness, low-noise, all-fiber photon pair source,” Opt. Express 17, 10290–10297 (2009).
    [Crossref]
  12. J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, and P. Kumar, “Generation of correlated photons in nanoscale silicon waveguides,” Opt. Express 14, 12388–12393 (2006).
    [Crossref]
  13. K.-I. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-I. Itabashi, “Frequency and polarization characteristics of correlated photon-pair generation using a silicon wire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16, 325–331 (2010).
    [Crossref]
  14. K. Guo, E. N. Christensen, J. B. Christensen, J. G. Koefoed, D. Bacco, Y. Ding, H. Ou, and K. Rottwitt, “High coincidence-to-accidental ratio continuous-wave photon-pair generation in a grating-coupled silicon strip waveguide,” Appl. Phys. Express 10, 062801 (2017).
    [Crossref]
  15. S. Clemmen, A. Perret, S. Selvaraja, W. Bogaerts, D. Van Thourhout, R. Baets, P. Emplit, and S. Massar, “Generation of correlated photons in hydrogenated amorphous-silicon waveguides,” Opt. Lett. 35, 3483–3485 (2010).
    [Crossref]
  16. J. B. Spring, P. S. Salter, B. J. Metcalf, P. C. Humphreys, M. Moore, N. Thomas-Peter, M. Barbieri, X.-M. Jin, N. K. Langford, W. S. Kolthammer, M. J. Booth, and I. A. Walmsley, “On-chip low loss heralded source of pure single photons,” Opt. Express 21, 13522–13532 (2013).
    [Crossref]
  17. C. Xiong, X. Zhang, A. Mahendra, J. He, D.-Y. Choi, C. Chae, D. Marpaung, A. Leinse, R. Heideman, M. Hoekman, C. G. H. Roeloffzen, R. M. Oldenbeuving, P. W. L. van Dijk, C. Taddei, P. H. W. Leong, and B. J. Eggleton, “Compact and reconfigurable silicon nitride time-bin entanglement circuit,” Optica 2, 724–727 (2015).
    [Crossref]
  18. P. Kultavewuti, E. Y. Zhu, L. Qian, V. Pusino, M. Sorel, and J. S. Aitchison, “Correlated photon pair generation in ALGaAs nanowaveguides via spontaneous four-wave mixing,” Opt. Express 24, 3365–3376 (2016).
    [Crossref]
  19. M. Pu, L. Liu, H. Ou, K. Yvind, and J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun. 283, 3678–3682 (2010).
    [Crossref]
  20. Y. Ding, H. Ou, and C. Peucheret, “Ultrahigh-efficiency apodized grating coupler using fully etched photonic crystals,” Opt. Lett. 38, 2732–2734 (2013).
    [Crossref]
  21. J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
    [Crossref]
  22. N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “Integrated source of spectrally filtered correlated photons for large-scale quantum photonic systems,” Phys. Rev. X 4, 041047 (2014).
    [Crossref]
  23. J. Wang, D. Bonneau, M. Villa, J. W. Silverstone, R. Santagati, S. Miki, T. Yamashita, M. Fujiwara, M. Sasaki, H. Terai, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, J. L. O’Brien, and M. G. Thompson, “Chip-to-chip quantum photonic interconnect by path-polarization interconversion,” Optica 3, 407–413 (2016).
    [Crossref]
  24. I. A. Walmsley and M. G. Raymer, “Toward quantum-information processing with photons,” Science 307, 1733–1734 (2005).
    [Crossref]
  25. K. N. Cassemiro, K. Laiho, and C. Silberhorn, “Accessing the purity of a single photon by the width of the Hong–Ou–Mandel interference,” New J. Phys. 12, 113052 (2010).
    [Crossref]
  26. W. Tittel, J. Brendel, N. Gisin, and H. Zbinden, “Long-distance Bell-type tests using energy-time entangled photons,” Phys. Rev. A 59, 4150–4163 (1999).
    [Crossref]
  27. D. Grassani, S. Azzini, M. Liscidini, M. Galli, M. J. Strain, M. Sorel, J. Sipe, and D. Bajoni, “Micrometer-scale integrated silicon source of time-energy entangled photons,” Optica 2, 88–94 (2015).
    [Crossref]
  28. S. Rogers, D. Mulkey, X. Lu, W. C. Jiang, and Q. Lin, “High visibility time-energy entangled photons from a silicon nanophotonic chip,” ACS Photon. 3, 1754–1761 (2016).
    [Crossref]
  29. C. Reimer, L. Caspani, M. Clerici, M. Ferrera, M. Kues, M. Peccianti, A. Pasquazi, L. Razzari, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Integrated frequency comb source of heralded single photons,” Opt. Express 22, 6535–6546 (2014).
    [Crossref]
  30. F. Mazeas, M. Traetta, M. Bentivegna, F. Kaiser, D. Aktas, W. Zhang, C. Ramos, L. Ngah, T. Lunghi, E. Picholle, N. Belabas-Plougonven, X. Le Roux, E. Cassan, D. Marris-Morini, L. Vivien, G. Sauder, L. Labonté, and S. Tanzilli, “High-quality photonic entanglement for wavelength-multiplexed quantum communication based on a silicon chip,” Opt. Express 24, 28731–28738 (2016).
    [Crossref]
  31. J. M. Arrazola and V. Scarani, “Covert quantum communication,” Phys. Rev. Lett. 117, 250503 (2016).
    [Crossref]
  32. B. A. Bash, A. H. Gheorghe, M. Patel, J. L. Habif, D. Goeckel, D. Towsley, and S. Guha, “Quantum-secure covert communication on bosonic channels,” Nat. Commun. 6, 8626 (2015).
    [Crossref]
  33. A. S. Clark, C. Husko, M. J. Collins, G. Lehoucq, S. Xavier, A. De Rossi, S. Combrié, C. Xiong, and B. J. Eggleton, “Heralded single-photon source in a III-V photonic crystal,” Opt. Lett. 38, 649–651 (2013).
    [Crossref]
  34. S. Clemmen, K. P. Huy, W. Bogaerts, R. G. Baets, P. Emplit, and S. Massar, “Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators,” Opt. Express 17, 16558–16570 (2009).
    [Crossref]
  35. S. Azzini, D. Grassani, M. J. Strain, M. Sorel, L. Helt, J. Sipe, M. Liscidini, M. Galli, and D. Bajoni, “Ultra-low power generation of twin photons in a compact silicon ring resonator,” Opt. Express 20, 23100–23107 (2012).
    [Crossref]
  36. K.-Y. Wang, V. G. Velev, K. F. Lee, A. S. Kowligy, P. Kumar, M. A. Foster, A. C. Foster, and Y.-P. Huang, “Multichannel photon-pair generation using hydrogenated amorphous silicon waveguides,” Opt. Lett. 39, 914–917 (2014).
    [Crossref]
  37. E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21, 27826–27834 (2012).
    [Crossref]
  38. Y. Guo, W. Zhang, S. Dong, Y. Huang, and J. Peng, “Telecom-band degenerate-frequency photon pair generation in silicon microring cavities,” Opt. Lett. 39, 2526–2529 (2014).
    [Crossref]
  39. R. Wakabayashi, M. Fujiwara, K.-I. Yoshino, Y. Nambu, M. Sasaki, and T. Aoki, “Time-bin entangled photon pair generation from si micro-ring resonator,” Opt. Express 23, 1103–1113 (2015).
    [Crossref]
  40. Y. Guo, W. Zhang, N. Lv, Q. Zhou, Y. Huang, and J. Peng, “The impact of nonlinear losses in the silicon micro-ring cavities on CW pumping correlated photon pair generation,” Opt. Express 22, 2620–2631 (2014).
    [Crossref]
  41. S. Azzini, D. Grassani, M. Galli, L. C. Andreani, M. Sorel, M. J. Strain, L. Helt, J. Sipe, M. Liscidini, and D. Bajoni, “From classical four-wave mixing to parametric fluorescence in silicon microring resonators,” Opt. Lett. 37, 3807–3809 (2012).
    [Crossref]
  42. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
    [Crossref]
  43. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
    [Crossref]
  44. L. Helt, Z. Yang, M. Liscidini, and J. Sipe, “Spontaneous four-wave mixing in microring resonators,” Opt. Lett. 35, 3006–3008 (2010).
    [Crossref]
  45. L. G. Helt, M. Liscidini, and J. E. Sipe, “How does it scale? Comparing quantum and classical nonlinear optical processes in integrated devices,” J. Opt. Soc. Am. B 29, 2199–2212 (2012).
    [Crossref]
  46. Z. Vernon, M. Liscidini, and J. Sipe, “No free lunch: the trade-off between heralding rate and efficiency in microresonator-based heralded single photon sources,” Opt. Lett. 41, 788–791 (2016).
    [Crossref]
  47. M. Soltani, “Novel integrated silicon nanophotonic structures using ultra-high Q resonators,” Ph.D. thesis (Georgia Institute of Technology, 2009).
  48. A. B. Fallahkhair, K. S. Li, and T. E. Murphy, “Vector finite difference modesolver for anisotropic dielectric waveguides,” J. Lightwave Technol. 26, 1423–1431 (2008).
    [Crossref]
  49. K. Guo, F. Smm, J. B. Christensen, E. N. Christensen, X. Shi, Y. Ding, H. Ou, and K. Rottwitt, “Full-vectorial propagation model and modified effective mode area of four-wave mixing in straight waveguides,” Opt. Lett. 42, 3670–3673 (2017).
    [Crossref]
  50. Y. Li, A. V. Maslov, N. I. Limberopoulos, A. M. Urbas, and V. N. Astratov, “Spectrally resolved resonant propulsion of dielectric microspheres,” Laser Photon. Rev. 9, 263–273 (2015).
    [Crossref]
  51. H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, “Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide,” Appl. Phys. Lett. 85, 2196–2198 (2004).
    [Crossref]
  52. D. Dimitropoulos, R. Jhaveri, R. Claps, J. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett. 86, 071115 (2005).
    [Crossref]
  53. X. Lu, W. C. Jiang, J. Zhang, and Q. Lin, “Biphoton statistics of quantum light generated on a silicon chip,” ACS Photon. 3, 1626–1636 (2016).
    [Crossref]
  54. W. C. Jiang, X. Lu, J. Zhang, O. Painter, and Q. Lin, “Silicon-chip source of bright photon pairs,” Opt. Express 23, 20884–20904 (2015).
    [Crossref]
  55. B. Korzh, N. Walenta, T. Lunghi, N. Gisin, and H. Zbinden, “Free-running ingaas single photon detector with 1 dark count per second at 10% efficiency,” Appl. Phys. Lett. 104, 081108 (2014).
    [Crossref]
  56. L. C. Comandar, B. Fröhlich, J. F. Dynes, A. W. Sharpe, M. Lucamarini, Z. Yuan, R. V. Penty, and A. J. Shields, “Gigahertz-gated InGaAs/InP single-photon detector with detection efficiency exceeding 55% at 1550  nm,” J. Appl. Phys. 117, 083109 (2015).
    [Crossref]
  57. Y. F. Xiao, X. F. Jiang, Q. F. Yang, L. Wang, K. Shi, Y. Li, and Q. Gong, “Tunneling-induced transparency in a chaotic microcavity,” Laser Photon. Rev. 7, L51–L54 (2013).
    [Crossref]
  58. X. F. Jiang, C. L. Zou, L. Wang, Q. Gong, and Y. F. Xiao, “Whispering–gallery microcavities with unidirectional laser emission,” Laser Photon. Rev. 10, 40–61 (2016).
    [Crossref]
  59. Y. Yang, X. Jiang, S. Kasumie, G. Zhao, L. Xu, J. M. Ward, L. Yang, and S. N. Chormaic, “Four-wave mixing parametric oscillation and frequency comb generation at visible wavelengths in a silica microbubble resonator,” Opt. Lett. 41, 5266–5269 (2016).
    [Crossref]
  60. M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
    [Crossref]
  61. X. F. Jiang, Y. F. Xiao, Q. F. Yang, and L. Shao, “Free-space coupled, ultralow-threshold raman lasing from a silica microcavity,” Appl. Phys. Lett. 103, 101102 (2013).
    [Crossref]
  62. X. Jiang, L. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y. F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
    [Crossref]
  63. X. F. Jiang, Y. F. Xiao, C. L. Zou, L. He, C. H. Dong, B. B. Li, Y. Li, F. W. Sun, L. Yang, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24, OP260–OP264 (2012).

2017 (3)

K. Guo, E. N. Christensen, J. B. Christensen, J. G. Koefoed, D. Bacco, Y. Ding, H. Ou, and K. Rottwitt, “High coincidence-to-accidental ratio continuous-wave photon-pair generation in a grating-coupled silicon strip waveguide,” Appl. Phys. Express 10, 062801 (2017).
[Crossref]

X. Jiang, L. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y. F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref]

K. Guo, F. Smm, J. B. Christensen, E. N. Christensen, X. Shi, Y. Ding, H. Ou, and K. Rottwitt, “Full-vectorial propagation model and modified effective mode area of four-wave mixing in straight waveguides,” Opt. Lett. 42, 3670–3673 (2017).
[Crossref]

2016 (11)

P. Kultavewuti, E. Y. Zhu, L. Qian, V. Pusino, M. Sorel, and J. S. Aitchison, “Correlated photon pair generation in ALGaAs nanowaveguides via spontaneous four-wave mixing,” Opt. Express 24, 3365–3376 (2016).
[Crossref]

Z. Vernon, M. Liscidini, and J. Sipe, “No free lunch: the trade-off between heralding rate and efficiency in microresonator-based heralded single photon sources,” Opt. Lett. 41, 788–791 (2016).
[Crossref]

J. Wang, D. Bonneau, M. Villa, J. W. Silverstone, R. Santagati, S. Miki, T. Yamashita, M. Fujiwara, M. Sasaki, H. Terai, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, J. L. O’Brien, and M. G. Thompson, “Chip-to-chip quantum photonic interconnect by path-polarization interconversion,” Optica 3, 407–413 (2016).
[Crossref]

Y. Yang, X. Jiang, S. Kasumie, G. Zhao, L. Xu, J. M. Ward, L. Yang, and S. N. Chormaic, “Four-wave mixing parametric oscillation and frequency comb generation at visible wavelengths in a silica microbubble resonator,” Opt. Lett. 41, 5266–5269 (2016).
[Crossref]

F. Mazeas, M. Traetta, M. Bentivegna, F. Kaiser, D. Aktas, W. Zhang, C. Ramos, L. Ngah, T. Lunghi, E. Picholle, N. Belabas-Plougonven, X. Le Roux, E. Cassan, D. Marris-Morini, L. Vivien, G. Sauder, L. Labonté, and S. Tanzilli, “High-quality photonic entanglement for wavelength-multiplexed quantum communication based on a silicon chip,” Opt. Express 24, 28731–28738 (2016).
[Crossref]

X. F. Jiang, C. L. Zou, L. Wang, Q. Gong, and Y. F. Xiao, “Whispering–gallery microcavities with unidirectional laser emission,” Laser Photon. Rev. 10, 40–61 (2016).
[Crossref]

S. Rogers, D. Mulkey, X. Lu, W. C. Jiang, and Q. Lin, “High visibility time-energy entangled photons from a silicon nanophotonic chip,” ACS Photon. 3, 1754–1761 (2016).
[Crossref]

J. M. Arrazola and V. Scarani, “Covert quantum communication,” Phys. Rev. Lett. 117, 250503 (2016).
[Crossref]

X. Lu, W. C. Jiang, J. Zhang, and Q. Lin, “Biphoton statistics of quantum light generated on a silicon chip,” ACS Photon. 3, 1626–1636 (2016).
[Crossref]

X. Ding, Y. He, Z. Duan, N. Gregersen, M. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C. Lu, and J. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116, 020401 (2016).
[Crossref]

D. Aktas, B. Fedrici, F. Kaiser, T. Lunghi, L. Labonte, and S. Tanzilli, “Entanglement distribution over 150  km in wavelength division multiplexed channels for quantum cryptography,” Laser Photon. Rev. 10, 451–457 (2016).
[Crossref]

2015 (7)

Y. Li, A. V. Maslov, N. I. Limberopoulos, A. M. Urbas, and V. N. Astratov, “Spectrally resolved resonant propulsion of dielectric microspheres,” Laser Photon. Rev. 9, 263–273 (2015).
[Crossref]

B. A. Bash, A. H. Gheorghe, M. Patel, J. L. Habif, D. Goeckel, D. Towsley, and S. Guha, “Quantum-secure covert communication on bosonic channels,” Nat. Commun. 6, 8626 (2015).
[Crossref]

L. C. Comandar, B. Fröhlich, J. F. Dynes, A. W. Sharpe, M. Lucamarini, Z. Yuan, R. V. Penty, and A. J. Shields, “Gigahertz-gated InGaAs/InP single-photon detector with detection efficiency exceeding 55% at 1550  nm,” J. Appl. Phys. 117, 083109 (2015).
[Crossref]

R. Wakabayashi, M. Fujiwara, K.-I. Yoshino, Y. Nambu, M. Sasaki, and T. Aoki, “Time-bin entangled photon pair generation from si micro-ring resonator,” Opt. Express 23, 1103–1113 (2015).
[Crossref]

D. Grassani, S. Azzini, M. Liscidini, M. Galli, M. J. Strain, M. Sorel, J. Sipe, and D. Bajoni, “Micrometer-scale integrated silicon source of time-energy entangled photons,” Optica 2, 88–94 (2015).
[Crossref]

W. C. Jiang, X. Lu, J. Zhang, O. Painter, and Q. Lin, “Silicon-chip source of bright photon pairs,” Opt. Express 23, 20884–20904 (2015).
[Crossref]

C. Xiong, X. Zhang, A. Mahendra, J. He, D.-Y. Choi, C. Chae, D. Marpaung, A. Leinse, R. Heideman, M. Hoekman, C. G. H. Roeloffzen, R. M. Oldenbeuving, P. W. L. van Dijk, C. Taddei, P. H. W. Leong, and B. J. Eggleton, “Compact and reconfigurable silicon nitride time-bin entanglement circuit,” Optica 2, 724–727 (2015).
[Crossref]

2014 (6)

2013 (5)

2012 (6)

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21, 27826–27834 (2012).
[Crossref]

L. G. Helt, M. Liscidini, and J. E. Sipe, “How does it scale? Comparing quantum and classical nonlinear optical processes in integrated devices,” J. Opt. Soc. Am. B 29, 2199–2212 (2012).
[Crossref]

S. Azzini, D. Grassani, M. Galli, L. C. Andreani, M. Sorel, M. J. Strain, L. Helt, J. Sipe, M. Liscidini, and D. Bajoni, “From classical four-wave mixing to parametric fluorescence in silicon microring resonators,” Opt. Lett. 37, 3807–3809 (2012).
[Crossref]

S. Azzini, D. Grassani, M. J. Strain, M. Sorel, L. Helt, J. Sipe, M. Liscidini, M. Galli, and D. Bajoni, “Ultra-low power generation of twin photons in a compact silicon ring resonator,” Opt. Express 20, 23100–23107 (2012).
[Crossref]

X. F. Jiang, Y. F. Xiao, C. L. Zou, L. He, C. H. Dong, B. B. Li, Y. Li, F. W. Sun, L. Yang, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24, OP260–OP264 (2012).

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

2010 (6)

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[Crossref]

K. N. Cassemiro, K. Laiho, and C. Silberhorn, “Accessing the purity of a single photon by the width of the Hong–Ou–Mandel interference,” New J. Phys. 12, 113052 (2010).
[Crossref]

M. Pu, L. Liu, H. Ou, K. Yvind, and J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun. 283, 3678–3682 (2010).
[Crossref]

K.-I. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-I. Itabashi, “Frequency and polarization characteristics of correlated photon-pair generation using a silicon wire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16, 325–331 (2010).
[Crossref]

L. Helt, Z. Yang, M. Liscidini, and J. Sipe, “Spontaneous four-wave mixing in microring resonators,” Opt. Lett. 35, 3006–3008 (2010).
[Crossref]

S. Clemmen, A. Perret, S. Selvaraja, W. Bogaerts, D. Van Thourhout, R. Baets, P. Emplit, and S. Massar, “Generation of correlated photons in hydrogenated amorphous-silicon waveguides,” Opt. Lett. 35, 3483–3485 (2010).
[Crossref]

2009 (2)

2008 (1)

2007 (2)

N. Gisin and R. Thew, “Quantum communication,” Nat. Photonics 1, 165–171 (2007).
[Crossref]

I. Ali-Khan, C. J. Broadbent, and J. C. Howell, “Large-alphabet quantum key distribution using energy-time entangled bipartite states,” Phys. Rev. Lett. 98, 060503 (2007).
[Crossref]

2006 (1)

2005 (2)

I. A. Walmsley and M. G. Raymer, “Toward quantum-information processing with photons,” Science 307, 1733–1734 (2005).
[Crossref]

D. Dimitropoulos, R. Jhaveri, R. Claps, J. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett. 86, 071115 (2005).
[Crossref]

2004 (2)

X. Li, J. Chen, P. Voss, J. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications: improved generation of correlated photons,” Opt. Express 12, 3737–3744 (2004).
[Crossref]

H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, “Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide,” Appl. Phys. Lett. 85, 2196–2198 (2004).
[Crossref]

2001 (2)

S. Tanzilli, H. De Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–28 (2001).
[Crossref]

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref]

2000 (1)

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
[Crossref]

1999 (1)

W. Tittel, J. Brendel, N. Gisin, and H. Zbinden, “Long-distance Bell-type tests using energy-time entangled photons,” Phys. Rev. A 59, 4150–4163 (1999).
[Crossref]

1997 (1)

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[Crossref]

1995 (1)

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref]

1992 (1)

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett. 68, 557–559 (1992).
[Crossref]

1991 (1)

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
[Crossref]

Aitchison, J. S.

Aktas, D.

Ali-Khan, I.

I. Ali-Khan, C. J. Broadbent, and J. C. Howell, “Large-alphabet quantum key distribution using energy-time entangled bipartite states,” Phys. Rev. Lett. 98, 060503 (2007).
[Crossref]

Andreani, L. C.

Aoki, T.

Arrazola, J. M.

J. M. Arrazola and V. Scarani, “Covert quantum communication,” Phys. Rev. Lett. 117, 250503 (2016).
[Crossref]

Astratov, V. N.

Y. Li, A. V. Maslov, N. I. Limberopoulos, A. M. Urbas, and V. N. Astratov, “Spectrally resolved resonant propulsion of dielectric microspheres,” Laser Photon. Rev. 9, 263–273 (2015).
[Crossref]

Azzini, S.

Bacco, D.

K. Guo, E. N. Christensen, J. B. Christensen, J. G. Koefoed, D. Bacco, Y. Ding, H. Ou, and K. Rottwitt, “High coincidence-to-accidental ratio continuous-wave photon-pair generation in a grating-coupled silicon strip waveguide,” Appl. Phys. Express 10, 062801 (2017).
[Crossref]

Baehr-Jones, T.

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “Integrated source of spectrally filtered correlated photons for large-scale quantum photonic systems,” Phys. Rev. X 4, 041047 (2014).
[Crossref]

Baek, B.

Baets, R.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

S. Clemmen, A. Perret, S. Selvaraja, W. Bogaerts, D. Van Thourhout, R. Baets, P. Emplit, and S. Massar, “Generation of correlated photons in hydrogenated amorphous-silicon waveguides,” Opt. Lett. 35, 3483–3485 (2010).
[Crossref]

Baets, R. G.

Bajoni, D.

Baldi, P.

S. Tanzilli, H. De Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–28 (2001).
[Crossref]

Barbieri, M.

Bash, B. A.

B. A. Bash, A. H. Gheorghe, M. Patel, J. L. Habif, D. Goeckel, D. Towsley, and S. Guha, “Quantum-secure covert communication on bosonic channels,” Nat. Commun. 6, 8626 (2015).
[Crossref]

Belabas-Plougonven, N.

Bennett, C. H.

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett. 68, 557–559 (1992).
[Crossref]

Bentivegna, M.

Bienstman, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Bogaerts, W.

Bonneau, D.

Booth, M. J.

Brassard, G.

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett. 68, 557–559 (1992).
[Crossref]

Brendel, J.

W. Tittel, J. Brendel, N. Gisin, and H. Zbinden, “Long-distance Bell-type tests using energy-time entangled photons,” Phys. Rev. A 59, 4150–4163 (1999).
[Crossref]

Broadbent, C. J.

I. Ali-Khan, C. J. Broadbent, and J. C. Howell, “Large-alphabet quantum key distribution using energy-time entangled bipartite states,” Phys. Rev. Lett. 98, 060503 (2007).
[Crossref]

Cai, M.

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
[Crossref]

Caspani, L.

Cassan, E.

Cassemiro, K. N.

K. N. Cassemiro, K. Laiho, and C. Silberhorn, “Accessing the purity of a single photon by the width of the Hong–Ou–Mandel interference,” New J. Phys. 12, 113052 (2010).
[Crossref]

Chae, C.

Chen, J.

Chen, M.

X. Ding, Y. He, Z. Duan, N. Gregersen, M. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C. Lu, and J. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116, 020401 (2016).
[Crossref]

Choi, D.-Y.

Chormaic, S. N.

Christensen, E. N.

K. Guo, F. Smm, J. B. Christensen, E. N. Christensen, X. Shi, Y. Ding, H. Ou, and K. Rottwitt, “Full-vectorial propagation model and modified effective mode area of four-wave mixing in straight waveguides,” Opt. Lett. 42, 3670–3673 (2017).
[Crossref]

K. Guo, E. N. Christensen, J. B. Christensen, J. G. Koefoed, D. Bacco, Y. Ding, H. Ou, and K. Rottwitt, “High coincidence-to-accidental ratio continuous-wave photon-pair generation in a grating-coupled silicon strip waveguide,” Appl. Phys. Express 10, 062801 (2017).
[Crossref]

Christensen, J. B.

K. Guo, E. N. Christensen, J. B. Christensen, J. G. Koefoed, D. Bacco, Y. Ding, H. Ou, and K. Rottwitt, “High coincidence-to-accidental ratio continuous-wave photon-pair generation in a grating-coupled silicon strip waveguide,” Appl. Phys. Express 10, 062801 (2017).
[Crossref]

K. Guo, F. Smm, J. B. Christensen, E. N. Christensen, X. Shi, Y. Ding, H. Ou, and K. Rottwitt, “Full-vectorial propagation model and modified effective mode area of four-wave mixing in straight waveguides,” Opt. Lett. 42, 3670–3673 (2017).
[Crossref]

Chu, S. T.

Claes, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Claps, R.

D. Dimitropoulos, R. Jhaveri, R. Claps, J. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett. 86, 071115 (2005).
[Crossref]

Clark, A. S.

Clemmen, S.

Clerici, M.

Cohen, O.

H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, “Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide,” Appl. Phys. Lett. 85, 2196–2198 (2004).
[Crossref]

Collins, M. J.

Comandar, L. C.

L. C. Comandar, B. Fröhlich, J. F. Dynes, A. W. Sharpe, M. Lucamarini, Z. Yuan, R. V. Penty, and A. J. Shields, “Gigahertz-gated InGaAs/InP single-photon detector with detection efficiency exceeding 55% at 1550  nm,” J. Appl. Phys. 117, 083109 (2015).
[Crossref]

Combrié, S.

De Heyn, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

De Micheli, M.

S. Tanzilli, H. De Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–28 (2001).
[Crossref]

De Riedmatten, H.

S. Tanzilli, H. De Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–28 (2001).
[Crossref]

De Rossi, A.

De Vos, K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Dimitropoulos, D.

D. Dimitropoulos, R. Jhaveri, R. Claps, J. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett. 86, 071115 (2005).
[Crossref]

Ding, X.

X. Ding, Y. He, Z. Duan, N. Gregersen, M. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C. Lu, and J. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116, 020401 (2016).
[Crossref]

Ding, Y.

Dong, C. H.

X. F. Jiang, Y. F. Xiao, C. L. Zou, L. He, C. H. Dong, B. B. Li, Y. Li, F. W. Sun, L. Yang, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24, OP260–OP264 (2012).

Dong, S.

Dorenbos, S. N.

Duan, Z.

X. Ding, Y. He, Z. Duan, N. Gregersen, M. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C. Lu, and J. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116, 020401 (2016).
[Crossref]

Dumon, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Dyer, S. D.

Dynes, J. F.

L. C. Comandar, B. Fröhlich, J. F. Dynes, A. W. Sharpe, M. Lucamarini, Z. Yuan, R. V. Penty, and A. J. Shields, “Gigahertz-gated InGaAs/InP single-photon detector with detection efficiency exceeding 55% at 1550  nm,” J. Appl. Phys. 117, 083109 (2015).
[Crossref]

Eggleton, B. J.

Ekert, A. K.

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
[Crossref]

Emplit, P.

Engin, E.

Englund, D.

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “Integrated source of spectrally filtered correlated photons for large-scale quantum photonic systems,” Phys. Rev. X 4, 041047 (2014).
[Crossref]

Ezaki, M.

Fallahkhair, A. B.

Fedrici, B.

D. Aktas, B. Fedrici, F. Kaiser, T. Lunghi, L. Labonte, and S. Tanzilli, “Entanglement distribution over 150  km in wavelength division multiplexed channels for quantum cryptography,” Laser Photon. Rev. 10, 451–457 (2016).
[Crossref]

Ferrera, M.

Foresi, J.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[Crossref]

Foster, A. C.

Foster, M. A.

Freude, W.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[Crossref]

Fröhlich, B.

L. C. Comandar, B. Fröhlich, J. F. Dynes, A. W. Sharpe, M. Lucamarini, Z. Yuan, R. V. Penty, and A. J. Shields, “Gigahertz-gated InGaAs/InP single-photon detector with detection efficiency exceeding 55% at 1550  nm,” J. Appl. Phys. 117, 083109 (2015).
[Crossref]

Fujiwara, M.

Fukuda, H.

K.-I. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-I. Itabashi, “Frequency and polarization characteristics of correlated photon-pair generation using a silicon wire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16, 325–331 (2010).
[Crossref]

Gaeta, A. L.

Galland, C.

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “Integrated source of spectrally filtered correlated photons for large-scale quantum photonic systems,” Phys. Rev. X 4, 041047 (2014).
[Crossref]

Galli, M.

Gheorghe, A. H.

B. A. Bash, A. H. Gheorghe, M. Patel, J. L. Habif, D. Goeckel, D. Towsley, and S. Guha, “Quantum-secure covert communication on bosonic channels,” Nat. Commun. 6, 8626 (2015).
[Crossref]

Gisin, N.

B. Korzh, N. Walenta, T. Lunghi, N. Gisin, and H. Zbinden, “Free-running ingaas single photon detector with 1 dark count per second at 10% efficiency,” Appl. Phys. Lett. 104, 081108 (2014).
[Crossref]

N. Gisin and R. Thew, “Quantum communication,” Nat. Photonics 1, 165–171 (2007).
[Crossref]

S. Tanzilli, H. De Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–28 (2001).
[Crossref]

W. Tittel, J. Brendel, N. Gisin, and H. Zbinden, “Long-distance Bell-type tests using energy-time entangled photons,” Phys. Rev. A 59, 4150–4163 (1999).
[Crossref]

Goeckel, D.

B. A. Bash, A. H. Gheorghe, M. Patel, J. L. Habif, D. Goeckel, D. Towsley, and S. Guha, “Quantum-secure covert communication on bosonic channels,” Nat. Commun. 6, 8626 (2015).
[Crossref]

Gong, Q.

X. Jiang, L. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y. F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref]

X. F. Jiang, C. L. Zou, L. Wang, Q. Gong, and Y. F. Xiao, “Whispering–gallery microcavities with unidirectional laser emission,” Laser Photon. Rev. 10, 40–61 (2016).
[Crossref]

Y. F. Xiao, X. F. Jiang, Q. F. Yang, L. Wang, K. Shi, Y. Li, and Q. Gong, “Tunneling-induced transparency in a chaotic microcavity,” Laser Photon. Rev. 7, L51–L54 (2013).
[Crossref]

X. F. Jiang, Y. F. Xiao, C. L. Zou, L. He, C. H. Dong, B. B. Li, Y. Li, F. W. Sun, L. Yang, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24, OP260–OP264 (2012).

Grassani, D.

Gregersen, N.

X. Ding, Y. He, Z. Duan, N. Gregersen, M. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C. Lu, and J. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116, 020401 (2016).
[Crossref]

Guha, S.

B. A. Bash, A. H. Gheorghe, M. Patel, J. L. Habif, D. Goeckel, D. Towsley, and S. Guha, “Quantum-secure covert communication on bosonic channels,” Nat. Commun. 6, 8626 (2015).
[Crossref]

Guo, K.

K. Guo, E. N. Christensen, J. B. Christensen, J. G. Koefoed, D. Bacco, Y. Ding, H. Ou, and K. Rottwitt, “High coincidence-to-accidental ratio continuous-wave photon-pair generation in a grating-coupled silicon strip waveguide,” Appl. Phys. Express 10, 062801 (2017).
[Crossref]

K. Guo, F. Smm, J. B. Christensen, E. N. Christensen, X. Shi, Y. Ding, H. Ou, and K. Rottwitt, “Full-vectorial propagation model and modified effective mode area of four-wave mixing in straight waveguides,” Opt. Lett. 42, 3670–3673 (2017).
[Crossref]

Guo, Y.

Habif, J. L.

B. A. Bash, A. H. Gheorghe, M. Patel, J. L. Habif, D. Goeckel, D. Towsley, and S. Guha, “Quantum-secure covert communication on bosonic channels,” Nat. Commun. 6, 8626 (2015).
[Crossref]

Hadfield, R. H.

Hak, D.

H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, “Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide,” Appl. Phys. Lett. 85, 2196–2198 (2004).
[Crossref]

Harada, K.-I.

K.-I. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-I. Itabashi, “Frequency and polarization characteristics of correlated photon-pair generation using a silicon wire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16, 325–331 (2010).
[Crossref]

Harris, N. C.

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “Integrated source of spectrally filtered correlated photons for large-scale quantum photonic systems,” Phys. Rev. X 4, 041047 (2014).
[Crossref]

Haus, H. A.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[Crossref]

He, J.

He, L.

X. F. Jiang, Y. F. Xiao, C. L. Zou, L. He, C. H. Dong, B. B. Li, Y. Li, F. W. Sun, L. Yang, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24, OP260–OP264 (2012).

He, Y.

X. Ding, Y. He, Z. Duan, N. Gregersen, M. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C. Lu, and J. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116, 020401 (2016).
[Crossref]

Heideman, R.

Helt, L.

Helt, L. G.

Hochberg, M.

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “Integrated source of spectrally filtered correlated photons for large-scale quantum photonic systems,” Phys. Rev. X 4, 041047 (2014).
[Crossref]

Hoekman, M.

Höfling, S.

X. Ding, Y. He, Z. Duan, N. Gregersen, M. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C. Lu, and J. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116, 020401 (2016).
[Crossref]

Howell, J. C.

I. Ali-Khan, C. J. Broadbent, and J. C. Howell, “Large-alphabet quantum key distribution using energy-time entangled bipartite states,” Phys. Rev. Lett. 98, 060503 (2007).
[Crossref]

Huang, Y.

Huang, Y.-P.

Humphreys, P. C.

Husko, C.

Huy, K. P.

Hvam, J. M.

M. Pu, L. Liu, H. Ou, K. Yvind, and J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun. 283, 3678–3682 (2010).
[Crossref]

Iizuka, N.

Itabashi, S.-I.

K.-I. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-I. Itabashi, “Frequency and polarization characteristics of correlated photon-pair generation using a silicon wire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16, 325–331 (2010).
[Crossref]

Jalali, B.

D. Dimitropoulos, R. Jhaveri, R. Claps, J. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett. 86, 071115 (2005).
[Crossref]

Jhaveri, R.

D. Dimitropoulos, R. Jhaveri, R. Claps, J. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett. 86, 071115 (2005).
[Crossref]

Jiang, W. C.

X. Lu, W. C. Jiang, J. Zhang, and Q. Lin, “Biphoton statistics of quantum light generated on a silicon chip,” ACS Photon. 3, 1626–1636 (2016).
[Crossref]

S. Rogers, D. Mulkey, X. Lu, W. C. Jiang, and Q. Lin, “High visibility time-energy entangled photons from a silicon nanophotonic chip,” ACS Photon. 3, 1754–1761 (2016).
[Crossref]

W. C. Jiang, X. Lu, J. Zhang, O. Painter, and Q. Lin, “Silicon-chip source of bright photon pairs,” Opt. Express 23, 20884–20904 (2015).
[Crossref]

Jiang, X.

X. Jiang, L. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y. F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref]

Y. Yang, X. Jiang, S. Kasumie, G. Zhao, L. Xu, J. M. Ward, L. Yang, and S. N. Chormaic, “Four-wave mixing parametric oscillation and frequency comb generation at visible wavelengths in a silica microbubble resonator,” Opt. Lett. 41, 5266–5269 (2016).
[Crossref]

Jiang, X. F.

X. F. Jiang, C. L. Zou, L. Wang, Q. Gong, and Y. F. Xiao, “Whispering–gallery microcavities with unidirectional laser emission,” Laser Photon. Rev. 10, 40–61 (2016).
[Crossref]

Y. F. Xiao, X. F. Jiang, Q. F. Yang, L. Wang, K. Shi, Y. Li, and Q. Gong, “Tunneling-induced transparency in a chaotic microcavity,” Laser Photon. Rev. 7, L51–L54 (2013).
[Crossref]

X. F. Jiang, Y. F. Xiao, Q. F. Yang, and L. Shao, “Free-space coupled, ultralow-threshold raman lasing from a silica microcavity,” Appl. Phys. Lett. 103, 101102 (2013).
[Crossref]

X. F. Jiang, Y. F. Xiao, C. L. Zou, L. He, C. H. Dong, B. B. Li, Y. Li, F. W. Sun, L. Yang, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24, OP260–OP264 (2012).

Jin, X.-M.

Kaiser, F.

Kamp, M.

X. Ding, Y. He, Z. Duan, N. Gregersen, M. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C. Lu, and J. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116, 020401 (2016).
[Crossref]

Kasumie, S.

Knill, E.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref]

Koefoed, J. G.

K. Guo, E. N. Christensen, J. B. Christensen, J. G. Koefoed, D. Bacco, Y. Ding, H. Ou, and K. Rottwitt, “High coincidence-to-accidental ratio continuous-wave photon-pair generation in a grating-coupled silicon strip waveguide,” Appl. Phys. Express 10, 062801 (2017).
[Crossref]

Kolthammer, W. S.

Koos, C.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[Crossref]

Korzh, B.

B. Korzh, N. Walenta, T. Lunghi, N. Gisin, and H. Zbinden, “Free-running ingaas single photon detector with 1 dark count per second at 10% efficiency,” Appl. Phys. Lett. 104, 081108 (2014).
[Crossref]

Kowligy, A. S.

Kues, M.

Kultavewuti, P.

Kumar, P.

Kumar Selvaraja, S.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Kwiat, P. G.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref]

Labonte, L.

D. Aktas, B. Fedrici, F. Kaiser, T. Lunghi, L. Labonte, and S. Tanzilli, “Entanglement distribution over 150  km in wavelength division multiplexed channels for quantum cryptography,” Laser Photon. Rev. 10, 451–457 (2016).
[Crossref]

Labonté, L.

Laflamme, R.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref]

Laiho, K.

K. N. Cassemiro, K. Laiho, and C. Silberhorn, “Accessing the purity of a single photon by the width of the Hong–Ou–Mandel interference,” New J. Phys. 12, 113052 (2010).
[Crossref]

Laine, J.-P.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[Crossref]

Langford, N. K.

Le Roux, X.

Lee, K. F.

Lehoucq, G.

Leinse, A.

Leong, P. H. W.

Leuthold, J.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[Crossref]

Li, B. B.

X. F. Jiang, Y. F. Xiao, C. L. Zou, L. He, C. H. Dong, B. B. Li, Y. Li, F. W. Sun, L. Yang, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24, OP260–OP264 (2012).

Li, K. S.

Li, X.

Li, Y.

Y. Li, A. V. Maslov, N. I. Limberopoulos, A. M. Urbas, and V. N. Astratov, “Spectrally resolved resonant propulsion of dielectric microspheres,” Laser Photon. Rev. 9, 263–273 (2015).
[Crossref]

Y. F. Xiao, X. F. Jiang, Q. F. Yang, L. Wang, K. Shi, Y. Li, and Q. Gong, “Tunneling-induced transparency in a chaotic microcavity,” Laser Photon. Rev. 7, L51–L54 (2013).
[Crossref]

X. F. Jiang, Y. F. Xiao, C. L. Zou, L. He, C. H. Dong, B. B. Li, Y. Li, F. W. Sun, L. Yang, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24, OP260–OP264 (2012).

Limberopoulos, N. I.

Y. Li, A. V. Maslov, N. I. Limberopoulos, A. M. Urbas, and V. N. Astratov, “Spectrally resolved resonant propulsion of dielectric microspheres,” Laser Photon. Rev. 9, 263–273 (2015).
[Crossref]

Lin, Q.

X. Lu, W. C. Jiang, J. Zhang, and Q. Lin, “Biphoton statistics of quantum light generated on a silicon chip,” ACS Photon. 3, 1626–1636 (2016).
[Crossref]

S. Rogers, D. Mulkey, X. Lu, W. C. Jiang, and Q. Lin, “High visibility time-energy entangled photons from a silicon nanophotonic chip,” ACS Photon. 3, 1754–1761 (2016).
[Crossref]

W. C. Jiang, X. Lu, J. Zhang, O. Painter, and Q. Lin, “Silicon-chip source of bright photon pairs,” Opt. Express 23, 20884–20904 (2015).
[Crossref]

Lipson, M.

Liscidini, M.

Little, B. E.

Liu, A.

H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, “Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide,” Appl. Phys. Lett. 85, 2196–2198 (2004).
[Crossref]

Liu, L.

M. Pu, L. Liu, H. Ou, K. Yvind, and J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun. 283, 3678–3682 (2010).
[Crossref]

Loncar, M.

X. Jiang, L. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y. F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref]

Lu, C.

X. Ding, Y. He, Z. Duan, N. Gregersen, M. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C. Lu, and J. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116, 020401 (2016).
[Crossref]

Lu, X.

X. Lu, W. C. Jiang, J. Zhang, and Q. Lin, “Biphoton statistics of quantum light generated on a silicon chip,” ACS Photon. 3, 1626–1636 (2016).
[Crossref]

S. Rogers, D. Mulkey, X. Lu, W. C. Jiang, and Q. Lin, “High visibility time-energy entangled photons from a silicon nanophotonic chip,” ACS Photon. 3, 1754–1761 (2016).
[Crossref]

W. C. Jiang, X. Lu, J. Zhang, O. Painter, and Q. Lin, “Silicon-chip source of bright photon pairs,” Opt. Express 23, 20884–20904 (2015).
[Crossref]

Lucamarini, M.

L. C. Comandar, B. Fröhlich, J. F. Dynes, A. W. Sharpe, M. Lucamarini, Z. Yuan, R. V. Penty, and A. J. Shields, “Gigahertz-gated InGaAs/InP single-photon detector with detection efficiency exceeding 55% at 1550  nm,” J. Appl. Phys. 117, 083109 (2015).
[Crossref]

Lunghi, T.

D. Aktas, B. Fedrici, F. Kaiser, T. Lunghi, L. Labonte, and S. Tanzilli, “Entanglement distribution over 150  km in wavelength division multiplexed channels for quantum cryptography,” Laser Photon. Rev. 10, 451–457 (2016).
[Crossref]

F. Mazeas, M. Traetta, M. Bentivegna, F. Kaiser, D. Aktas, W. Zhang, C. Ramos, L. Ngah, T. Lunghi, E. Picholle, N. Belabas-Plougonven, X. Le Roux, E. Cassan, D. Marris-Morini, L. Vivien, G. Sauder, L. Labonté, and S. Tanzilli, “High-quality photonic entanglement for wavelength-multiplexed quantum communication based on a silicon chip,” Opt. Express 24, 28731–28738 (2016).
[Crossref]

B. Korzh, N. Walenta, T. Lunghi, N. Gisin, and H. Zbinden, “Free-running ingaas single photon detector with 1 dark count per second at 10% efficiency,” Appl. Phys. Lett. 104, 081108 (2014).
[Crossref]

Lv, N.

Mahendra, A.

Maier, S.

X. Ding, Y. He, Z. Duan, N. Gregersen, M. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C. Lu, and J. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116, 020401 (2016).
[Crossref]

Marpaung, D.

Marris-Morini, D.

Maslov, A. V.

Y. Li, A. V. Maslov, N. I. Limberopoulos, A. M. Urbas, and V. N. Astratov, “Spectrally resolved resonant propulsion of dielectric microspheres,” Laser Photon. Rev. 9, 263–273 (2015).
[Crossref]

Massar, S.

Mattle, K.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref]

Mazeas, F.

Mermin, N. D.

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett. 68, 557–559 (1992).
[Crossref]

Metcalf, B. J.

Miki, S.

Milburn, G. J.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref]

Moore, M.

Morandotti, R.

Moss, D. J.

Mulkey, D.

S. Rogers, D. Mulkey, X. Lu, W. C. Jiang, and Q. Lin, “High visibility time-energy entangled photons from a silicon nanophotonic chip,” ACS Photon. 3, 1754–1761 (2016).
[Crossref]

Murphy, T. E.

Nam, S. W.

Nambu, Y.

Natarajan, C. M.

Ngah, L.

Nicolaescu, R.

H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, “Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide,” Appl. Phys. Lett. 85, 2196–2198 (2004).
[Crossref]

O’Brien, J. L.

Ohira, K.

Oldenbeuving, R. M.

Ostrowsky, D. B.

S. Tanzilli, H. De Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–28 (2001).
[Crossref]

Ou, H.

K. Guo, E. N. Christensen, J. B. Christensen, J. G. Koefoed, D. Bacco, Y. Ding, H. Ou, and K. Rottwitt, “High coincidence-to-accidental ratio continuous-wave photon-pair generation in a grating-coupled silicon strip waveguide,” Appl. Phys. Express 10, 062801 (2017).
[Crossref]

K. Guo, F. Smm, J. B. Christensen, E. N. Christensen, X. Shi, Y. Ding, H. Ou, and K. Rottwitt, “Full-vectorial propagation model and modified effective mode area of four-wave mixing in straight waveguides,” Opt. Lett. 42, 3670–3673 (2017).
[Crossref]

Y. Ding, H. Ou, and C. Peucheret, “Ultrahigh-efficiency apodized grating coupler using fully etched photonic crystals,” Opt. Lett. 38, 2732–2734 (2013).
[Crossref]

M. Pu, L. Liu, H. Ou, K. Yvind, and J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun. 283, 3678–3682 (2010).
[Crossref]

Painter, O.

W. C. Jiang, X. Lu, J. Zhang, O. Painter, and Q. Lin, “Silicon-chip source of bright photon pairs,” Opt. Express 23, 20884–20904 (2015).
[Crossref]

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
[Crossref]

Pan, J.

X. Ding, Y. He, Z. Duan, N. Gregersen, M. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C. Lu, and J. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116, 020401 (2016).
[Crossref]

Paniccia, M.

H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, “Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide,” Appl. Phys. Lett. 85, 2196–2198 (2004).
[Crossref]

Pant, M.

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “Integrated source of spectrally filtered correlated photons for large-scale quantum photonic systems,” Phys. Rev. X 4, 041047 (2014).
[Crossref]

Pasquazi, A.

Patel, M.

B. A. Bash, A. H. Gheorghe, M. Patel, J. L. Habif, D. Goeckel, D. Towsley, and S. Guha, “Quantum-secure covert communication on bosonic channels,” Nat. Commun. 6, 8626 (2015).
[Crossref]

Peccianti, M.

Peng, J.

Penty, R. V.

L. C. Comandar, B. Fröhlich, J. F. Dynes, A. W. Sharpe, M. Lucamarini, Z. Yuan, R. V. Penty, and A. J. Shields, “Gigahertz-gated InGaAs/InP single-photon detector with detection efficiency exceeding 55% at 1550  nm,” J. Appl. Phys. 117, 083109 (2015).
[Crossref]

Perret, A.

Peucheret, C.

Picholle, E.

Pu, M.

M. Pu, L. Liu, H. Ou, K. Yvind, and J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun. 283, 3678–3682 (2010).
[Crossref]

Pusino, V.

Qian, L.

Ramos, C.

Raymer, M. G.

I. A. Walmsley and M. G. Raymer, “Toward quantum-information processing with photons,” Science 307, 1733–1734 (2005).
[Crossref]

Razzari, L.

Reimer, C.

Roeloffzen, C. G. H.

Rogers, S.

S. Rogers, D. Mulkey, X. Lu, W. C. Jiang, and Q. Lin, “High visibility time-energy entangled photons from a silicon nanophotonic chip,” ACS Photon. 3, 1754–1761 (2016).
[Crossref]

Rong, H.

H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, “Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide,” Appl. Phys. Lett. 85, 2196–2198 (2004).
[Crossref]

Rottwitt, K.

K. Guo, E. N. Christensen, J. B. Christensen, J. G. Koefoed, D. Bacco, Y. Ding, H. Ou, and K. Rottwitt, “High coincidence-to-accidental ratio continuous-wave photon-pair generation in a grating-coupled silicon strip waveguide,” Appl. Phys. Express 10, 062801 (2017).
[Crossref]

K. Guo, F. Smm, J. B. Christensen, E. N. Christensen, X. Shi, Y. Ding, H. Ou, and K. Rottwitt, “Full-vectorial propagation model and modified effective mode area of four-wave mixing in straight waveguides,” Opt. Lett. 42, 3670–3673 (2017).
[Crossref]

Salter, P. S.

Santagati, R.

Sasaki, M.

Sauder, G.

Scarani, V.

J. M. Arrazola and V. Scarani, “Covert quantum communication,” Phys. Rev. Lett. 117, 250503 (2016).
[Crossref]

Schmidt, B. S.

Schneider, C.

X. Ding, Y. He, Z. Duan, N. Gregersen, M. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C. Lu, and J. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116, 020401 (2016).
[Crossref]

Selvaraja, S.

Sergienko, A. V.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref]

Shao, L.

X. Jiang, L. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y. F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref]

X. F. Jiang, Y. F. Xiao, Q. F. Yang, and L. Shao, “Free-space coupled, ultralow-threshold raman lasing from a silica microcavity,” Appl. Phys. Lett. 103, 101102 (2013).
[Crossref]

Sharpe, A. W.

L. C. Comandar, B. Fröhlich, J. F. Dynes, A. W. Sharpe, M. Lucamarini, Z. Yuan, R. V. Penty, and A. J. Shields, “Gigahertz-gated InGaAs/InP single-photon detector with detection efficiency exceeding 55% at 1550  nm,” J. Appl. Phys. 117, 083109 (2015).
[Crossref]

Sharping, J.

Sharping, J. E.

Shi, K.

Y. F. Xiao, X. F. Jiang, Q. F. Yang, L. Wang, K. Shi, Y. Li, and Q. Gong, “Tunneling-induced transparency in a chaotic microcavity,” Laser Photon. Rev. 7, L51–L54 (2013).
[Crossref]

Shi, X.

Shields, A. J.

L. C. Comandar, B. Fröhlich, J. F. Dynes, A. W. Sharpe, M. Lucamarini, Z. Yuan, R. V. Penty, and A. J. Shields, “Gigahertz-gated InGaAs/InP single-photon detector with detection efficiency exceeding 55% at 1550  nm,” J. Appl. Phys. 117, 083109 (2015).
[Crossref]

Shih, Y.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref]

Silberhorn, C.

K. N. Cassemiro, K. Laiho, and C. Silberhorn, “Accessing the purity of a single photon by the width of the Hong–Ou–Mandel interference,” New J. Phys. 12, 113052 (2010).
[Crossref]

Silverstone, J. W.

Simbula, A.

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “Integrated source of spectrally filtered correlated photons for large-scale quantum photonic systems,” Phys. Rev. X 4, 041047 (2014).
[Crossref]

Sipe, J.

Sipe, J. E.

Smm, F.

Soltani, M.

M. Soltani, “Novel integrated silicon nanophotonic structures using ultra-high Q resonators,” Ph.D. thesis (Georgia Institute of Technology, 2009).

Sorel, M.

Spring, J. B.

Strain, M. J.

Sun, F. W.

X. F. Jiang, Y. F. Xiao, C. L. Zou, L. He, C. H. Dong, B. B. Li, Y. Li, F. W. Sun, L. Yang, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24, OP260–OP264 (2012).

Suzuki, N.

Taddei, C.

Takesue, H.

K.-I. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-I. Itabashi, “Frequency and polarization characteristics of correlated photon-pair generation using a silicon wire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16, 325–331 (2010).
[Crossref]

Tanner, M. G.

Tanzilli, S.

D. Aktas, B. Fedrici, F. Kaiser, T. Lunghi, L. Labonte, and S. Tanzilli, “Entanglement distribution over 150  km in wavelength division multiplexed channels for quantum cryptography,” Laser Photon. Rev. 10, 451–457 (2016).
[Crossref]

F. Mazeas, M. Traetta, M. Bentivegna, F. Kaiser, D. Aktas, W. Zhang, C. Ramos, L. Ngah, T. Lunghi, E. Picholle, N. Belabas-Plougonven, X. Le Roux, E. Cassan, D. Marris-Morini, L. Vivien, G. Sauder, L. Labonté, and S. Tanzilli, “High-quality photonic entanglement for wavelength-multiplexed quantum communication based on a silicon chip,” Opt. Express 24, 28731–28738 (2016).
[Crossref]

S. Tanzilli, H. De Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–28 (2001).
[Crossref]

Terai, H.

Thew, R.

N. Gisin and R. Thew, “Quantum communication,” Nat. Photonics 1, 165–171 (2007).
[Crossref]

Thomas-Peter, N.

Thompson, M. G.

Tittel, H.

S. Tanzilli, H. De Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–28 (2001).
[Crossref]

Tittel, W.

W. Tittel, J. Brendel, N. Gisin, and H. Zbinden, “Long-distance Bell-type tests using energy-time entangled photons,” Phys. Rev. A 59, 4150–4163 (1999).
[Crossref]

Tokura, Y.

K.-I. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-I. Itabashi, “Frequency and polarization characteristics of correlated photon-pair generation using a silicon wire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16, 325–331 (2010).
[Crossref]

Towsley, D.

B. A. Bash, A. H. Gheorghe, M. Patel, J. L. Habif, D. Goeckel, D. Towsley, and S. Guha, “Quantum-secure covert communication on bosonic channels,” Nat. Commun. 6, 8626 (2015).
[Crossref]

Traetta, M.

Tsuchizawa, T.

K.-I. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-I. Itabashi, “Frequency and polarization characteristics of correlated photon-pair generation using a silicon wire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16, 325–331 (2010).
[Crossref]

Turner, A. C.

Unsleber, S.

X. Ding, Y. He, Z. Duan, N. Gregersen, M. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C. Lu, and J. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116, 020401 (2016).
[Crossref]

Urbas, A. M.

Y. Li, A. V. Maslov, N. I. Limberopoulos, A. M. Urbas, and V. N. Astratov, “Spectrally resolved resonant propulsion of dielectric microspheres,” Laser Photon. Rev. 9, 263–273 (2015).
[Crossref]

Vahala, K. J.

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
[Crossref]

van Dijk, P. W. L.

Van Thourhout, D.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

S. Clemmen, A. Perret, S. Selvaraja, W. Bogaerts, D. Van Thourhout, R. Baets, P. Emplit, and S. Massar, “Generation of correlated photons in hydrogenated amorphous-silicon waveguides,” Opt. Lett. 35, 3483–3485 (2010).
[Crossref]

Van Vaerenbergh, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Velev, V. G.

Vernon, Z.

Villa, M.

Vivien, L.

Voss, P.

Wakabayashi, R.

Walenta, N.

B. Korzh, N. Walenta, T. Lunghi, N. Gisin, and H. Zbinden, “Free-running ingaas single photon detector with 1 dark count per second at 10% efficiency,” Appl. Phys. Lett. 104, 081108 (2014).
[Crossref]

Walmsley, I. A.

Wang, J.

Wang, K.-Y.

Wang, L.

X. Jiang, L. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y. F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref]

X. F. Jiang, C. L. Zou, L. Wang, Q. Gong, and Y. F. Xiao, “Whispering–gallery microcavities with unidirectional laser emission,” Laser Photon. Rev. 10, 40–61 (2016).
[Crossref]

Y. F. Xiao, X. F. Jiang, Q. F. Yang, L. Wang, K. Shi, Y. Li, and Q. Gong, “Tunneling-induced transparency in a chaotic microcavity,” Laser Photon. Rev. 7, L51–L54 (2013).
[Crossref]

Ward, J. M.

Watanabe, T.

K.-I. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-I. Itabashi, “Frequency and polarization characteristics of correlated photon-pair generation using a silicon wire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16, 325–331 (2010).
[Crossref]

Weinfurter, H.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref]

Wiersig, J.

X. Jiang, L. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y. F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref]

Woo, J.

D. Dimitropoulos, R. Jhaveri, R. Claps, J. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett. 86, 071115 (2005).
[Crossref]

Xavier, S.

Xiao, Y. F.

X. Jiang, L. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y. F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref]

X. F. Jiang, C. L. Zou, L. Wang, Q. Gong, and Y. F. Xiao, “Whispering–gallery microcavities with unidirectional laser emission,” Laser Photon. Rev. 10, 40–61 (2016).
[Crossref]

Y. F. Xiao, X. F. Jiang, Q. F. Yang, L. Wang, K. Shi, Y. Li, and Q. Gong, “Tunneling-induced transparency in a chaotic microcavity,” Laser Photon. Rev. 7, L51–L54 (2013).
[Crossref]

X. F. Jiang, Y. F. Xiao, Q. F. Yang, and L. Shao, “Free-space coupled, ultralow-threshold raman lasing from a silica microcavity,” Appl. Phys. Lett. 103, 101102 (2013).
[Crossref]

X. F. Jiang, Y. F. Xiao, C. L. Zou, L. He, C. H. Dong, B. B. Li, Y. Li, F. W. Sun, L. Yang, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24, OP260–OP264 (2012).

Xiong, C.

Xu, L.

Yamada, K.

K.-I. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-I. Itabashi, “Frequency and polarization characteristics of correlated photon-pair generation using a silicon wire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16, 325–331 (2010).
[Crossref]

Yamashita, T.

Yang, L.

X. Jiang, L. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y. F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref]

Y. Yang, X. Jiang, S. Kasumie, G. Zhao, L. Xu, J. M. Ward, L. Yang, and S. N. Chormaic, “Four-wave mixing parametric oscillation and frequency comb generation at visible wavelengths in a silica microbubble resonator,” Opt. Lett. 41, 5266–5269 (2016).
[Crossref]

X. F. Jiang, Y. F. Xiao, C. L. Zou, L. He, C. H. Dong, B. B. Li, Y. Li, F. W. Sun, L. Yang, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24, OP260–OP264 (2012).

Yang, Q. F.

X. F. Jiang, Y. F. Xiao, Q. F. Yang, and L. Shao, “Free-space coupled, ultralow-threshold raman lasing from a silica microcavity,” Appl. Phys. Lett. 103, 101102 (2013).
[Crossref]

Y. F. Xiao, X. F. Jiang, Q. F. Yang, L. Wang, K. Shi, Y. Li, and Q. Gong, “Tunneling-induced transparency in a chaotic microcavity,” Laser Photon. Rev. 7, L51–L54 (2013).
[Crossref]

Yang, Y.

Yang, Z.

Yi, X.

X. Jiang, L. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y. F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref]

Yoshida, H.

Yoshino, K.-I.

Yuan, Z.

L. C. Comandar, B. Fröhlich, J. F. Dynes, A. W. Sharpe, M. Lucamarini, Z. Yuan, R. V. Penty, and A. J. Shields, “Gigahertz-gated InGaAs/InP single-photon detector with detection efficiency exceeding 55% at 1550  nm,” J. Appl. Phys. 117, 083109 (2015).
[Crossref]

Yvind, K.

M. Pu, L. Liu, H. Ou, K. Yvind, and J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun. 283, 3678–3682 (2010).
[Crossref]

Zbinden, H.

B. Korzh, N. Walenta, T. Lunghi, N. Gisin, and H. Zbinden, “Free-running ingaas single photon detector with 1 dark count per second at 10% efficiency,” Appl. Phys. Lett. 104, 081108 (2014).
[Crossref]

S. Tanzilli, H. De Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–28 (2001).
[Crossref]

W. Tittel, J. Brendel, N. Gisin, and H. Zbinden, “Long-distance Bell-type tests using energy-time entangled photons,” Phys. Rev. A 59, 4150–4163 (1999).
[Crossref]

Zeilinger, A.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref]

Zhang, J.

X. Lu, W. C. Jiang, J. Zhang, and Q. Lin, “Biphoton statistics of quantum light generated on a silicon chip,” ACS Photon. 3, 1626–1636 (2016).
[Crossref]

W. C. Jiang, X. Lu, J. Zhang, O. Painter, and Q. Lin, “Silicon-chip source of bright photon pairs,” Opt. Express 23, 20884–20904 (2015).
[Crossref]

Zhang, S. X.

X. Jiang, L. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y. F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref]

Zhang, W.

Zhang, X.

Zhao, G.

Zhou, Q.

Zhu, E. Y.

Zou, C. L.

X. F. Jiang, C. L. Zou, L. Wang, Q. Gong, and Y. F. Xiao, “Whispering–gallery microcavities with unidirectional laser emission,” Laser Photon. Rev. 10, 40–61 (2016).
[Crossref]

X. F. Jiang, Y. F. Xiao, C. L. Zou, L. He, C. H. Dong, B. B. Li, Y. Li, F. W. Sun, L. Yang, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24, OP260–OP264 (2012).

Zwiller, V.

ACS Photon. (2)

S. Rogers, D. Mulkey, X. Lu, W. C. Jiang, and Q. Lin, “High visibility time-energy entangled photons from a silicon nanophotonic chip,” ACS Photon. 3, 1754–1761 (2016).
[Crossref]

X. Lu, W. C. Jiang, J. Zhang, and Q. Lin, “Biphoton statistics of quantum light generated on a silicon chip,” ACS Photon. 3, 1626–1636 (2016).
[Crossref]

Adv. Mater. (1)

X. F. Jiang, Y. F. Xiao, C. L. Zou, L. He, C. H. Dong, B. B. Li, Y. Li, F. W. Sun, L. Yang, and Q. Gong, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24, OP260–OP264 (2012).

Appl. Phys. Express (1)

K. Guo, E. N. Christensen, J. B. Christensen, J. G. Koefoed, D. Bacco, Y. Ding, H. Ou, and K. Rottwitt, “High coincidence-to-accidental ratio continuous-wave photon-pair generation in a grating-coupled silicon strip waveguide,” Appl. Phys. Express 10, 062801 (2017).
[Crossref]

Appl. Phys. Lett. (4)

X. F. Jiang, Y. F. Xiao, Q. F. Yang, and L. Shao, “Free-space coupled, ultralow-threshold raman lasing from a silica microcavity,” Appl. Phys. Lett. 103, 101102 (2013).
[Crossref]

B. Korzh, N. Walenta, T. Lunghi, N. Gisin, and H. Zbinden, “Free-running ingaas single photon detector with 1 dark count per second at 10% efficiency,” Appl. Phys. Lett. 104, 081108 (2014).
[Crossref]

H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, “Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide,” Appl. Phys. Lett. 85, 2196–2198 (2004).
[Crossref]

D. Dimitropoulos, R. Jhaveri, R. Claps, J. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett. 86, 071115 (2005).
[Crossref]

Electron. Lett. (1)

S. Tanzilli, H. De Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–28 (2001).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

K.-I. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-I. Itabashi, “Frequency and polarization characteristics of correlated photon-pair generation using a silicon wire waveguide,” IEEE J. Sel. Top. Quantum Electron. 16, 325–331 (2010).
[Crossref]

J. Appl. Phys. (1)

L. C. Comandar, B. Fröhlich, J. F. Dynes, A. W. Sharpe, M. Lucamarini, Z. Yuan, R. V. Penty, and A. J. Shields, “Gigahertz-gated InGaAs/InP single-photon detector with detection efficiency exceeding 55% at 1550  nm,” J. Appl. Phys. 117, 083109 (2015).
[Crossref]

J. Lightwave Technol. (2)

A. B. Fallahkhair, K. S. Li, and T. E. Murphy, “Vector finite difference modesolver for anisotropic dielectric waveguides,” J. Lightwave Technol. 26, 1423–1431 (2008).
[Crossref]

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Photon. Rev. (5)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Y. Li, A. V. Maslov, N. I. Limberopoulos, A. M. Urbas, and V. N. Astratov, “Spectrally resolved resonant propulsion of dielectric microspheres,” Laser Photon. Rev. 9, 263–273 (2015).
[Crossref]

Y. F. Xiao, X. F. Jiang, Q. F. Yang, L. Wang, K. Shi, Y. Li, and Q. Gong, “Tunneling-induced transparency in a chaotic microcavity,” Laser Photon. Rev. 7, L51–L54 (2013).
[Crossref]

X. F. Jiang, C. L. Zou, L. Wang, Q. Gong, and Y. F. Xiao, “Whispering–gallery microcavities with unidirectional laser emission,” Laser Photon. Rev. 10, 40–61 (2016).
[Crossref]

D. Aktas, B. Fedrici, F. Kaiser, T. Lunghi, L. Labonte, and S. Tanzilli, “Entanglement distribution over 150  km in wavelength division multiplexed channels for quantum cryptography,” Laser Photon. Rev. 10, 451–457 (2016).
[Crossref]

Nat. Commun. (1)

B. A. Bash, A. H. Gheorghe, M. Patel, J. L. Habif, D. Goeckel, D. Towsley, and S. Guha, “Quantum-secure covert communication on bosonic channels,” Nat. Commun. 6, 8626 (2015).
[Crossref]

Nat. Photonics (2)

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[Crossref]

N. Gisin and R. Thew, “Quantum communication,” Nat. Photonics 1, 165–171 (2007).
[Crossref]

Nature (1)

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref]

New J. Phys. (1)

K. N. Cassemiro, K. Laiho, and C. Silberhorn, “Accessing the purity of a single photon by the width of the Hong–Ou–Mandel interference,” New J. Phys. 12, 113052 (2010).
[Crossref]

Opt. Commun. (1)

M. Pu, L. Liu, H. Ou, K. Yvind, and J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun. 283, 3678–3682 (2010).
[Crossref]

Opt. Express (13)

J. B. Spring, P. S. Salter, B. J. Metcalf, P. C. Humphreys, M. Moore, N. Thomas-Peter, M. Barbieri, X.-M. Jin, N. K. Langford, W. S. Kolthammer, M. J. Booth, and I. A. Walmsley, “On-chip low loss heralded source of pure single photons,” Opt. Express 21, 13522–13532 (2013).
[Crossref]

X. Li, J. Chen, P. Voss, J. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications: improved generation of correlated photons,” Opt. Express 12, 3737–3744 (2004).
[Crossref]

S. D. Dyer, B. Baek, and S. W. Nam, “High-brightness, low-noise, all-fiber photon pair source,” Opt. Express 17, 10290–10297 (2009).
[Crossref]

J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, and P. Kumar, “Generation of correlated photons in nanoscale silicon waveguides,” Opt. Express 14, 12388–12393 (2006).
[Crossref]

P. Kultavewuti, E. Y. Zhu, L. Qian, V. Pusino, M. Sorel, and J. S. Aitchison, “Correlated photon pair generation in ALGaAs nanowaveguides via spontaneous four-wave mixing,” Opt. Express 24, 3365–3376 (2016).
[Crossref]

S. Clemmen, K. P. Huy, W. Bogaerts, R. G. Baets, P. Emplit, and S. Massar, “Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators,” Opt. Express 17, 16558–16570 (2009).
[Crossref]

S. Azzini, D. Grassani, M. J. Strain, M. Sorel, L. Helt, J. Sipe, M. Liscidini, M. Galli, and D. Bajoni, “Ultra-low power generation of twin photons in a compact silicon ring resonator,” Opt. Express 20, 23100–23107 (2012).
[Crossref]

C. Reimer, L. Caspani, M. Clerici, M. Ferrera, M. Kues, M. Peccianti, A. Pasquazi, L. Razzari, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Integrated frequency comb source of heralded single photons,” Opt. Express 22, 6535–6546 (2014).
[Crossref]

F. Mazeas, M. Traetta, M. Bentivegna, F. Kaiser, D. Aktas, W. Zhang, C. Ramos, L. Ngah, T. Lunghi, E. Picholle, N. Belabas-Plougonven, X. Le Roux, E. Cassan, D. Marris-Morini, L. Vivien, G. Sauder, L. Labonté, and S. Tanzilli, “High-quality photonic entanglement for wavelength-multiplexed quantum communication based on a silicon chip,” Opt. Express 24, 28731–28738 (2016).
[Crossref]

W. C. Jiang, X. Lu, J. Zhang, O. Painter, and Q. Lin, “Silicon-chip source of bright photon pairs,” Opt. Express 23, 20884–20904 (2015).
[Crossref]

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21, 27826–27834 (2012).
[Crossref]

R. Wakabayashi, M. Fujiwara, K.-I. Yoshino, Y. Nambu, M. Sasaki, and T. Aoki, “Time-bin entangled photon pair generation from si micro-ring resonator,” Opt. Express 23, 1103–1113 (2015).
[Crossref]

Y. Guo, W. Zhang, N. Lv, Q. Zhou, Y. Huang, and J. Peng, “The impact of nonlinear losses in the silicon micro-ring cavities on CW pumping correlated photon pair generation,” Opt. Express 22, 2620–2631 (2014).
[Crossref]

Opt. Lett. (10)

S. Azzini, D. Grassani, M. Galli, L. C. Andreani, M. Sorel, M. J. Strain, L. Helt, J. Sipe, M. Liscidini, and D. Bajoni, “From classical four-wave mixing to parametric fluorescence in silicon microring resonators,” Opt. Lett. 37, 3807–3809 (2012).
[Crossref]

Y. Guo, W. Zhang, S. Dong, Y. Huang, and J. Peng, “Telecom-band degenerate-frequency photon pair generation in silicon microring cavities,” Opt. Lett. 39, 2526–2529 (2014).
[Crossref]

Z. Vernon, M. Liscidini, and J. Sipe, “No free lunch: the trade-off between heralding rate and efficiency in microresonator-based heralded single photon sources,” Opt. Lett. 41, 788–791 (2016).
[Crossref]

L. Helt, Z. Yang, M. Liscidini, and J. Sipe, “Spontaneous four-wave mixing in microring resonators,” Opt. Lett. 35, 3006–3008 (2010).
[Crossref]

K. Guo, F. Smm, J. B. Christensen, E. N. Christensen, X. Shi, Y. Ding, H. Ou, and K. Rottwitt, “Full-vectorial propagation model and modified effective mode area of four-wave mixing in straight waveguides,” Opt. Lett. 42, 3670–3673 (2017).
[Crossref]

Y. Yang, X. Jiang, S. Kasumie, G. Zhao, L. Xu, J. M. Ward, L. Yang, and S. N. Chormaic, “Four-wave mixing parametric oscillation and frequency comb generation at visible wavelengths in a silica microbubble resonator,” Opt. Lett. 41, 5266–5269 (2016).
[Crossref]

K.-Y. Wang, V. G. Velev, K. F. Lee, A. S. Kowligy, P. Kumar, M. A. Foster, A. C. Foster, and Y.-P. Huang, “Multichannel photon-pair generation using hydrogenated amorphous silicon waveguides,” Opt. Lett. 39, 914–917 (2014).
[Crossref]

A. S. Clark, C. Husko, M. J. Collins, G. Lehoucq, S. Xavier, A. De Rossi, S. Combrié, C. Xiong, and B. J. Eggleton, “Heralded single-photon source in a III-V photonic crystal,” Opt. Lett. 38, 649–651 (2013).
[Crossref]

Y. Ding, H. Ou, and C. Peucheret, “Ultrahigh-efficiency apodized grating coupler using fully etched photonic crystals,” Opt. Lett. 38, 2732–2734 (2013).
[Crossref]

S. Clemmen, A. Perret, S. Selvaraja, W. Bogaerts, D. Van Thourhout, R. Baets, P. Emplit, and S. Massar, “Generation of correlated photons in hydrogenated amorphous-silicon waveguides,” Opt. Lett. 35, 3483–3485 (2010).
[Crossref]

Optica (3)

Phys. Rev. A (1)

W. Tittel, J. Brendel, N. Gisin, and H. Zbinden, “Long-distance Bell-type tests using energy-time entangled photons,” Phys. Rev. A 59, 4150–4163 (1999).
[Crossref]

Phys. Rev. Lett. (7)

J. M. Arrazola and V. Scarani, “Covert quantum communication,” Phys. Rev. Lett. 117, 250503 (2016).
[Crossref]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref]

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
[Crossref]

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett. 68, 557–559 (1992).
[Crossref]

I. Ali-Khan, C. J. Broadbent, and J. C. Howell, “Large-alphabet quantum key distribution using energy-time entangled bipartite states,” Phys. Rev. Lett. 98, 060503 (2007).
[Crossref]

X. Ding, Y. He, Z. Duan, N. Gregersen, M. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C. Lu, and J. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116, 020401 (2016).
[Crossref]

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
[Crossref]

Phys. Rev. X (1)

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “Integrated source of spectrally filtered correlated photons for large-scale quantum photonic systems,” Phys. Rev. X 4, 041047 (2014).
[Crossref]

Science (2)

I. A. Walmsley and M. G. Raymer, “Toward quantum-information processing with photons,” Science 307, 1733–1734 (2005).
[Crossref]

X. Jiang, L. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y. F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref]

Other (1)

M. Soltani, “Novel integrated silicon nanophotonic structures using ultra-high Q resonators,” Ph.D. thesis (Georgia Institute of Technology, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Nc versus Qi and Qe. Black solid denotes the optimized Qe for a given Qi that facilitates the highest Nc with a unit of Hz. (b) B versus Qi and Qe. Black solid denotes the optimized Qe for a given Qi that facilitates the highest B with an unit of (s·mW·nm)1.
Fig. 2.
Fig. 2. (a) Nc versus Qe. (b) B versus Qe, when Qi is 4.76×104 (black solid), 5.59×104 (red solid), 7.54×104 (green solid), and 1.04×105 (blue solid). MRR1, black circle; MMR2, red circle; MRR3, green circle; MRR4, blue circle; MRR5, cyan diamond; MRR6, magenta triangle.
Fig. 3.
Fig. 3. Schematic of experimental setup. EDFA, erbium-doped fiber amplifier; TBPFs, tunable bandpass filters; ATT, tunable attenuator; PC, polarization controller; AWG, arrayed waveguide grating; SPD, single photon detector.
Fig. 4.
Fig. 4. Nc versus Pp for each sample. The fitted slopes are around 1.66, demonstrating that the measured photon pairs generated from SpFWM are dominant. The sequence of all samples in Nc, order from high to low, agrees well with predictions.
Fig. 5.
Fig. 5. Ncc (right, red) versus Pp, including the measured data (triangle), the simulated data by Eq. (9) (solid), the modified data with detector saturation (dotted), and the modified data with nonlinear loss (dashed), and CAR versus Pp (left, black) for (a)–(f) MRR1–MRR6.
Fig. 6.
Fig. 6. (a)–(f) Normalized transmittance (black solid), biquadrate of the normalized enhancement factor |Fn(λpr)|4 (red solid), and measured coincidence rate (blue circle), versus the pump-resonance detuning λpr for MRR1–MRR6 at Pp=3.98  mW, respectively.
Fig. 7.
Fig. 7. Zero-delayed heralded second-order correlation gH(2)(0) versus Pp.

Tables (2)

Tables Icon

Table 1. Key Parameters of MRR Samples

Tables Icon

Table 2. Nc and Corresponding B at Pp=1  mW

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

Q=λresΔλ,
Qi=ωαvg
Qe=2ωπR|κ|2vg,
1Q=1Qe+1Qi.
Pc=Pp|F(ωp)|2,
|F(ωp)|2=2vgQ2πRωpQe[1+4Q2(ωpωres)2/ωres2],
|F(ωp)|max2=2vgQ2πRωpQe,
Nc,s/i=(γPc2πR)2s/i|F(ωresΔω)|2|F(ωres+Δω)|2dΔω,
Nc,s/i=8vg4γ2Pp2Qp4Qs/i3ωres3π2R2Qe,p2Qe,s/i2,
Bs/i=4vg4γ2PpQp4Qs/i4ωres2π3R2cQe,p2Qe,s/i2.
Nc=8vg4γ2Pp2Q7ωres3π2R2Qe4,
B=4vg4γ2PpQ8ωres2π3R2cQe4,
Γ=|QeQiQe+Qi|2.
Nmc=NcD1τ0Nc,
αpc=αl+βTPcAeff+6.04×1010λ2βTPc2τ2ωpAeff2,
Pp=πRωpQe2vg[4(ωpωresωres)2+(1Qe+αpcvgωres)2]Pc.
CAR=NccNaccNacc
gH(2)(0)=NHNHABNHANHB

Metrics