Abstract

Because of the fingerprint-like specificity of its characteristic spectrogram, Raman spectral imaging has been applied widely in various research areas. Using a combination of structured illumination with the surface-enhanced Raman scattering (SERS) technique, wide-field Raman imaging is developed with a significant improvement in spatial resolution. As a result of the relatively narrow Raman characteristic peaks, optically encoded SERS nanoparticles can be used to perform multiplexed imaging. The results show excellent superresolution wide-field multiplexed imaging performance. The developed technique has extraordinary potential for applications in biological imaging and other related fields.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Plasmonic nanoparticle-based expansion microscopy with surface-enhanced Raman and dark-field spectroscopic imaging

Camille G. Artur, Tasha Womack, Fusheng Zhao, Jason L. Eriksen, David Mayerich, and Wei-Chuan Shih
Biomed. Opt. Express 9(2) 603-615 (2018)

Light sheet-excited spontaneous Raman imaging of a living fish by optical sectioning in a wide field Raman microscope

Yusuke Oshima, Hidetoshi Sato, Hiroko Kajiura-Kobayashi, Tetsuaki Kimura, Kiyoshi Naruse, and Shigenori Nonaka
Opt. Express 20(15) 16195-16204 (2012)

Fast wide-field Raman spectroscopic imaging based on simultaneous multi-channel image acquisition and Wiener estimation

Dong Wei, Shuo Chen, Yi Hong Ong, Clint Perlaki, and Quan Liu
Opt. Lett. 41(12) 2783-2786 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780–782 (1994).
    [Crossref]
  2. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
    [Crossref]
  3. M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000).
    [Crossref]
  4. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
    [Crossref]
  5. F. Chen, P. W. Tillberg, and E. S. Boyden, “Expansion microscopy,” Science 347, 543–548 (2015).
    [Crossref]
  6. R. J. Mallia, P. Z. McVeigh, C. J. Fisher, I. Veilleux, and B. C. Wilson, “Wide-field multiplexed imaging of EGFR-targeted cancers using topical application of NIR SERS nanoprobes,” Nanomedicine 10, 89–101 (2015).
    [Crossref]
  7. S. Yang, B. Li, A. Akkus, O. Akkus, and L. Lang, “Wide-field Raman imaging of dental lesions,” Analyst 139, 3107–3114 (2014).
    [Crossref]
  8. P. Z. McVeigh, R. J. Mallia, I. Veilleux, and B. C. Wilson, “Widefield quantitative multiplex surface enhanced Raman scattering imaging in vivo,” J. Biomed. Opt. 18, 046011 (2013).
    [Crossref]
  9. R. J. Mallia, P. Z. McVeigh, I. Veilleux, and B. C. Wilson, “Filter-based method for background removal in high-sensitivity wide-field-surface-enhanced Raman scattering imaging in vivo,” J. Biomed. Opt. 17, 076017 (2012).
    [Crossref]
  10. S. Hennig, V. Mönkemöller, C. Böger, M. Müller, and T. Huser, “Nanoparticles as nonfluorescent analogues of fluorophores for optical nanoscopy,” ACS Nano 9, 6196–6205 (2015).
    [Crossref]
  11. J. Ma and D. Ben-Amotz, “Rapid micro-Raman imaging using fiber-bundle image compression,” Appl. Spectrosc. 51, 1845–1848 (1997).
    [Crossref]
  12. H. R. Morris, C. C. Hoyt, P. Miller, and P. J. Treado, “Liquid crystal tunable filter Raman chemical imaging,” Appl. Spectrosc. 50, 805–811 (1996).
    [Crossref]
  13. P. J. Treado, I. W. Levin, and E. N. Lewis, “High-fidelity Raman imaging spectrometry: a rapid method using an acousto-optic tunable filter,” Appl. Spectrosc. 46, 1211–1216 (1992).
    [Crossref]
  14. Y. Hirano, A. Matsuda, and Y. Hiraoka, “Recent advancements in structured-illumination microscopy toward live-cell imaging,” Microscopy 64, 237–249 (2015).
    [Crossref]
  15. Q. Li, M. Reinig, D. Kamiyama, B. Huang, X. Tao, A. Bardales, and J. Kubby, “Woofer-tweeter adaptive optical structured illumination microscopy,” Photon. Res. 5, 329–334 (2017).
    [Crossref]
  16. Z. Wang, S. Zong, L. Wu, D. Zhu, and Y. Cui, “SERS-activated platforms for immunoassay: probes, encoding methods, and applications,” Chem. Rev. 117, 7910–7963 (2017).
    [Crossref]
  17. Y. Liu, H. Zhou, Z. Hu, G. Yu, D. Yang, and J. Zhao, “Label and label-free based surface-enhanced Raman scattering for pathogen bacteria detection: a review,” Biosens. Bioelectron. 94, 131–140 (2017).
    [Crossref]
  18. P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 1, 601–626 (2008).
    [Crossref]
  19. A. F. Palonpon, J. Ando, H. Yamakoshi, K. Dodo, M. Sodeoka, S. Kawata, and K. Fujita, “Raman and SERS microscopy for molecular imaging of live cells,” Nat. Protoc. 8, 677–692 (2013).
    [Crossref]
  20. H. Xu, C. Kan, C. Miao, C. Wang, J. Wei, Y. Ni, B. Lu, and D. Shi, “Synthesis of high-purity silver nanorods with tunable plasmonic properties and sensor behavior,” Photon. Res. 5, 27–32 (2017).
    [Crossref]
  21. H. Chen, S. Wang, Y. Zhang, Y. Yang, H. Fang, S. Zhu, and X. Yuan, “Structured illumination for wide-field Raman imaging of cell membranes,” Opt. Commun. 402, 221–225 (2017).
    [Crossref]
  22. Y. Chen, J.-Q. Ren, X.-G. Zhang, D.-Y. Wu, A.-G. Shen, and J.-M. Hu, “Alkyne-modulated surface-enhanced Raman scattering-palette for optical interference-free and multiplex cellular imaging,” Anal. Chem. 88, 6115–6119 (2016).
    [Crossref]
  23. Y. Chen, X. Bai, L. Su, Z. Du, A. Shen, A. Materny, and J. Hu, “Combined labelled and label-free SERS probes for triplex three-dimensional cellular imaging,” Sci. Rep. 6, 19173 (2016).
    [Crossref]
  24. P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6, 339–342 (2009).
    [Crossref]
  25. K. D. Alexander, K. Skinner, S. Zhang, H. Wei, and R. Lopez, “Tunable SERS in gold nanorod dimers through strain control on an elastomeric substrate,” Nano Lett. 10, 4488–4493 (2010).
    [Crossref]

2017 (5)

H. Chen, S. Wang, Y. Zhang, Y. Yang, H. Fang, S. Zhu, and X. Yuan, “Structured illumination for wide-field Raman imaging of cell membranes,” Opt. Commun. 402, 221–225 (2017).
[Crossref]

Z. Wang, S. Zong, L. Wu, D. Zhu, and Y. Cui, “SERS-activated platforms for immunoassay: probes, encoding methods, and applications,” Chem. Rev. 117, 7910–7963 (2017).
[Crossref]

Y. Liu, H. Zhou, Z. Hu, G. Yu, D. Yang, and J. Zhao, “Label and label-free based surface-enhanced Raman scattering for pathogen bacteria detection: a review,” Biosens. Bioelectron. 94, 131–140 (2017).
[Crossref]

H. Xu, C. Kan, C. Miao, C. Wang, J. Wei, Y. Ni, B. Lu, and D. Shi, “Synthesis of high-purity silver nanorods with tunable plasmonic properties and sensor behavior,” Photon. Res. 5, 27–32 (2017).
[Crossref]

Q. Li, M. Reinig, D. Kamiyama, B. Huang, X. Tao, A. Bardales, and J. Kubby, “Woofer-tweeter adaptive optical structured illumination microscopy,” Photon. Res. 5, 329–334 (2017).
[Crossref]

2016 (2)

Y. Chen, J.-Q. Ren, X.-G. Zhang, D.-Y. Wu, A.-G. Shen, and J.-M. Hu, “Alkyne-modulated surface-enhanced Raman scattering-palette for optical interference-free and multiplex cellular imaging,” Anal. Chem. 88, 6115–6119 (2016).
[Crossref]

Y. Chen, X. Bai, L. Su, Z. Du, A. Shen, A. Materny, and J. Hu, “Combined labelled and label-free SERS probes for triplex three-dimensional cellular imaging,” Sci. Rep. 6, 19173 (2016).
[Crossref]

2015 (4)

F. Chen, P. W. Tillberg, and E. S. Boyden, “Expansion microscopy,” Science 347, 543–548 (2015).
[Crossref]

R. J. Mallia, P. Z. McVeigh, C. J. Fisher, I. Veilleux, and B. C. Wilson, “Wide-field multiplexed imaging of EGFR-targeted cancers using topical application of NIR SERS nanoprobes,” Nanomedicine 10, 89–101 (2015).
[Crossref]

S. Hennig, V. Mönkemöller, C. Böger, M. Müller, and T. Huser, “Nanoparticles as nonfluorescent analogues of fluorophores for optical nanoscopy,” ACS Nano 9, 6196–6205 (2015).
[Crossref]

Y. Hirano, A. Matsuda, and Y. Hiraoka, “Recent advancements in structured-illumination microscopy toward live-cell imaging,” Microscopy 64, 237–249 (2015).
[Crossref]

2014 (1)

S. Yang, B. Li, A. Akkus, O. Akkus, and L. Lang, “Wide-field Raman imaging of dental lesions,” Analyst 139, 3107–3114 (2014).
[Crossref]

2013 (2)

P. Z. McVeigh, R. J. Mallia, I. Veilleux, and B. C. Wilson, “Widefield quantitative multiplex surface enhanced Raman scattering imaging in vivo,” J. Biomed. Opt. 18, 046011 (2013).
[Crossref]

A. F. Palonpon, J. Ando, H. Yamakoshi, K. Dodo, M. Sodeoka, S. Kawata, and K. Fujita, “Raman and SERS microscopy for molecular imaging of live cells,” Nat. Protoc. 8, 677–692 (2013).
[Crossref]

2012 (1)

R. J. Mallia, P. Z. McVeigh, I. Veilleux, and B. C. Wilson, “Filter-based method for background removal in high-sensitivity wide-field-surface-enhanced Raman scattering imaging in vivo,” J. Biomed. Opt. 17, 076017 (2012).
[Crossref]

2010 (1)

K. D. Alexander, K. Skinner, S. Zhang, H. Wei, and R. Lopez, “Tunable SERS in gold nanorod dimers through strain control on an elastomeric substrate,” Nano Lett. 10, 4488–4493 (2010).
[Crossref]

2009 (1)

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6, 339–342 (2009).
[Crossref]

2008 (1)

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 1, 601–626 (2008).
[Crossref]

2006 (2)

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[Crossref]

2000 (1)

M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000).
[Crossref]

1997 (1)

1996 (1)

1994 (1)

1992 (1)

Akkus, A.

S. Yang, B. Li, A. Akkus, O. Akkus, and L. Lang, “Wide-field Raman imaging of dental lesions,” Analyst 139, 3107–3114 (2014).
[Crossref]

Akkus, O.

S. Yang, B. Li, A. Akkus, O. Akkus, and L. Lang, “Wide-field Raman imaging of dental lesions,” Analyst 139, 3107–3114 (2014).
[Crossref]

Alexander, K. D.

K. D. Alexander, K. Skinner, S. Zhang, H. Wei, and R. Lopez, “Tunable SERS in gold nanorod dimers through strain control on an elastomeric substrate,” Nano Lett. 10, 4488–4493 (2010).
[Crossref]

Ando, J.

A. F. Palonpon, J. Ando, H. Yamakoshi, K. Dodo, M. Sodeoka, S. Kawata, and K. Fujita, “Raman and SERS microscopy for molecular imaging of live cells,” Nat. Protoc. 8, 677–692 (2013).
[Crossref]

Bai, X.

Y. Chen, X. Bai, L. Su, Z. Du, A. Shen, A. Materny, and J. Hu, “Combined labelled and label-free SERS probes for triplex three-dimensional cellular imaging,” Sci. Rep. 6, 19173 (2016).
[Crossref]

Bardales, A.

Bates, M.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[Crossref]

Ben-Amotz, D.

Betzig, E.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Böger, C.

S. Hennig, V. Mönkemöller, C. Böger, M. Müller, and T. Huser, “Nanoparticles as nonfluorescent analogues of fluorophores for optical nanoscopy,” ACS Nano 9, 6196–6205 (2015).
[Crossref]

Bonifacino, J. S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Boyden, E. S.

F. Chen, P. W. Tillberg, and E. S. Boyden, “Expansion microscopy,” Science 347, 543–548 (2015).
[Crossref]

Chen, F.

F. Chen, P. W. Tillberg, and E. S. Boyden, “Expansion microscopy,” Science 347, 543–548 (2015).
[Crossref]

Chen, H.

H. Chen, S. Wang, Y. Zhang, Y. Yang, H. Fang, S. Zhu, and X. Yuan, “Structured illumination for wide-field Raman imaging of cell membranes,” Opt. Commun. 402, 221–225 (2017).
[Crossref]

Chen, Y.

Y. Chen, J.-Q. Ren, X.-G. Zhang, D.-Y. Wu, A.-G. Shen, and J.-M. Hu, “Alkyne-modulated surface-enhanced Raman scattering-palette for optical interference-free and multiplex cellular imaging,” Anal. Chem. 88, 6115–6119 (2016).
[Crossref]

Y. Chen, X. Bai, L. Su, Z. Du, A. Shen, A. Materny, and J. Hu, “Combined labelled and label-free SERS probes for triplex three-dimensional cellular imaging,” Sci. Rep. 6, 19173 (2016).
[Crossref]

Chhun, B. B.

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6, 339–342 (2009).
[Crossref]

Cui, Y.

Z. Wang, S. Zong, L. Wu, D. Zhu, and Y. Cui, “SERS-activated platforms for immunoassay: probes, encoding methods, and applications,” Chem. Rev. 117, 7910–7963 (2017).
[Crossref]

Davidson, M. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Dieringer, J. A.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 1, 601–626 (2008).
[Crossref]

Dodo, K.

A. F. Palonpon, J. Ando, H. Yamakoshi, K. Dodo, M. Sodeoka, S. Kawata, and K. Fujita, “Raman and SERS microscopy for molecular imaging of live cells,” Nat. Protoc. 8, 677–692 (2013).
[Crossref]

Du, Z.

Y. Chen, X. Bai, L. Su, Z. Du, A. Shen, A. Materny, and J. Hu, “Combined labelled and label-free SERS probes for triplex three-dimensional cellular imaging,” Sci. Rep. 6, 19173 (2016).
[Crossref]

Fang, H.

H. Chen, S. Wang, Y. Zhang, Y. Yang, H. Fang, S. Zhu, and X. Yuan, “Structured illumination for wide-field Raman imaging of cell membranes,” Opt. Commun. 402, 221–225 (2017).
[Crossref]

Fisher, C. J.

R. J. Mallia, P. Z. McVeigh, C. J. Fisher, I. Veilleux, and B. C. Wilson, “Wide-field multiplexed imaging of EGFR-targeted cancers using topical application of NIR SERS nanoprobes,” Nanomedicine 10, 89–101 (2015).
[Crossref]

Fujita, K.

A. F. Palonpon, J. Ando, H. Yamakoshi, K. Dodo, M. Sodeoka, S. Kawata, and K. Fujita, “Raman and SERS microscopy for molecular imaging of live cells,” Nat. Protoc. 8, 677–692 (2013).
[Crossref]

Griffis, E. R.

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6, 339–342 (2009).
[Crossref]

Gustafsson, M. G.

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6, 339–342 (2009).
[Crossref]

M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000).
[Crossref]

Hell, S. W.

Hennig, S.

S. Hennig, V. Mönkemöller, C. Böger, M. Müller, and T. Huser, “Nanoparticles as nonfluorescent analogues of fluorophores for optical nanoscopy,” ACS Nano 9, 6196–6205 (2015).
[Crossref]

Hess, H. F.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Hirano, Y.

Y. Hirano, A. Matsuda, and Y. Hiraoka, “Recent advancements in structured-illumination microscopy toward live-cell imaging,” Microscopy 64, 237–249 (2015).
[Crossref]

Hiraoka, Y.

Y. Hirano, A. Matsuda, and Y. Hiraoka, “Recent advancements in structured-illumination microscopy toward live-cell imaging,” Microscopy 64, 237–249 (2015).
[Crossref]

Hoyt, C. C.

Hu, J.

Y. Chen, X. Bai, L. Su, Z. Du, A. Shen, A. Materny, and J. Hu, “Combined labelled and label-free SERS probes for triplex three-dimensional cellular imaging,” Sci. Rep. 6, 19173 (2016).
[Crossref]

Hu, J.-M.

Y. Chen, J.-Q. Ren, X.-G. Zhang, D.-Y. Wu, A.-G. Shen, and J.-M. Hu, “Alkyne-modulated surface-enhanced Raman scattering-palette for optical interference-free and multiplex cellular imaging,” Anal. Chem. 88, 6115–6119 (2016).
[Crossref]

Hu, Z.

Y. Liu, H. Zhou, Z. Hu, G. Yu, D. Yang, and J. Zhao, “Label and label-free based surface-enhanced Raman scattering for pathogen bacteria detection: a review,” Biosens. Bioelectron. 94, 131–140 (2017).
[Crossref]

Huang, B.

Huser, T.

S. Hennig, V. Mönkemöller, C. Böger, M. Müller, and T. Huser, “Nanoparticles as nonfluorescent analogues of fluorophores for optical nanoscopy,” ACS Nano 9, 6196–6205 (2015).
[Crossref]

Kamiyama, D.

Kan, C.

Kawata, S.

A. F. Palonpon, J. Ando, H. Yamakoshi, K. Dodo, M. Sodeoka, S. Kawata, and K. Fujita, “Raman and SERS microscopy for molecular imaging of live cells,” Nat. Protoc. 8, 677–692 (2013).
[Crossref]

Kner, P.

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6, 339–342 (2009).
[Crossref]

Kubby, J.

Lang, L.

S. Yang, B. Li, A. Akkus, O. Akkus, and L. Lang, “Wide-field Raman imaging of dental lesions,” Analyst 139, 3107–3114 (2014).
[Crossref]

Levin, I. W.

Lewis, E. N.

Li, B.

S. Yang, B. Li, A. Akkus, O. Akkus, and L. Lang, “Wide-field Raman imaging of dental lesions,” Analyst 139, 3107–3114 (2014).
[Crossref]

Li, Q.

Lindwasser, O. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Lippincott-Schwartz, J.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Liu, Y.

Y. Liu, H. Zhou, Z. Hu, G. Yu, D. Yang, and J. Zhao, “Label and label-free based surface-enhanced Raman scattering for pathogen bacteria detection: a review,” Biosens. Bioelectron. 94, 131–140 (2017).
[Crossref]

Lopez, R.

K. D. Alexander, K. Skinner, S. Zhang, H. Wei, and R. Lopez, “Tunable SERS in gold nanorod dimers through strain control on an elastomeric substrate,” Nano Lett. 10, 4488–4493 (2010).
[Crossref]

Lu, B.

Ma, J.

Mallia, R. J.

R. J. Mallia, P. Z. McVeigh, C. J. Fisher, I. Veilleux, and B. C. Wilson, “Wide-field multiplexed imaging of EGFR-targeted cancers using topical application of NIR SERS nanoprobes,” Nanomedicine 10, 89–101 (2015).
[Crossref]

P. Z. McVeigh, R. J. Mallia, I. Veilleux, and B. C. Wilson, “Widefield quantitative multiplex surface enhanced Raman scattering imaging in vivo,” J. Biomed. Opt. 18, 046011 (2013).
[Crossref]

R. J. Mallia, P. Z. McVeigh, I. Veilleux, and B. C. Wilson, “Filter-based method for background removal in high-sensitivity wide-field-surface-enhanced Raman scattering imaging in vivo,” J. Biomed. Opt. 17, 076017 (2012).
[Crossref]

Materny, A.

Y. Chen, X. Bai, L. Su, Z. Du, A. Shen, A. Materny, and J. Hu, “Combined labelled and label-free SERS probes for triplex three-dimensional cellular imaging,” Sci. Rep. 6, 19173 (2016).
[Crossref]

Matsuda, A.

Y. Hirano, A. Matsuda, and Y. Hiraoka, “Recent advancements in structured-illumination microscopy toward live-cell imaging,” Microscopy 64, 237–249 (2015).
[Crossref]

McVeigh, P. Z.

R. J. Mallia, P. Z. McVeigh, C. J. Fisher, I. Veilleux, and B. C. Wilson, “Wide-field multiplexed imaging of EGFR-targeted cancers using topical application of NIR SERS nanoprobes,” Nanomedicine 10, 89–101 (2015).
[Crossref]

P. Z. McVeigh, R. J. Mallia, I. Veilleux, and B. C. Wilson, “Widefield quantitative multiplex surface enhanced Raman scattering imaging in vivo,” J. Biomed. Opt. 18, 046011 (2013).
[Crossref]

R. J. Mallia, P. Z. McVeigh, I. Veilleux, and B. C. Wilson, “Filter-based method for background removal in high-sensitivity wide-field-surface-enhanced Raman scattering imaging in vivo,” J. Biomed. Opt. 17, 076017 (2012).
[Crossref]

Miao, C.

Miller, P.

Mönkemöller, V.

S. Hennig, V. Mönkemöller, C. Böger, M. Müller, and T. Huser, “Nanoparticles as nonfluorescent analogues of fluorophores for optical nanoscopy,” ACS Nano 9, 6196–6205 (2015).
[Crossref]

Morris, H. R.

Müller, M.

S. Hennig, V. Mönkemöller, C. Böger, M. Müller, and T. Huser, “Nanoparticles as nonfluorescent analogues of fluorophores for optical nanoscopy,” ACS Nano 9, 6196–6205 (2015).
[Crossref]

Ni, Y.

Olenych, S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Palonpon, A. F.

A. F. Palonpon, J. Ando, H. Yamakoshi, K. Dodo, M. Sodeoka, S. Kawata, and K. Fujita, “Raman and SERS microscopy for molecular imaging of live cells,” Nat. Protoc. 8, 677–692 (2013).
[Crossref]

Patterson, G. H.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Reinig, M.

Ren, J.-Q.

Y. Chen, J.-Q. Ren, X.-G. Zhang, D.-Y. Wu, A.-G. Shen, and J.-M. Hu, “Alkyne-modulated surface-enhanced Raman scattering-palette for optical interference-free and multiplex cellular imaging,” Anal. Chem. 88, 6115–6119 (2016).
[Crossref]

Rust, M. J.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[Crossref]

Shah, N. C.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 1, 601–626 (2008).
[Crossref]

Shen, A.

Y. Chen, X. Bai, L. Su, Z. Du, A. Shen, A. Materny, and J. Hu, “Combined labelled and label-free SERS probes for triplex three-dimensional cellular imaging,” Sci. Rep. 6, 19173 (2016).
[Crossref]

Shen, A.-G.

Y. Chen, J.-Q. Ren, X.-G. Zhang, D.-Y. Wu, A.-G. Shen, and J.-M. Hu, “Alkyne-modulated surface-enhanced Raman scattering-palette for optical interference-free and multiplex cellular imaging,” Anal. Chem. 88, 6115–6119 (2016).
[Crossref]

Shi, D.

Skinner, K.

K. D. Alexander, K. Skinner, S. Zhang, H. Wei, and R. Lopez, “Tunable SERS in gold nanorod dimers through strain control on an elastomeric substrate,” Nano Lett. 10, 4488–4493 (2010).
[Crossref]

Sodeoka, M.

A. F. Palonpon, J. Ando, H. Yamakoshi, K. Dodo, M. Sodeoka, S. Kawata, and K. Fujita, “Raman and SERS microscopy for molecular imaging of live cells,” Nat. Protoc. 8, 677–692 (2013).
[Crossref]

Sougrat, R.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Stiles, P. L.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 1, 601–626 (2008).
[Crossref]

Su, L.

Y. Chen, X. Bai, L. Su, Z. Du, A. Shen, A. Materny, and J. Hu, “Combined labelled and label-free SERS probes for triplex three-dimensional cellular imaging,” Sci. Rep. 6, 19173 (2016).
[Crossref]

Tao, X.

Tillberg, P. W.

F. Chen, P. W. Tillberg, and E. S. Boyden, “Expansion microscopy,” Science 347, 543–548 (2015).
[Crossref]

Treado, P. J.

Van Duyne, R. P.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 1, 601–626 (2008).
[Crossref]

Veilleux, I.

R. J. Mallia, P. Z. McVeigh, C. J. Fisher, I. Veilleux, and B. C. Wilson, “Wide-field multiplexed imaging of EGFR-targeted cancers using topical application of NIR SERS nanoprobes,” Nanomedicine 10, 89–101 (2015).
[Crossref]

P. Z. McVeigh, R. J. Mallia, I. Veilleux, and B. C. Wilson, “Widefield quantitative multiplex surface enhanced Raman scattering imaging in vivo,” J. Biomed. Opt. 18, 046011 (2013).
[Crossref]

R. J. Mallia, P. Z. McVeigh, I. Veilleux, and B. C. Wilson, “Filter-based method for background removal in high-sensitivity wide-field-surface-enhanced Raman scattering imaging in vivo,” J. Biomed. Opt. 17, 076017 (2012).
[Crossref]

Wang, C.

Wang, S.

H. Chen, S. Wang, Y. Zhang, Y. Yang, H. Fang, S. Zhu, and X. Yuan, “Structured illumination for wide-field Raman imaging of cell membranes,” Opt. Commun. 402, 221–225 (2017).
[Crossref]

Wang, Z.

Z. Wang, S. Zong, L. Wu, D. Zhu, and Y. Cui, “SERS-activated platforms for immunoassay: probes, encoding methods, and applications,” Chem. Rev. 117, 7910–7963 (2017).
[Crossref]

Wei, H.

K. D. Alexander, K. Skinner, S. Zhang, H. Wei, and R. Lopez, “Tunable SERS in gold nanorod dimers through strain control on an elastomeric substrate,” Nano Lett. 10, 4488–4493 (2010).
[Crossref]

Wei, J.

Wichmann, J.

Wilson, B. C.

R. J. Mallia, P. Z. McVeigh, C. J. Fisher, I. Veilleux, and B. C. Wilson, “Wide-field multiplexed imaging of EGFR-targeted cancers using topical application of NIR SERS nanoprobes,” Nanomedicine 10, 89–101 (2015).
[Crossref]

P. Z. McVeigh, R. J. Mallia, I. Veilleux, and B. C. Wilson, “Widefield quantitative multiplex surface enhanced Raman scattering imaging in vivo,” J. Biomed. Opt. 18, 046011 (2013).
[Crossref]

R. J. Mallia, P. Z. McVeigh, I. Veilleux, and B. C. Wilson, “Filter-based method for background removal in high-sensitivity wide-field-surface-enhanced Raman scattering imaging in vivo,” J. Biomed. Opt. 17, 076017 (2012).
[Crossref]

Winoto, L.

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6, 339–342 (2009).
[Crossref]

Wu, D.-Y.

Y. Chen, J.-Q. Ren, X.-G. Zhang, D.-Y. Wu, A.-G. Shen, and J.-M. Hu, “Alkyne-modulated surface-enhanced Raman scattering-palette for optical interference-free and multiplex cellular imaging,” Anal. Chem. 88, 6115–6119 (2016).
[Crossref]

Wu, L.

Z. Wang, S. Zong, L. Wu, D. Zhu, and Y. Cui, “SERS-activated platforms for immunoassay: probes, encoding methods, and applications,” Chem. Rev. 117, 7910–7963 (2017).
[Crossref]

Xu, H.

Yamakoshi, H.

A. F. Palonpon, J. Ando, H. Yamakoshi, K. Dodo, M. Sodeoka, S. Kawata, and K. Fujita, “Raman and SERS microscopy for molecular imaging of live cells,” Nat. Protoc. 8, 677–692 (2013).
[Crossref]

Yang, D.

Y. Liu, H. Zhou, Z. Hu, G. Yu, D. Yang, and J. Zhao, “Label and label-free based surface-enhanced Raman scattering for pathogen bacteria detection: a review,” Biosens. Bioelectron. 94, 131–140 (2017).
[Crossref]

Yang, S.

S. Yang, B. Li, A. Akkus, O. Akkus, and L. Lang, “Wide-field Raman imaging of dental lesions,” Analyst 139, 3107–3114 (2014).
[Crossref]

Yang, Y.

H. Chen, S. Wang, Y. Zhang, Y. Yang, H. Fang, S. Zhu, and X. Yuan, “Structured illumination for wide-field Raman imaging of cell membranes,” Opt. Commun. 402, 221–225 (2017).
[Crossref]

Yu, G.

Y. Liu, H. Zhou, Z. Hu, G. Yu, D. Yang, and J. Zhao, “Label and label-free based surface-enhanced Raman scattering for pathogen bacteria detection: a review,” Biosens. Bioelectron. 94, 131–140 (2017).
[Crossref]

Yuan, X.

H. Chen, S. Wang, Y. Zhang, Y. Yang, H. Fang, S. Zhu, and X. Yuan, “Structured illumination for wide-field Raman imaging of cell membranes,” Opt. Commun. 402, 221–225 (2017).
[Crossref]

Zhang, S.

K. D. Alexander, K. Skinner, S. Zhang, H. Wei, and R. Lopez, “Tunable SERS in gold nanorod dimers through strain control on an elastomeric substrate,” Nano Lett. 10, 4488–4493 (2010).
[Crossref]

Zhang, X.-G.

Y. Chen, J.-Q. Ren, X.-G. Zhang, D.-Y. Wu, A.-G. Shen, and J.-M. Hu, “Alkyne-modulated surface-enhanced Raman scattering-palette for optical interference-free and multiplex cellular imaging,” Anal. Chem. 88, 6115–6119 (2016).
[Crossref]

Zhang, Y.

H. Chen, S. Wang, Y. Zhang, Y. Yang, H. Fang, S. Zhu, and X. Yuan, “Structured illumination for wide-field Raman imaging of cell membranes,” Opt. Commun. 402, 221–225 (2017).
[Crossref]

Zhao, J.

Y. Liu, H. Zhou, Z. Hu, G. Yu, D. Yang, and J. Zhao, “Label and label-free based surface-enhanced Raman scattering for pathogen bacteria detection: a review,” Biosens. Bioelectron. 94, 131–140 (2017).
[Crossref]

Zhou, H.

Y. Liu, H. Zhou, Z. Hu, G. Yu, D. Yang, and J. Zhao, “Label and label-free based surface-enhanced Raman scattering for pathogen bacteria detection: a review,” Biosens. Bioelectron. 94, 131–140 (2017).
[Crossref]

Zhu, D.

Z. Wang, S. Zong, L. Wu, D. Zhu, and Y. Cui, “SERS-activated platforms for immunoassay: probes, encoding methods, and applications,” Chem. Rev. 117, 7910–7963 (2017).
[Crossref]

Zhu, S.

H. Chen, S. Wang, Y. Zhang, Y. Yang, H. Fang, S. Zhu, and X. Yuan, “Structured illumination for wide-field Raman imaging of cell membranes,” Opt. Commun. 402, 221–225 (2017).
[Crossref]

Zhuang, X.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[Crossref]

Zong, S.

Z. Wang, S. Zong, L. Wu, D. Zhu, and Y. Cui, “SERS-activated platforms for immunoassay: probes, encoding methods, and applications,” Chem. Rev. 117, 7910–7963 (2017).
[Crossref]

ACS Nano (1)

S. Hennig, V. Mönkemöller, C. Böger, M. Müller, and T. Huser, “Nanoparticles as nonfluorescent analogues of fluorophores for optical nanoscopy,” ACS Nano 9, 6196–6205 (2015).
[Crossref]

Anal. Chem. (1)

Y. Chen, J.-Q. Ren, X.-G. Zhang, D.-Y. Wu, A.-G. Shen, and J.-M. Hu, “Alkyne-modulated surface-enhanced Raman scattering-palette for optical interference-free and multiplex cellular imaging,” Anal. Chem. 88, 6115–6119 (2016).
[Crossref]

Analyst (1)

S. Yang, B. Li, A. Akkus, O. Akkus, and L. Lang, “Wide-field Raman imaging of dental lesions,” Analyst 139, 3107–3114 (2014).
[Crossref]

Annu. Rev. Anal. Chem. (1)

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 1, 601–626 (2008).
[Crossref]

Appl. Spectrosc. (3)

Biosens. Bioelectron. (1)

Y. Liu, H. Zhou, Z. Hu, G. Yu, D. Yang, and J. Zhao, “Label and label-free based surface-enhanced Raman scattering for pathogen bacteria detection: a review,” Biosens. Bioelectron. 94, 131–140 (2017).
[Crossref]

Chem. Rev. (1)

Z. Wang, S. Zong, L. Wu, D. Zhu, and Y. Cui, “SERS-activated platforms for immunoassay: probes, encoding methods, and applications,” Chem. Rev. 117, 7910–7963 (2017).
[Crossref]

J. Biomed. Opt. (2)

P. Z. McVeigh, R. J. Mallia, I. Veilleux, and B. C. Wilson, “Widefield quantitative multiplex surface enhanced Raman scattering imaging in vivo,” J. Biomed. Opt. 18, 046011 (2013).
[Crossref]

R. J. Mallia, P. Z. McVeigh, I. Veilleux, and B. C. Wilson, “Filter-based method for background removal in high-sensitivity wide-field-surface-enhanced Raman scattering imaging in vivo,” J. Biomed. Opt. 17, 076017 (2012).
[Crossref]

J. Microsc. (1)

M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000).
[Crossref]

Microscopy (1)

Y. Hirano, A. Matsuda, and Y. Hiraoka, “Recent advancements in structured-illumination microscopy toward live-cell imaging,” Microscopy 64, 237–249 (2015).
[Crossref]

Nano Lett. (1)

K. D. Alexander, K. Skinner, S. Zhang, H. Wei, and R. Lopez, “Tunable SERS in gold nanorod dimers through strain control on an elastomeric substrate,” Nano Lett. 10, 4488–4493 (2010).
[Crossref]

Nanomedicine (1)

R. J. Mallia, P. Z. McVeigh, C. J. Fisher, I. Veilleux, and B. C. Wilson, “Wide-field multiplexed imaging of EGFR-targeted cancers using topical application of NIR SERS nanoprobes,” Nanomedicine 10, 89–101 (2015).
[Crossref]

Nat. Methods (2)

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[Crossref]

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6, 339–342 (2009).
[Crossref]

Nat. Protoc. (1)

A. F. Palonpon, J. Ando, H. Yamakoshi, K. Dodo, M. Sodeoka, S. Kawata, and K. Fujita, “Raman and SERS microscopy for molecular imaging of live cells,” Nat. Protoc. 8, 677–692 (2013).
[Crossref]

Opt. Commun. (1)

H. Chen, S. Wang, Y. Zhang, Y. Yang, H. Fang, S. Zhu, and X. Yuan, “Structured illumination for wide-field Raman imaging of cell membranes,” Opt. Commun. 402, 221–225 (2017).
[Crossref]

Opt. Lett. (1)

Photon. Res. (2)

Sci. Rep. (1)

Y. Chen, X. Bai, L. Su, Z. Du, A. Shen, A. Materny, and J. Hu, “Combined labelled and label-free SERS probes for triplex three-dimensional cellular imaging,” Sci. Rep. 6, 19173 (2016).
[Crossref]

Science (2)

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

F. Chen, P. W. Tillberg, and E. S. Boyden, “Expansion microscopy,” Science 347, 543–548 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Schematic of wide-field superresolution Raman imaging system.
Fig. 2.
Fig. 2. Typical Raman spectra of the three different encoded SERS nanoparticles. Asterisks (*) indicate the selected peaks, and colored rectangular areas indicate the spectral regions that were used for multiplexed imaging in the experiments.
Fig. 3.
Fig. 3. (a) Normalized intensities of fluorescent scattering and Raman scattering signals over time. The signals were detected at a frame rate of 0.2 Hz over an exposure time of 0.3 s. The red curve represents the Raman signal, and the black curve represents the fluorescent signal. (b) and (c) show time-lapse images of the fluorescent microspheres and the SERS nanoparticles, respectively.
Fig. 4.
Fig. 4. Wide-field imaging of the SERS nanoparticles. (a) Conventional imaging results and (b) the reconstructed wide-field image; (c) Gaussian fitting profiles of the normalized intensity of the images framed in (a) and (b). Scale bar: 1 μm.
Fig. 5.
Fig. 5. Multiplexed imaging of 3T3 cells labeled using surface-modified SERS nanoparticles. (a) Bright field image of 3T3 cell, and (b) conventional and (c) reconstructed wide-field pseudo-color images overlaid with the framed bright field image from (a). Scale bars: 5 μm in (a), and 1 μm in (b) and (c).