Abstract

On-chip spectroscopic sensors have attracted increasing attention for portable and field-deployable chemical detection applications. So far, these sensors largely rely on benchtop tunable lasers for spectroscopic interrogation. Large footprint and mechanical fragility of the sources, however, preclude compact sensing system integration. In this paper, we address the challenge through demonstrating, for the first time to our knowledge, a supercontinuum source integrated on-chip spectroscopic sensor, where we leverage nonlinear Ge22Sb18Se60 chalcogenide glass waveguides as a unified platform for both broadband supercontinuum generation and chemical detection. A home-built, palm-sized femtosecond laser centering at 1560 nm wavelength was used as the pumping source. Sensing capability of the system was validated through quantifying the optical absorption of chloroform solutions at 1695 nm. This work represents an important step towards realizing a miniaturized spectroscopic sensing system based on photonic chips.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Optimization of optical properties of photonic crystal fibers infiltrated with carbon tetrachloride for supercontinuum generation with subnanojoule femtosecond pulses

Quang Ho Dinh, Jacek Pniewski, Hieu Le Van, Aleksandr Ramaniuk, Van Cao Long, Krzysztof Borzycki, Khoa Dinh Xuan, Mariusz Klimczak, and Ryszard Buczyński
Appl. Opt. 57(14) 3738-3746 (2018)

Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10 /W/m) As2S3 chalcogenide planar waveguide

Michael R.E. Lamont, Barry Luther-Davies, Duk-Yong Choi, Steve Madden, and Benjamin J. Eggleton
Opt. Express 16(19) 14938-14944 (2008)

Mid-infrared octave spanning supercontinuum generation to 8.5  μm in silicon-germanium waveguides

Milan Sinobad, Christelle Monat, Barry Luther-davies, Pan Ma, Stephen Madden, David J. Moss, Arnan Mitchell, David Allioux, Regis Orobtchouk, Salim Boutami, Jean-Michel Hartmann, Jean-Marc Fedeli, and Christian Grillet
Optica 5(4) 360-366 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. Nitkowski, L. Chen, and M. Lipson, “Cavity-enhanced on-chip absorption spectroscopy using microring resonators,” Opt. Express 16, 11930–11936 (2008).
    [Crossref]
  2. A. Nitkowski, A. Baeumner, and M. Lipson, “On-chip spectrophotometry for bioanalysis using microring resonators,” Biomed. Opt. Express 2, 271–277 (2011).
    [Crossref]
  3. B. Mizaikoff, “Waveguide-enhanced mid-infrared chem/bio sensors,” Chem. Soc. Rev. 42, 8683–8699 (2013).
    [Crossref]
  4. X. Wang, J. Antoszewski, G. Putrino, W. Lei, L. Faraone, and B. Mizaikoff, “Mercury-cadmium-telluride waveguides: a novel strategy for on-chip mid-infrared sensors,” Anal. Chem. 85, 10648–10652 (2013).
    [Crossref]
  5. E. Ryckeboer, R. Bockstaele, M. Vanslembrouck, and R. Baets, “Glucose sensing by waveguide-based absorption spectroscopy on a silicon chip,” Biomed. Opt. Express 5, 1636–1648 (2014).
    [Crossref]
  6. Y. Chen, H. Lin, J. Hu, and M. Li, “Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing,” ACS Nano 8, 6955–6961 (2014).
    [Crossref]
  7. V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, and J. Giammarco, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
    [Crossref]
  8. C. J. Smith, R. Shankar, M. Laderer, M. B. Frish, M. Loncar, and M. G. Allen, “Sensing nitrous oxide with QCL-coupled silicon-on-sapphire ring resonators,” Opt. Express 23, 5491–5499 (2015).
    [Crossref]
  9. L. Tombez, E. Zhang, J. Orcutt, S. Kamlapurkar, and W. Green, “Methane absorption spectroscopy on a silicon photonic chip,” Optica 4, 1322–1325 (2017).
    [Crossref]
  10. D. D. Hickstein, H. Jung, D. R. Carlson, A. Lind, I. Coddington, K. Srinivasan, G. G. Ycas, D. C. Cole, A. Kowligy, and C. Fredrick, “Ultrabroadband supercontinuum generation and frequency-comb stabilization using on-chip waveguides with both cubic and quadratic nonlinearities,” Phys. Rev. Appl. 8, 014025 (2017).
    [Crossref]
  11. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
    [Crossref]
  12. N. Carlie, J. D. Musgraves, B. Zdyrko, I. Luzinov, J. Hu, V. Singh, A. Agarwal, L. C. Kimerling, A. Canciamilla, and F. Morichetti, “Integrated chalcogenide waveguide resonators for mid-IR sensing: leveraging material properties to meet fabrication challenges,” Opt. Express 18, 26728–26743 (2010).
    [Crossref]
  13. Y. Yu, X. Gai, P. Ma, K. Vu, Z. Yang, R. Wang, D.-Y. Choi, S. Madden, and B. Luther-Davies, “Experimental demonstration of linearly polarized 2–10 μm supercontinuum generation in a chalcogenide rib waveguide,” Opt. Lett. 41, 958–961 (2016).
    [Crossref]
  14. Y. Yu, X. Gai, P. Ma, D. Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8, 792–798 (2014).
    [Crossref]
  15. M. R. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10/W/m) As2S3 chalcogenide planar waveguide,” Opt. Express 16, 14938–14944 (2008).
    [Crossref]
  16. X. Gai, D.-Y. Choi, S. Madden, Z. Yang, R. Wang, and B. Luther-Davies, “Supercontinuum generation in the mid-infrared from a dispersion-engineered As2S3 glass rib waveguide,” Opt. Lett. 37, 3870–3872 (2012).
    [Crossref]
  17. J.-E. Tremblay, Y.-H. Lin, P.-K. Hsu, M. Malinowski, S. Novak, P. Qiao, G. F. Camacho-Gonzalez, C. J. Chang-Hasnain, K. Richardson, and S. Fathpour, “Large bandwidth silicon nitride spot-size converter for efficient supercontinuum coupling to chalcogenide waveguide,” in CLEO: Science and Innovations (Optical Society of America, 2017), paper SF1J.7.
  18. A. Ganjoo, H. Jain, C. Yu, R. Song, J. V. Ryan, J. Irudayaraj, Y. Ding, and C. Pantano, “Planar chalcogenide glass waveguides for IR evanescent wave sensors,” J. Non-Cryst. Solids 352, 584–588 (2006).
    [Crossref]
  19. J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, and K. Richardson, “Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor,” Opt. Express 15, 2307–2314 (2007).
    [Crossref]
  20. J. Hu, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. C. Kimerling, “Cavity-enhanced IR absorption in planar chalcogenide glass microdisk resonators: experiment and analysis,” J. Lightwave Technol. 27, 5240–5245 (2009).
    [Crossref]
  21. K. Richardson, L. Petit, N. Carlie, B. Zdyrko, I. Luzinov, J. Hu, A. Agarwal, L. Kimerling, T. Anderson, and M. Richardson, “Progress on the fabrication of on-chip, integrated chalcogenide glass (ChG)-based sensors,” J. Nonlinear Opt. Phys. Mater. 19, 75–99 (2010).
    [Crossref]
  22. J. Charrier, M.-L. Brandily, H. Lhermite, K. Michel, B. Bureau, F. Verger, and V. Nazabal, “Evanescent wave optical micro-sensor based on chalcogenide glass,” Sens. Actuators B 173, 468–476 (2012).
    [Crossref]
  23. P. Ma, D.-Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, and B. Luther-Davies, “Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared,” Opt. Express 21, 29927–29937 (2013).
    [Crossref]
  24. Z. Han, P. Lin, V. Singh, L. Kimerling, J. Hu, K. Richardson, A. Agarwal, and D. Tan, “On-chip mid-infrared gas detection using chalcogenide glass waveguide,” Appl. Phys. Lett. 108, 141106 (2016).
    [Crossref]
  25. H. Xu, X. Wan, Q. Ruan, R. Yang, T. Du, N. Chen, Z. Cai, and Z. Luo, “Effects of nanomaterial saturable absorption on passively mode-locked fiber lasers in an anomalous dispersion regime: simulations and experiments,” IEEE J. Sel. Top. Quantum Electron. 24, 1100209 (2018).
    [Crossref]
  26. D. M. Kita, H. Lin, A. Agarwal, K. Richardson, I. Luzinov, T. Gu, and J. Hu, “On-chip infrared spectroscopic sensing: redefining the benefits of scaling,” IEEE J. Sel. Top. Quantum Electron. 23, 5900110 (2017).
    [Crossref]
  27. H. Lin, Z. Luo, T. Gu, L. C. Kimerling, K. Wada, A. Agarwal, and J. Hu, “Mid-infrared integrated photonics on silicon: a perspective,” Nanophotonics 7, 393–420 (2017).
    [Crossref]
  28. D. Kita, B. Miranda, D. Favela, D. Bono, J. Michon, H. Lin, T. Gu, and J. Hu, “Digital Fourier transform spectroscopy: a high-performance, scalable technology for on-chip spectrum analysis,” arXiv: 1802.05270 (2018).
  29. V. G. Ta’eed, N. J. Baker, L. Fu, K. Finsterbusch, M. R. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D. Y. Choi, and S. Madden, “Ultrafast all-optical chalcogenide glass photonic circuits,” Opt. Express 15, 9205–9221 (2007).
    [Crossref]
  30. Q. Du, Y. Huang, J. Li, D. Kita, J. Michon, H. Lin, L. Li, S. Novak, K. Richardson, and W. Zhang, “Low-loss photonic device in Ge-Sb-S chalcogenide glass,” Opt. Lett. 41, 3090–3093 (2016).
    [Crossref]
  31. H. Zhang, Q. Bao, D. Tang, L. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95, 141103 (2009).
    [Crossref]

2018 (1)

H. Xu, X. Wan, Q. Ruan, R. Yang, T. Du, N. Chen, Z. Cai, and Z. Luo, “Effects of nanomaterial saturable absorption on passively mode-locked fiber lasers in an anomalous dispersion regime: simulations and experiments,” IEEE J. Sel. Top. Quantum Electron. 24, 1100209 (2018).
[Crossref]

2017 (4)

D. M. Kita, H. Lin, A. Agarwal, K. Richardson, I. Luzinov, T. Gu, and J. Hu, “On-chip infrared spectroscopic sensing: redefining the benefits of scaling,” IEEE J. Sel. Top. Quantum Electron. 23, 5900110 (2017).
[Crossref]

H. Lin, Z. Luo, T. Gu, L. C. Kimerling, K. Wada, A. Agarwal, and J. Hu, “Mid-infrared integrated photonics on silicon: a perspective,” Nanophotonics 7, 393–420 (2017).
[Crossref]

L. Tombez, E. Zhang, J. Orcutt, S. Kamlapurkar, and W. Green, “Methane absorption spectroscopy on a silicon photonic chip,” Optica 4, 1322–1325 (2017).
[Crossref]

D. D. Hickstein, H. Jung, D. R. Carlson, A. Lind, I. Coddington, K. Srinivasan, G. G. Ycas, D. C. Cole, A. Kowligy, and C. Fredrick, “Ultrabroadband supercontinuum generation and frequency-comb stabilization using on-chip waveguides with both cubic and quadratic nonlinearities,” Phys. Rev. Appl. 8, 014025 (2017).
[Crossref]

2016 (3)

2015 (1)

2014 (4)

Y. Yu, X. Gai, P. Ma, D. Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8, 792–798 (2014).
[Crossref]

E. Ryckeboer, R. Bockstaele, M. Vanslembrouck, and R. Baets, “Glucose sensing by waveguide-based absorption spectroscopy on a silicon chip,” Biomed. Opt. Express 5, 1636–1648 (2014).
[Crossref]

Y. Chen, H. Lin, J. Hu, and M. Li, “Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing,” ACS Nano 8, 6955–6961 (2014).
[Crossref]

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, and J. Giammarco, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

2013 (3)

B. Mizaikoff, “Waveguide-enhanced mid-infrared chem/bio sensors,” Chem. Soc. Rev. 42, 8683–8699 (2013).
[Crossref]

X. Wang, J. Antoszewski, G. Putrino, W. Lei, L. Faraone, and B. Mizaikoff, “Mercury-cadmium-telluride waveguides: a novel strategy for on-chip mid-infrared sensors,” Anal. Chem. 85, 10648–10652 (2013).
[Crossref]

P. Ma, D.-Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, and B. Luther-Davies, “Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared,” Opt. Express 21, 29927–29937 (2013).
[Crossref]

2012 (2)

J. Charrier, M.-L. Brandily, H. Lhermite, K. Michel, B. Bureau, F. Verger, and V. Nazabal, “Evanescent wave optical micro-sensor based on chalcogenide glass,” Sens. Actuators B 173, 468–476 (2012).
[Crossref]

X. Gai, D.-Y. Choi, S. Madden, Z. Yang, R. Wang, and B. Luther-Davies, “Supercontinuum generation in the mid-infrared from a dispersion-engineered As2S3 glass rib waveguide,” Opt. Lett. 37, 3870–3872 (2012).
[Crossref]

2011 (2)

A. Nitkowski, A. Baeumner, and M. Lipson, “On-chip spectrophotometry for bioanalysis using microring resonators,” Biomed. Opt. Express 2, 271–277 (2011).
[Crossref]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
[Crossref]

2010 (2)

N. Carlie, J. D. Musgraves, B. Zdyrko, I. Luzinov, J. Hu, V. Singh, A. Agarwal, L. C. Kimerling, A. Canciamilla, and F. Morichetti, “Integrated chalcogenide waveguide resonators for mid-IR sensing: leveraging material properties to meet fabrication challenges,” Opt. Express 18, 26728–26743 (2010).
[Crossref]

K. Richardson, L. Petit, N. Carlie, B. Zdyrko, I. Luzinov, J. Hu, A. Agarwal, L. Kimerling, T. Anderson, and M. Richardson, “Progress on the fabrication of on-chip, integrated chalcogenide glass (ChG)-based sensors,” J. Nonlinear Opt. Phys. Mater. 19, 75–99 (2010).
[Crossref]

2009 (2)

J. Hu, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. C. Kimerling, “Cavity-enhanced IR absorption in planar chalcogenide glass microdisk resonators: experiment and analysis,” J. Lightwave Technol. 27, 5240–5245 (2009).
[Crossref]

H. Zhang, Q. Bao, D. Tang, L. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95, 141103 (2009).
[Crossref]

2008 (2)

2007 (2)

2006 (1)

A. Ganjoo, H. Jain, C. Yu, R. Song, J. V. Ryan, J. Irudayaraj, Y. Ding, and C. Pantano, “Planar chalcogenide glass waveguides for IR evanescent wave sensors,” J. Non-Cryst. Solids 352, 584–588 (2006).
[Crossref]

Agarwal, A.

D. M. Kita, H. Lin, A. Agarwal, K. Richardson, I. Luzinov, T. Gu, and J. Hu, “On-chip infrared spectroscopic sensing: redefining the benefits of scaling,” IEEE J. Sel. Top. Quantum Electron. 23, 5900110 (2017).
[Crossref]

H. Lin, Z. Luo, T. Gu, L. C. Kimerling, K. Wada, A. Agarwal, and J. Hu, “Mid-infrared integrated photonics on silicon: a perspective,” Nanophotonics 7, 393–420 (2017).
[Crossref]

Z. Han, P. Lin, V. Singh, L. Kimerling, J. Hu, K. Richardson, A. Agarwal, and D. Tan, “On-chip mid-infrared gas detection using chalcogenide glass waveguide,” Appl. Phys. Lett. 108, 141106 (2016).
[Crossref]

K. Richardson, L. Petit, N. Carlie, B. Zdyrko, I. Luzinov, J. Hu, A. Agarwal, L. Kimerling, T. Anderson, and M. Richardson, “Progress on the fabrication of on-chip, integrated chalcogenide glass (ChG)-based sensors,” J. Nonlinear Opt. Phys. Mater. 19, 75–99 (2010).
[Crossref]

N. Carlie, J. D. Musgraves, B. Zdyrko, I. Luzinov, J. Hu, V. Singh, A. Agarwal, L. C. Kimerling, A. Canciamilla, and F. Morichetti, “Integrated chalcogenide waveguide resonators for mid-IR sensing: leveraging material properties to meet fabrication challenges,” Opt. Express 18, 26728–26743 (2010).
[Crossref]

J. Hu, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. C. Kimerling, “Cavity-enhanced IR absorption in planar chalcogenide glass microdisk resonators: experiment and analysis,” J. Lightwave Technol. 27, 5240–5245 (2009).
[Crossref]

J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, and K. Richardson, “Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor,” Opt. Express 15, 2307–2314 (2007).
[Crossref]

Allen, M. G.

Anderson, T.

K. Richardson, L. Petit, N. Carlie, B. Zdyrko, I. Luzinov, J. Hu, A. Agarwal, L. Kimerling, T. Anderson, and M. Richardson, “Progress on the fabrication of on-chip, integrated chalcogenide glass (ChG)-based sensors,” J. Nonlinear Opt. Phys. Mater. 19, 75–99 (2010).
[Crossref]

Antoszewski, J.

X. Wang, J. Antoszewski, G. Putrino, W. Lei, L. Faraone, and B. Mizaikoff, “Mercury-cadmium-telluride waveguides: a novel strategy for on-chip mid-infrared sensors,” Anal. Chem. 85, 10648–10652 (2013).
[Crossref]

Baets, R.

Baeumner, A.

Baker, N. J.

Bao, Q.

H. Zhang, Q. Bao, D. Tang, L. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95, 141103 (2009).
[Crossref]

Bockstaele, R.

Bono, D.

D. Kita, B. Miranda, D. Favela, D. Bono, J. Michon, H. Lin, T. Gu, and J. Hu, “Digital Fourier transform spectroscopy: a high-performance, scalable technology for on-chip spectrum analysis,” arXiv: 1802.05270 (2018).

Brandily, M.-L.

J. Charrier, M.-L. Brandily, H. Lhermite, K. Michel, B. Bureau, F. Verger, and V. Nazabal, “Evanescent wave optical micro-sensor based on chalcogenide glass,” Sens. Actuators B 173, 468–476 (2012).
[Crossref]

Bureau, B.

J. Charrier, M.-L. Brandily, H. Lhermite, K. Michel, B. Bureau, F. Verger, and V. Nazabal, “Evanescent wave optical micro-sensor based on chalcogenide glass,” Sens. Actuators B 173, 468–476 (2012).
[Crossref]

Cai, Z.

H. Xu, X. Wan, Q. Ruan, R. Yang, T. Du, N. Chen, Z. Cai, and Z. Luo, “Effects of nanomaterial saturable absorption on passively mode-locked fiber lasers in an anomalous dispersion regime: simulations and experiments,” IEEE J. Sel. Top. Quantum Electron. 24, 1100209 (2018).
[Crossref]

Camacho-Gonzalez, G. F.

J.-E. Tremblay, Y.-H. Lin, P.-K. Hsu, M. Malinowski, S. Novak, P. Qiao, G. F. Camacho-Gonzalez, C. J. Chang-Hasnain, K. Richardson, and S. Fathpour, “Large bandwidth silicon nitride spot-size converter for efficient supercontinuum coupling to chalcogenide waveguide,” in CLEO: Science and Innovations (Optical Society of America, 2017), paper SF1J.7.

Canciamilla, A.

Carlie, N.

Carlson, D. R.

D. D. Hickstein, H. Jung, D. R. Carlson, A. Lind, I. Coddington, K. Srinivasan, G. G. Ycas, D. C. Cole, A. Kowligy, and C. Fredrick, “Ultrabroadband supercontinuum generation and frequency-comb stabilization using on-chip waveguides with both cubic and quadratic nonlinearities,” Phys. Rev. Appl. 8, 014025 (2017).
[Crossref]

Chang-Hasnain, C. J.

J.-E. Tremblay, Y.-H. Lin, P.-K. Hsu, M. Malinowski, S. Novak, P. Qiao, G. F. Camacho-Gonzalez, C. J. Chang-Hasnain, K. Richardson, and S. Fathpour, “Large bandwidth silicon nitride spot-size converter for efficient supercontinuum coupling to chalcogenide waveguide,” in CLEO: Science and Innovations (Optical Society of America, 2017), paper SF1J.7.

Charrier, J.

J. Charrier, M.-L. Brandily, H. Lhermite, K. Michel, B. Bureau, F. Verger, and V. Nazabal, “Evanescent wave optical micro-sensor based on chalcogenide glass,” Sens. Actuators B 173, 468–476 (2012).
[Crossref]

Chen, L.

Chen, N.

H. Xu, X. Wan, Q. Ruan, R. Yang, T. Du, N. Chen, Z. Cai, and Z. Luo, “Effects of nanomaterial saturable absorption on passively mode-locked fiber lasers in an anomalous dispersion regime: simulations and experiments,” IEEE J. Sel. Top. Quantum Electron. 24, 1100209 (2018).
[Crossref]

Chen, Y.

Y. Chen, H. Lin, J. Hu, and M. Li, “Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing,” ACS Nano 8, 6955–6961 (2014).
[Crossref]

Choi, D. Y.

Y. Yu, X. Gai, P. Ma, D. Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8, 792–798 (2014).
[Crossref]

V. G. Ta’eed, N. J. Baker, L. Fu, K. Finsterbusch, M. R. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D. Y. Choi, and S. Madden, “Ultrafast all-optical chalcogenide glass photonic circuits,” Opt. Express 15, 9205–9221 (2007).
[Crossref]

Choi, D.-Y.

Coddington, I.

D. D. Hickstein, H. Jung, D. R. Carlson, A. Lind, I. Coddington, K. Srinivasan, G. G. Ycas, D. C. Cole, A. Kowligy, and C. Fredrick, “Ultrabroadband supercontinuum generation and frequency-comb stabilization using on-chip waveguides with both cubic and quadratic nonlinearities,” Phys. Rev. Appl. 8, 014025 (2017).
[Crossref]

Cole, D. C.

D. D. Hickstein, H. Jung, D. R. Carlson, A. Lind, I. Coddington, K. Srinivasan, G. G. Ycas, D. C. Cole, A. Kowligy, and C. Fredrick, “Ultrabroadband supercontinuum generation and frequency-comb stabilization using on-chip waveguides with both cubic and quadratic nonlinearities,” Phys. Rev. Appl. 8, 014025 (2017).
[Crossref]

Debbarma, S.

Y. Yu, X. Gai, P. Ma, D. Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8, 792–798 (2014).
[Crossref]

P. Ma, D.-Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, and B. Luther-Davies, “Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared,” Opt. Express 21, 29927–29937 (2013).
[Crossref]

Deng, F.

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, and J. Giammarco, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

Ding, Y.

A. Ganjoo, H. Jain, C. Yu, R. Song, J. V. Ryan, J. Irudayaraj, Y. Ding, and C. Pantano, “Planar chalcogenide glass waveguides for IR evanescent wave sensors,” J. Non-Cryst. Solids 352, 584–588 (2006).
[Crossref]

Du, Q.

Du, T.

H. Xu, X. Wan, Q. Ruan, R. Yang, T. Du, N. Chen, Z. Cai, and Z. Luo, “Effects of nanomaterial saturable absorption on passively mode-locked fiber lasers in an anomalous dispersion regime: simulations and experiments,” IEEE J. Sel. Top. Quantum Electron. 24, 1100209 (2018).
[Crossref]

Eggleton, B. J.

Faraone, L.

X. Wang, J. Antoszewski, G. Putrino, W. Lei, L. Faraone, and B. Mizaikoff, “Mercury-cadmium-telluride waveguides: a novel strategy for on-chip mid-infrared sensors,” Anal. Chem. 85, 10648–10652 (2013).
[Crossref]

Fathpour, S.

J.-E. Tremblay, Y.-H. Lin, P.-K. Hsu, M. Malinowski, S. Novak, P. Qiao, G. F. Camacho-Gonzalez, C. J. Chang-Hasnain, K. Richardson, and S. Fathpour, “Large bandwidth silicon nitride spot-size converter for efficient supercontinuum coupling to chalcogenide waveguide,” in CLEO: Science and Innovations (Optical Society of America, 2017), paper SF1J.7.

Favela, D.

D. Kita, B. Miranda, D. Favela, D. Bono, J. Michon, H. Lin, T. Gu, and J. Hu, “Digital Fourier transform spectroscopy: a high-performance, scalable technology for on-chip spectrum analysis,” arXiv: 1802.05270 (2018).

Finsterbusch, K.

Fredrick, C.

D. D. Hickstein, H. Jung, D. R. Carlson, A. Lind, I. Coddington, K. Srinivasan, G. G. Ycas, D. C. Cole, A. Kowligy, and C. Fredrick, “Ultrabroadband supercontinuum generation and frequency-comb stabilization using on-chip waveguides with both cubic and quadratic nonlinearities,” Phys. Rev. Appl. 8, 014025 (2017).
[Crossref]

Frish, M. B.

Fu, L.

Gai, X.

Ganjoo, A.

A. Ganjoo, H. Jain, C. Yu, R. Song, J. V. Ryan, J. Irudayaraj, Y. Ding, and C. Pantano, “Planar chalcogenide glass waveguides for IR evanescent wave sensors,” J. Non-Cryst. Solids 352, 584–588 (2006).
[Crossref]

Giammarco, J.

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, and J. Giammarco, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

Green, W.

Gu, T.

D. M. Kita, H. Lin, A. Agarwal, K. Richardson, I. Luzinov, T. Gu, and J. Hu, “On-chip infrared spectroscopic sensing: redefining the benefits of scaling,” IEEE J. Sel. Top. Quantum Electron. 23, 5900110 (2017).
[Crossref]

H. Lin, Z. Luo, T. Gu, L. C. Kimerling, K. Wada, A. Agarwal, and J. Hu, “Mid-infrared integrated photonics on silicon: a perspective,” Nanophotonics 7, 393–420 (2017).
[Crossref]

D. Kita, B. Miranda, D. Favela, D. Bono, J. Michon, H. Lin, T. Gu, and J. Hu, “Digital Fourier transform spectroscopy: a high-performance, scalable technology for on-chip spectrum analysis,” arXiv: 1802.05270 (2018).

Han, Z.

Z. Han, P. Lin, V. Singh, L. Kimerling, J. Hu, K. Richardson, A. Agarwal, and D. Tan, “On-chip mid-infrared gas detection using chalcogenide glass waveguide,” Appl. Phys. Lett. 108, 141106 (2016).
[Crossref]

Hickstein, D. D.

D. D. Hickstein, H. Jung, D. R. Carlson, A. Lind, I. Coddington, K. Srinivasan, G. G. Ycas, D. C. Cole, A. Kowligy, and C. Fredrick, “Ultrabroadband supercontinuum generation and frequency-comb stabilization using on-chip waveguides with both cubic and quadratic nonlinearities,” Phys. Rev. Appl. 8, 014025 (2017).
[Crossref]

Hsu, P.-K.

J.-E. Tremblay, Y.-H. Lin, P.-K. Hsu, M. Malinowski, S. Novak, P. Qiao, G. F. Camacho-Gonzalez, C. J. Chang-Hasnain, K. Richardson, and S. Fathpour, “Large bandwidth silicon nitride spot-size converter for efficient supercontinuum coupling to chalcogenide waveguide,” in CLEO: Science and Innovations (Optical Society of America, 2017), paper SF1J.7.

Hu, J.

H. Lin, Z. Luo, T. Gu, L. C. Kimerling, K. Wada, A. Agarwal, and J. Hu, “Mid-infrared integrated photonics on silicon: a perspective,” Nanophotonics 7, 393–420 (2017).
[Crossref]

D. M. Kita, H. Lin, A. Agarwal, K. Richardson, I. Luzinov, T. Gu, and J. Hu, “On-chip infrared spectroscopic sensing: redefining the benefits of scaling,” IEEE J. Sel. Top. Quantum Electron. 23, 5900110 (2017).
[Crossref]

Z. Han, P. Lin, V. Singh, L. Kimerling, J. Hu, K. Richardson, A. Agarwal, and D. Tan, “On-chip mid-infrared gas detection using chalcogenide glass waveguide,” Appl. Phys. Lett. 108, 141106 (2016).
[Crossref]

Y. Chen, H. Lin, J. Hu, and M. Li, “Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing,” ACS Nano 8, 6955–6961 (2014).
[Crossref]

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, and J. Giammarco, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

K. Richardson, L. Petit, N. Carlie, B. Zdyrko, I. Luzinov, J. Hu, A. Agarwal, L. Kimerling, T. Anderson, and M. Richardson, “Progress on the fabrication of on-chip, integrated chalcogenide glass (ChG)-based sensors,” J. Nonlinear Opt. Phys. Mater. 19, 75–99 (2010).
[Crossref]

N. Carlie, J. D. Musgraves, B. Zdyrko, I. Luzinov, J. Hu, V. Singh, A. Agarwal, L. C. Kimerling, A. Canciamilla, and F. Morichetti, “Integrated chalcogenide waveguide resonators for mid-IR sensing: leveraging material properties to meet fabrication challenges,” Opt. Express 18, 26728–26743 (2010).
[Crossref]

J. Hu, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. C. Kimerling, “Cavity-enhanced IR absorption in planar chalcogenide glass microdisk resonators: experiment and analysis,” J. Lightwave Technol. 27, 5240–5245 (2009).
[Crossref]

J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, and K. Richardson, “Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor,” Opt. Express 15, 2307–2314 (2007).
[Crossref]

D. Kita, B. Miranda, D. Favela, D. Bono, J. Michon, H. Lin, T. Gu, and J. Hu, “Digital Fourier transform spectroscopy: a high-performance, scalable technology for on-chip spectrum analysis,” arXiv: 1802.05270 (2018).

Huang, Y.

Irudayaraj, J.

A. Ganjoo, H. Jain, C. Yu, R. Song, J. V. Ryan, J. Irudayaraj, Y. Ding, and C. Pantano, “Planar chalcogenide glass waveguides for IR evanescent wave sensors,” J. Non-Cryst. Solids 352, 584–588 (2006).
[Crossref]

Jain, H.

A. Ganjoo, H. Jain, C. Yu, R. Song, J. V. Ryan, J. Irudayaraj, Y. Ding, and C. Pantano, “Planar chalcogenide glass waveguides for IR evanescent wave sensors,” J. Non-Cryst. Solids 352, 584–588 (2006).
[Crossref]

Jung, H.

D. D. Hickstein, H. Jung, D. R. Carlson, A. Lind, I. Coddington, K. Srinivasan, G. G. Ycas, D. C. Cole, A. Kowligy, and C. Fredrick, “Ultrabroadband supercontinuum generation and frequency-comb stabilization using on-chip waveguides with both cubic and quadratic nonlinearities,” Phys. Rev. Appl. 8, 014025 (2017).
[Crossref]

Kamlapurkar, S.

Kimerling, L.

Z. Han, P. Lin, V. Singh, L. Kimerling, J. Hu, K. Richardson, A. Agarwal, and D. Tan, “On-chip mid-infrared gas detection using chalcogenide glass waveguide,” Appl. Phys. Lett. 108, 141106 (2016).
[Crossref]

K. Richardson, L. Petit, N. Carlie, B. Zdyrko, I. Luzinov, J. Hu, A. Agarwal, L. Kimerling, T. Anderson, and M. Richardson, “Progress on the fabrication of on-chip, integrated chalcogenide glass (ChG)-based sensors,” J. Nonlinear Opt. Phys. Mater. 19, 75–99 (2010).
[Crossref]

J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, and K. Richardson, “Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor,” Opt. Express 15, 2307–2314 (2007).
[Crossref]

Kimerling, L. C.

Kita, D.

Q. Du, Y. Huang, J. Li, D. Kita, J. Michon, H. Lin, L. Li, S. Novak, K. Richardson, and W. Zhang, “Low-loss photonic device in Ge-Sb-S chalcogenide glass,” Opt. Lett. 41, 3090–3093 (2016).
[Crossref]

D. Kita, B. Miranda, D. Favela, D. Bono, J. Michon, H. Lin, T. Gu, and J. Hu, “Digital Fourier transform spectroscopy: a high-performance, scalable technology for on-chip spectrum analysis,” arXiv: 1802.05270 (2018).

Kita, D. M.

D. M. Kita, H. Lin, A. Agarwal, K. Richardson, I. Luzinov, T. Gu, and J. Hu, “On-chip infrared spectroscopic sensing: redefining the benefits of scaling,” IEEE J. Sel. Top. Quantum Electron. 23, 5900110 (2017).
[Crossref]

Kowligy, A.

D. D. Hickstein, H. Jung, D. R. Carlson, A. Lind, I. Coddington, K. Srinivasan, G. G. Ycas, D. C. Cole, A. Kowligy, and C. Fredrick, “Ultrabroadband supercontinuum generation and frequency-comb stabilization using on-chip waveguides with both cubic and quadratic nonlinearities,” Phys. Rev. Appl. 8, 014025 (2017).
[Crossref]

Laderer, M.

Lamont, M. R.

Lei, W.

X. Wang, J. Antoszewski, G. Putrino, W. Lei, L. Faraone, and B. Mizaikoff, “Mercury-cadmium-telluride waveguides: a novel strategy for on-chip mid-infrared sensors,” Anal. Chem. 85, 10648–10652 (2013).
[Crossref]

Lhermite, H.

J. Charrier, M.-L. Brandily, H. Lhermite, K. Michel, B. Bureau, F. Verger, and V. Nazabal, “Evanescent wave optical micro-sensor based on chalcogenide glass,” Sens. Actuators B 173, 468–476 (2012).
[Crossref]

Li, J.

Li, L.

Q. Du, Y. Huang, J. Li, D. Kita, J. Michon, H. Lin, L. Li, S. Novak, K. Richardson, and W. Zhang, “Low-loss photonic device in Ge-Sb-S chalcogenide glass,” Opt. Lett. 41, 3090–3093 (2016).
[Crossref]

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, and J. Giammarco, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

Li, M.

Y. Chen, H. Lin, J. Hu, and M. Li, “Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing,” ACS Nano 8, 6955–6961 (2014).
[Crossref]

Lin, H.

D. M. Kita, H. Lin, A. Agarwal, K. Richardson, I. Luzinov, T. Gu, and J. Hu, “On-chip infrared spectroscopic sensing: redefining the benefits of scaling,” IEEE J. Sel. Top. Quantum Electron. 23, 5900110 (2017).
[Crossref]

H. Lin, Z. Luo, T. Gu, L. C. Kimerling, K. Wada, A. Agarwal, and J. Hu, “Mid-infrared integrated photonics on silicon: a perspective,” Nanophotonics 7, 393–420 (2017).
[Crossref]

Q. Du, Y. Huang, J. Li, D. Kita, J. Michon, H. Lin, L. Li, S. Novak, K. Richardson, and W. Zhang, “Low-loss photonic device in Ge-Sb-S chalcogenide glass,” Opt. Lett. 41, 3090–3093 (2016).
[Crossref]

Y. Chen, H. Lin, J. Hu, and M. Li, “Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing,” ACS Nano 8, 6955–6961 (2014).
[Crossref]

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, and J. Giammarco, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

D. Kita, B. Miranda, D. Favela, D. Bono, J. Michon, H. Lin, T. Gu, and J. Hu, “Digital Fourier transform spectroscopy: a high-performance, scalable technology for on-chip spectrum analysis,” arXiv: 1802.05270 (2018).

Lin, P.

Z. Han, P. Lin, V. Singh, L. Kimerling, J. Hu, K. Richardson, A. Agarwal, and D. Tan, “On-chip mid-infrared gas detection using chalcogenide glass waveguide,” Appl. Phys. Lett. 108, 141106 (2016).
[Crossref]

Lin, P. T.

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, and J. Giammarco, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

Lin, Y.-H.

J.-E. Tremblay, Y.-H. Lin, P.-K. Hsu, M. Malinowski, S. Novak, P. Qiao, G. F. Camacho-Gonzalez, C. J. Chang-Hasnain, K. Richardson, and S. Fathpour, “Large bandwidth silicon nitride spot-size converter for efficient supercontinuum coupling to chalcogenide waveguide,” in CLEO: Science and Innovations (Optical Society of America, 2017), paper SF1J.7.

Lind, A.

D. D. Hickstein, H. Jung, D. R. Carlson, A. Lind, I. Coddington, K. Srinivasan, G. G. Ycas, D. C. Cole, A. Kowligy, and C. Fredrick, “Ultrabroadband supercontinuum generation and frequency-comb stabilization using on-chip waveguides with both cubic and quadratic nonlinearities,” Phys. Rev. Appl. 8, 014025 (2017).
[Crossref]

Lipson, M.

Loh, K.

H. Zhang, Q. Bao, D. Tang, L. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95, 141103 (2009).
[Crossref]

Loncar, M.

Luo, Z.

H. Xu, X. Wan, Q. Ruan, R. Yang, T. Du, N. Chen, Z. Cai, and Z. Luo, “Effects of nanomaterial saturable absorption on passively mode-locked fiber lasers in an anomalous dispersion regime: simulations and experiments,” IEEE J. Sel. Top. Quantum Electron. 24, 1100209 (2018).
[Crossref]

H. Lin, Z. Luo, T. Gu, L. C. Kimerling, K. Wada, A. Agarwal, and J. Hu, “Mid-infrared integrated photonics on silicon: a perspective,” Nanophotonics 7, 393–420 (2017).
[Crossref]

Luther-Davies, B.

Luzinov, I.

D. M. Kita, H. Lin, A. Agarwal, K. Richardson, I. Luzinov, T. Gu, and J. Hu, “On-chip infrared spectroscopic sensing: redefining the benefits of scaling,” IEEE J. Sel. Top. Quantum Electron. 23, 5900110 (2017).
[Crossref]

K. Richardson, L. Petit, N. Carlie, B. Zdyrko, I. Luzinov, J. Hu, A. Agarwal, L. Kimerling, T. Anderson, and M. Richardson, “Progress on the fabrication of on-chip, integrated chalcogenide glass (ChG)-based sensors,” J. Nonlinear Opt. Phys. Mater. 19, 75–99 (2010).
[Crossref]

N. Carlie, J. D. Musgraves, B. Zdyrko, I. Luzinov, J. Hu, V. Singh, A. Agarwal, L. C. Kimerling, A. Canciamilla, and F. Morichetti, “Integrated chalcogenide waveguide resonators for mid-IR sensing: leveraging material properties to meet fabrication challenges,” Opt. Express 18, 26728–26743 (2010).
[Crossref]

Ma, P.

Madden, S.

Madden, S. J.

Y. Yu, X. Gai, P. Ma, D. Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8, 792–798 (2014).
[Crossref]

Malinowski, M.

J.-E. Tremblay, Y.-H. Lin, P.-K. Hsu, M. Malinowski, S. Novak, P. Qiao, G. F. Camacho-Gonzalez, C. J. Chang-Hasnain, K. Richardson, and S. Fathpour, “Large bandwidth silicon nitride spot-size converter for efficient supercontinuum coupling to chalcogenide waveguide,” in CLEO: Science and Innovations (Optical Society of America, 2017), paper SF1J.7.

Michel, K.

J. Charrier, M.-L. Brandily, H. Lhermite, K. Michel, B. Bureau, F. Verger, and V. Nazabal, “Evanescent wave optical micro-sensor based on chalcogenide glass,” Sens. Actuators B 173, 468–476 (2012).
[Crossref]

Michon, J.

Q. Du, Y. Huang, J. Li, D. Kita, J. Michon, H. Lin, L. Li, S. Novak, K. Richardson, and W. Zhang, “Low-loss photonic device in Ge-Sb-S chalcogenide glass,” Opt. Lett. 41, 3090–3093 (2016).
[Crossref]

D. Kita, B. Miranda, D. Favela, D. Bono, J. Michon, H. Lin, T. Gu, and J. Hu, “Digital Fourier transform spectroscopy: a high-performance, scalable technology for on-chip spectrum analysis,” arXiv: 1802.05270 (2018).

Miranda, B.

D. Kita, B. Miranda, D. Favela, D. Bono, J. Michon, H. Lin, T. Gu, and J. Hu, “Digital Fourier transform spectroscopy: a high-performance, scalable technology for on-chip spectrum analysis,” arXiv: 1802.05270 (2018).

Mizaikoff, B.

X. Wang, J. Antoszewski, G. Putrino, W. Lei, L. Faraone, and B. Mizaikoff, “Mercury-cadmium-telluride waveguides: a novel strategy for on-chip mid-infrared sensors,” Anal. Chem. 85, 10648–10652 (2013).
[Crossref]

B. Mizaikoff, “Waveguide-enhanced mid-infrared chem/bio sensors,” Chem. Soc. Rev. 42, 8683–8699 (2013).
[Crossref]

Morichetti, F.

Moss, D. J.

Musgraves, J. D.

Nazabal, V.

J. Charrier, M.-L. Brandily, H. Lhermite, K. Michel, B. Bureau, F. Verger, and V. Nazabal, “Evanescent wave optical micro-sensor based on chalcogenide glass,” Sens. Actuators B 173, 468–476 (2012).
[Crossref]

Nguyen, H. C.

Ni, C.

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, and J. Giammarco, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

Nitkowski, A.

Novak, S.

Q. Du, Y. Huang, J. Li, D. Kita, J. Michon, H. Lin, L. Li, S. Novak, K. Richardson, and W. Zhang, “Low-loss photonic device in Ge-Sb-S chalcogenide glass,” Opt. Lett. 41, 3090–3093 (2016).
[Crossref]

J.-E. Tremblay, Y.-H. Lin, P.-K. Hsu, M. Malinowski, S. Novak, P. Qiao, G. F. Camacho-Gonzalez, C. J. Chang-Hasnain, K. Richardson, and S. Fathpour, “Large bandwidth silicon nitride spot-size converter for efficient supercontinuum coupling to chalcogenide waveguide,” in CLEO: Science and Innovations (Optical Society of America, 2017), paper SF1J.7.

Orcutt, J.

Pantano, C.

A. Ganjoo, H. Jain, C. Yu, R. Song, J. V. Ryan, J. Irudayaraj, Y. Ding, and C. Pantano, “Planar chalcogenide glass waveguides for IR evanescent wave sensors,” J. Non-Cryst. Solids 352, 584–588 (2006).
[Crossref]

Patel, N.

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, and J. Giammarco, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

Petit, L.

Putrino, G.

X. Wang, J. Antoszewski, G. Putrino, W. Lei, L. Faraone, and B. Mizaikoff, “Mercury-cadmium-telluride waveguides: a novel strategy for on-chip mid-infrared sensors,” Anal. Chem. 85, 10648–10652 (2013).
[Crossref]

Qiao, P.

J.-E. Tremblay, Y.-H. Lin, P.-K. Hsu, M. Malinowski, S. Novak, P. Qiao, G. F. Camacho-Gonzalez, C. J. Chang-Hasnain, K. Richardson, and S. Fathpour, “Large bandwidth silicon nitride spot-size converter for efficient supercontinuum coupling to chalcogenide waveguide,” in CLEO: Science and Innovations (Optical Society of America, 2017), paper SF1J.7.

Richardson, K.

D. M. Kita, H. Lin, A. Agarwal, K. Richardson, I. Luzinov, T. Gu, and J. Hu, “On-chip infrared spectroscopic sensing: redefining the benefits of scaling,” IEEE J. Sel. Top. Quantum Electron. 23, 5900110 (2017).
[Crossref]

Z. Han, P. Lin, V. Singh, L. Kimerling, J. Hu, K. Richardson, A. Agarwal, and D. Tan, “On-chip mid-infrared gas detection using chalcogenide glass waveguide,” Appl. Phys. Lett. 108, 141106 (2016).
[Crossref]

Q. Du, Y. Huang, J. Li, D. Kita, J. Michon, H. Lin, L. Li, S. Novak, K. Richardson, and W. Zhang, “Low-loss photonic device in Ge-Sb-S chalcogenide glass,” Opt. Lett. 41, 3090–3093 (2016).
[Crossref]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
[Crossref]

K. Richardson, L. Petit, N. Carlie, B. Zdyrko, I. Luzinov, J. Hu, A. Agarwal, L. Kimerling, T. Anderson, and M. Richardson, “Progress on the fabrication of on-chip, integrated chalcogenide glass (ChG)-based sensors,” J. Nonlinear Opt. Phys. Mater. 19, 75–99 (2010).
[Crossref]

J. Hu, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. C. Kimerling, “Cavity-enhanced IR absorption in planar chalcogenide glass microdisk resonators: experiment and analysis,” J. Lightwave Technol. 27, 5240–5245 (2009).
[Crossref]

J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, and K. Richardson, “Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor,” Opt. Express 15, 2307–2314 (2007).
[Crossref]

J.-E. Tremblay, Y.-H. Lin, P.-K. Hsu, M. Malinowski, S. Novak, P. Qiao, G. F. Camacho-Gonzalez, C. J. Chang-Hasnain, K. Richardson, and S. Fathpour, “Large bandwidth silicon nitride spot-size converter for efficient supercontinuum coupling to chalcogenide waveguide,” in CLEO: Science and Innovations (Optical Society of America, 2017), paper SF1J.7.

Richardson, M.

K. Richardson, L. Petit, N. Carlie, B. Zdyrko, I. Luzinov, J. Hu, A. Agarwal, L. Kimerling, T. Anderson, and M. Richardson, “Progress on the fabrication of on-chip, integrated chalcogenide glass (ChG)-based sensors,” J. Nonlinear Opt. Phys. Mater. 19, 75–99 (2010).
[Crossref]

Ruan, Q.

H. Xu, X. Wan, Q. Ruan, R. Yang, T. Du, N. Chen, Z. Cai, and Z. Luo, “Effects of nanomaterial saturable absorption on passively mode-locked fiber lasers in an anomalous dispersion regime: simulations and experiments,” IEEE J. Sel. Top. Quantum Electron. 24, 1100209 (2018).
[Crossref]

Ryan, J. V.

A. Ganjoo, H. Jain, C. Yu, R. Song, J. V. Ryan, J. Irudayaraj, Y. Ding, and C. Pantano, “Planar chalcogenide glass waveguides for IR evanescent wave sensors,” J. Non-Cryst. Solids 352, 584–588 (2006).
[Crossref]

Ryckeboer, E.

Shankar, R.

Singh, V.

Z. Han, P. Lin, V. Singh, L. Kimerling, J. Hu, K. Richardson, A. Agarwal, and D. Tan, “On-chip mid-infrared gas detection using chalcogenide glass waveguide,” Appl. Phys. Lett. 108, 141106 (2016).
[Crossref]

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, and J. Giammarco, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

N. Carlie, J. D. Musgraves, B. Zdyrko, I. Luzinov, J. Hu, V. Singh, A. Agarwal, L. C. Kimerling, A. Canciamilla, and F. Morichetti, “Integrated chalcogenide waveguide resonators for mid-IR sensing: leveraging material properties to meet fabrication challenges,” Opt. Express 18, 26728–26743 (2010).
[Crossref]

Smith, C. J.

Song, R.

A. Ganjoo, H. Jain, C. Yu, R. Song, J. V. Ryan, J. Irudayaraj, Y. Ding, and C. Pantano, “Planar chalcogenide glass waveguides for IR evanescent wave sensors,” J. Non-Cryst. Solids 352, 584–588 (2006).
[Crossref]

Srinivasan, K.

D. D. Hickstein, H. Jung, D. R. Carlson, A. Lind, I. Coddington, K. Srinivasan, G. G. Ycas, D. C. Cole, A. Kowligy, and C. Fredrick, “Ultrabroadband supercontinuum generation and frequency-comb stabilization using on-chip waveguides with both cubic and quadratic nonlinearities,” Phys. Rev. Appl. 8, 014025 (2017).
[Crossref]

Ta’eed, V. G.

Tan, D.

Z. Han, P. Lin, V. Singh, L. Kimerling, J. Hu, K. Richardson, A. Agarwal, and D. Tan, “On-chip mid-infrared gas detection using chalcogenide glass waveguide,” Appl. Phys. Lett. 108, 141106 (2016).
[Crossref]

Tang, D.

H. Zhang, Q. Bao, D. Tang, L. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95, 141103 (2009).
[Crossref]

Tarasov, V.

Tombez, L.

Tremblay, J.-E.

J.-E. Tremblay, Y.-H. Lin, P.-K. Hsu, M. Malinowski, S. Novak, P. Qiao, G. F. Camacho-Gonzalez, C. J. Chang-Hasnain, K. Richardson, and S. Fathpour, “Large bandwidth silicon nitride spot-size converter for efficient supercontinuum coupling to chalcogenide waveguide,” in CLEO: Science and Innovations (Optical Society of America, 2017), paper SF1J.7.

Vanslembrouck, M.

Verger, F.

J. Charrier, M.-L. Brandily, H. Lhermite, K. Michel, B. Bureau, F. Verger, and V. Nazabal, “Evanescent wave optical micro-sensor based on chalcogenide glass,” Sens. Actuators B 173, 468–476 (2012).
[Crossref]

Vu, K.

Wada, K.

H. Lin, Z. Luo, T. Gu, L. C. Kimerling, K. Wada, A. Agarwal, and J. Hu, “Mid-infrared integrated photonics on silicon: a perspective,” Nanophotonics 7, 393–420 (2017).
[Crossref]

Wan, X.

H. Xu, X. Wan, Q. Ruan, R. Yang, T. Du, N. Chen, Z. Cai, and Z. Luo, “Effects of nanomaterial saturable absorption on passively mode-locked fiber lasers in an anomalous dispersion regime: simulations and experiments,” IEEE J. Sel. Top. Quantum Electron. 24, 1100209 (2018).
[Crossref]

Wang, R.

Wang, X.

X. Wang, J. Antoszewski, G. Putrino, W. Lei, L. Faraone, and B. Mizaikoff, “Mercury-cadmium-telluride waveguides: a novel strategy for on-chip mid-infrared sensors,” Anal. Chem. 85, 10648–10652 (2013).
[Crossref]

Xu, H.

H. Xu, X. Wan, Q. Ruan, R. Yang, T. Du, N. Chen, Z. Cai, and Z. Luo, “Effects of nanomaterial saturable absorption on passively mode-locked fiber lasers in an anomalous dispersion regime: simulations and experiments,” IEEE J. Sel. Top. Quantum Electron. 24, 1100209 (2018).
[Crossref]

Yang, R.

H. Xu, X. Wan, Q. Ruan, R. Yang, T. Du, N. Chen, Z. Cai, and Z. Luo, “Effects of nanomaterial saturable absorption on passively mode-locked fiber lasers in an anomalous dispersion regime: simulations and experiments,” IEEE J. Sel. Top. Quantum Electron. 24, 1100209 (2018).
[Crossref]

Yang, Z.

Ycas, G. G.

D. D. Hickstein, H. Jung, D. R. Carlson, A. Lind, I. Coddington, K. Srinivasan, G. G. Ycas, D. C. Cole, A. Kowligy, and C. Fredrick, “Ultrabroadband supercontinuum generation and frequency-comb stabilization using on-chip waveguides with both cubic and quadratic nonlinearities,” Phys. Rev. Appl. 8, 014025 (2017).
[Crossref]

Yu, C.

A. Ganjoo, H. Jain, C. Yu, R. Song, J. V. Ryan, J. Irudayaraj, Y. Ding, and C. Pantano, “Planar chalcogenide glass waveguides for IR evanescent wave sensors,” J. Non-Cryst. Solids 352, 584–588 (2006).
[Crossref]

Yu, Y.

Zdyrko, B.

N. Carlie, J. D. Musgraves, B. Zdyrko, I. Luzinov, J. Hu, V. Singh, A. Agarwal, L. C. Kimerling, A. Canciamilla, and F. Morichetti, “Integrated chalcogenide waveguide resonators for mid-IR sensing: leveraging material properties to meet fabrication challenges,” Opt. Express 18, 26728–26743 (2010).
[Crossref]

K. Richardson, L. Petit, N. Carlie, B. Zdyrko, I. Luzinov, J. Hu, A. Agarwal, L. Kimerling, T. Anderson, and M. Richardson, “Progress on the fabrication of on-chip, integrated chalcogenide glass (ChG)-based sensors,” J. Nonlinear Opt. Phys. Mater. 19, 75–99 (2010).
[Crossref]

Zhang, E.

Zhang, H.

H. Zhang, Q. Bao, D. Tang, L. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95, 141103 (2009).
[Crossref]

Zhang, W.

Zhao, L.

H. Zhang, Q. Bao, D. Tang, L. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95, 141103 (2009).
[Crossref]

Zou, Y.

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, and J. Giammarco, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

ACS Nano (1)

Y. Chen, H. Lin, J. Hu, and M. Li, “Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing,” ACS Nano 8, 6955–6961 (2014).
[Crossref]

Anal. Chem. (1)

X. Wang, J. Antoszewski, G. Putrino, W. Lei, L. Faraone, and B. Mizaikoff, “Mercury-cadmium-telluride waveguides: a novel strategy for on-chip mid-infrared sensors,” Anal. Chem. 85, 10648–10652 (2013).
[Crossref]

Appl. Phys. Lett. (2)

Z. Han, P. Lin, V. Singh, L. Kimerling, J. Hu, K. Richardson, A. Agarwal, and D. Tan, “On-chip mid-infrared gas detection using chalcogenide glass waveguide,” Appl. Phys. Lett. 108, 141106 (2016).
[Crossref]

H. Zhang, Q. Bao, D. Tang, L. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95, 141103 (2009).
[Crossref]

Biomed. Opt. Express (2)

Chem. Soc. Rev. (1)

B. Mizaikoff, “Waveguide-enhanced mid-infrared chem/bio sensors,” Chem. Soc. Rev. 42, 8683–8699 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

H. Xu, X. Wan, Q. Ruan, R. Yang, T. Du, N. Chen, Z. Cai, and Z. Luo, “Effects of nanomaterial saturable absorption on passively mode-locked fiber lasers in an anomalous dispersion regime: simulations and experiments,” IEEE J. Sel. Top. Quantum Electron. 24, 1100209 (2018).
[Crossref]

D. M. Kita, H. Lin, A. Agarwal, K. Richardson, I. Luzinov, T. Gu, and J. Hu, “On-chip infrared spectroscopic sensing: redefining the benefits of scaling,” IEEE J. Sel. Top. Quantum Electron. 23, 5900110 (2017).
[Crossref]

J. Lightwave Technol. (1)

J. Non-Cryst. Solids (1)

A. Ganjoo, H. Jain, C. Yu, R. Song, J. V. Ryan, J. Irudayaraj, Y. Ding, and C. Pantano, “Planar chalcogenide glass waveguides for IR evanescent wave sensors,” J. Non-Cryst. Solids 352, 584–588 (2006).
[Crossref]

J. Nonlinear Opt. Phys. Mater. (1)

K. Richardson, L. Petit, N. Carlie, B. Zdyrko, I. Luzinov, J. Hu, A. Agarwal, L. Kimerling, T. Anderson, and M. Richardson, “Progress on the fabrication of on-chip, integrated chalcogenide glass (ChG)-based sensors,” J. Nonlinear Opt. Phys. Mater. 19, 75–99 (2010).
[Crossref]

Laser Photon. Rev. (1)

Y. Yu, X. Gai, P. Ma, D. Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8, 792–798 (2014).
[Crossref]

Nanophotonics (1)

H. Lin, Z. Luo, T. Gu, L. C. Kimerling, K. Wada, A. Agarwal, and J. Hu, “Mid-infrared integrated photonics on silicon: a perspective,” Nanophotonics 7, 393–420 (2017).
[Crossref]

Nat. Photonics (1)

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
[Crossref]

Opt. Express (7)

N. Carlie, J. D. Musgraves, B. Zdyrko, I. Luzinov, J. Hu, V. Singh, A. Agarwal, L. C. Kimerling, A. Canciamilla, and F. Morichetti, “Integrated chalcogenide waveguide resonators for mid-IR sensing: leveraging material properties to meet fabrication challenges,” Opt. Express 18, 26728–26743 (2010).
[Crossref]

J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, and K. Richardson, “Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor,” Opt. Express 15, 2307–2314 (2007).
[Crossref]

M. R. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10/W/m) As2S3 chalcogenide planar waveguide,” Opt. Express 16, 14938–14944 (2008).
[Crossref]

C. J. Smith, R. Shankar, M. Laderer, M. B. Frish, M. Loncar, and M. G. Allen, “Sensing nitrous oxide with QCL-coupled silicon-on-sapphire ring resonators,” Opt. Express 23, 5491–5499 (2015).
[Crossref]

A. Nitkowski, L. Chen, and M. Lipson, “Cavity-enhanced on-chip absorption spectroscopy using microring resonators,” Opt. Express 16, 11930–11936 (2008).
[Crossref]

P. Ma, D.-Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, and B. Luther-Davies, “Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared,” Opt. Express 21, 29927–29937 (2013).
[Crossref]

V. G. Ta’eed, N. J. Baker, L. Fu, K. Finsterbusch, M. R. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D. Y. Choi, and S. Madden, “Ultrafast all-optical chalcogenide glass photonic circuits,” Opt. Express 15, 9205–9221 (2007).
[Crossref]

Opt. Lett. (3)

Optica (1)

Phys. Rev. Appl. (1)

D. D. Hickstein, H. Jung, D. R. Carlson, A. Lind, I. Coddington, K. Srinivasan, G. G. Ycas, D. C. Cole, A. Kowligy, and C. Fredrick, “Ultrabroadband supercontinuum generation and frequency-comb stabilization using on-chip waveguides with both cubic and quadratic nonlinearities,” Phys. Rev. Appl. 8, 014025 (2017).
[Crossref]

Sci. Technol. Adv. Mater. (1)

V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, and J. Giammarco, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15, 014603 (2014).
[Crossref]

Sens. Actuators B (1)

J. Charrier, M.-L. Brandily, H. Lhermite, K. Michel, B. Bureau, F. Verger, and V. Nazabal, “Evanescent wave optical micro-sensor based on chalcogenide glass,” Sens. Actuators B 173, 468–476 (2012).
[Crossref]

Other (2)

D. Kita, B. Miranda, D. Favela, D. Bono, J. Michon, H. Lin, T. Gu, and J. Hu, “Digital Fourier transform spectroscopy: a high-performance, scalable technology for on-chip spectrum analysis,” arXiv: 1802.05270 (2018).

J.-E. Tremblay, Y.-H. Lin, P.-K. Hsu, M. Malinowski, S. Novak, P. Qiao, G. F. Camacho-Gonzalez, C. J. Chang-Hasnain, K. Richardson, and S. Fathpour, “Large bandwidth silicon nitride spot-size converter for efficient supercontinuum coupling to chalcogenide waveguide,” in CLEO: Science and Innovations (Optical Society of America, 2017), paper SF1J.7.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) Refractive index dispersion of the Ge22Sb18Se60 glass film measured using ellipsometry; inset schematically depicts the waveguide structure. (b) Simulated GVD of GeSbSe waveguides with varying widths (W) and a fixed core thickness H=400  nm.
Fig. 2.
Fig. 2. (a) Top-view optical micrograph of the zigzag GeSbSe waveguides; (b) SEM cross-sectional image of a 0.95  μm(W)×0.4  μm(H) GeSbSe waveguide. (c) Experimental setup of on-chip SC generation and sensing. (d) Block diagram of home-built femtosecond laser module (OC, optical coupler; WDM, wavelength division multiplexer; SA, graphene saturable absorber; PC, polarization controller).
Fig. 3.
Fig. 3. SC spectra in GeSbSe waveguides: (a) SC spectra from waveguides with different widths W; when W=0.95  μm, the zero-dispersion point of the waveguide coincides with the pump wavelength; (b) SC generation of GeSbSe waveguides with the optimal geometry (W=0.95  μm, H=0.4  μm) and varying lengths; (c) SC spectra from a 21 mm long GeSbSe waveguide (W=0.95  μm, H=0.4  μm) at different pump power levels. The power quoted here represents the average optical power coupled into the waveguide.
Fig. 4.
Fig. 4. (a) SC spectra measured on GeSbSe waveguides of different lengths L when immersed in chloroform; the triangle marks the optical absorption at 1695 nm calibrated using a benchtop UV-Vis spectrometer for an equivalent waveguide path length L=21  mm; (b) SC spectra taken on a 21 mm long GeSbSe waveguide immersed in CHCl3–CCl4 solutions of varying volume concentration ratios; (c) measured peak absorption at 1695 nm versus the GeSbSe waveguide length used in the experiment. The linear relation indicates that the classical Lambert’s law is obeyed; the inset shows the mode profile simulated by finite difference method.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

A=ΓαL.

Metrics