Abstract

We report the fabrication and characterization of silicon carbide microdisks on top of silicon pillars suited for applications from near- to mid-infrared. We probe 10 μm diameter disks with different under-etching depths, from 4 μm down to 1.4 μm, fabricated by isotropic plasma etching and extract quality factors up to 8400 at telecom wavelength. Our geometry is suited to present high Q single-mode operation. We experimentally demonstrate high-order whispering-gallery mode suppression while preserving the fundamental gallery mode and investigate some requirements for nonlinear optics applications on this platform, specifically in terms of quality factor and dispersion for Kerr frequency comb generation.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
High-Q silicon nitride microresonators exhibiting low-power frequency comb initiation

Yi Xuan, Yang Liu, Leo T. Varghese, Andrew J. Metcalf, Xiaoxiao Xue, Pei-Hsun Wang, Kyunghun Han, Jose A. Jaramillo-Villegas, Abdullah Al Noman, Cong Wang, Sangsik Kim, Min Teng, Yun Jo Lee, Ben Niu, Li Fan, Jian Wang, Daniel E. Leaird, Andrew M. Weiner, and Minghao Qi
Optica 3(11) 1171-1180 (2016)

High-Q Si microresonators formed by substrate transfer on silica waveguide wafers

W. Ng, T. Rockwood, D. Persechini, and D. Chang
Opt. Express 18(26) 27004-27015 (2010)

References

  • View by:
  • |
  • |
  • |

  1. R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4, 495–497 (2010).
    [Crossref]
  2. L. Carletti, P. Ma, Y. Yu, B. Luther-Davies, D. Hudson, C. Monat, R. Orobtchouk, S. Madden, D. J. Moss, M. Brun, S. Ortiz, P. Labeye, S. Nicoletti, and C. Grillet, “Nonlinear optical response of low loss silicon germanium waveguides in the mid-infrared,” Opt. Express 23, 8261–8271 (2015).
    [Crossref]
  3. L. Carletti, M. Sinobad, P. Ma, Y. Yu, D. Allioux, R. Orobtchouk, M. Brun, S. Ortiz, P. Labeye, J. M. Hartmann, S. Nicoletti, S. Madden, B. Luther-Davies, D. J. Moss, C. Monat, and C. Grillet, “Mid-infrared nonlinear optical response of Si-Ge waveguides with ultra-short optical pulses,” Opt. Express 23, 32202–32214 (2015).
    [Crossref]
  4. N. Singh, D. D. Hudson, Y. Yu, C. Grillet, S. D. Jackson, A. Casas-Bedoya, A. Read, P. Atanackovic, S. G. Duval, S. Palomba, B. Luther-Davies, S. Madden, D. J. Moss, and B. J. Eggleton, “Midinfrared supercontinuum generation from 2 to 6 μm in a silicon nanowire,” Optica 2, 797–802 (2015).
    [Crossref]
  5. C. Grillet, L. Carletti, C. Monat, P. Grosse, B. Ben Bakir, S. Menezo, J. M. Fedeli, and D. J. Moss, “Amorphous silicon nanowires combining high nonlinearity, FOM and optical stability,” Opt. Express 20, 22609–22615 (2012).
    [Crossref]
  6. A. Griffith, R. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
    [Crossref]
  7. B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
    [Crossref]
  8. C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
    [Crossref]
  9. C. Monat, C. Grillet, M. Collins, A. Clark, J. Schroeder, C. Xiong, J. Li, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Integrated optical auto-correlator based on third-harmonic generation in a silicon photonic crystal waveguide,” Nat. Commun. 5, 3246 (2014).
    [Crossref]
  10. X. Gai, Y. Yu, B. Kuyken, P. Ma, S. J. Madden, J. Van Campenhout, P. Verheyen, G. Roelkens, R. Baets, and B. Luther-Davies, “Nonlinear absorption and refraction in crystalline silicon in the mid-infrared,” Laser Photon. Rev. 7, 1054–1064 (2013).
    [Crossref]
  11. R. Kitamura, L. Pilon, and M. Jonasz, “Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature,” Appl. Opt. 46, 8118–8133 (2007).
    [Crossref]
  12. J. B. Casady and R. W. Johnson, “Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: a review,” Solid-State Electron. 39, 1409–1422 (1996).
    [Crossref]
  13. X. Lu, J. Y. Lee, S. Rogers, and Q. Lin, “Optical Kerr nonlinearity in a high-Q silicon carbide microresonator,” Opt. Express 22, 30826–30832 (2014).
    [Crossref]
  14. H. Sato, M. Abe, I. Shoji, J. Suda, and T. Kondo, “Accurate measurements of second-order nonlinear optical coefficients of 6H and 4H silicon carbide,” J. Opt. Soc. Am. B 26, 1892–1896 (2009).
    [Crossref]
  15. J. Cardenas, M. Yu, Y. Okawachi, C. B. Poitras, R. K. W. Lau, A. Dutt, A. L. Gaeta, and M. Lipson, “Optical nonlinearities in high-confinement silicon carbide waveguides,” Opt. Lett. 40, 4138–4141 (2015).
    [Crossref]
  16. S. Yamada, B. S. Song, J. Upham, T. Asano, Y. Tanaka, and S. Noda, “Suppression of multiple photon absorption in a SiC photonic crystal nanocavity operating at 1.55 μm,” Opt. Express 20, 14789–14796 (2012).
    [Crossref]
  17. S. Wang, M. Zhan, G. Wang, H. Xuan, W. Zhang, C. Liu, C. Xu, Y. Liu, Z. Wei, and X. Chen, “4H-SiC: a new nonlinear material for midinfrared lasers,” Laser Photon. Rev. 7, 831–838 (2013).
    [Crossref]
  18. F. Martini and A. Politi, “Four wave mixing in 3C SiC ring resonators,” arXiv:1707.03645 (2017).
  19. W. J. Tropf and M. E. Thomas, “Infrared refractive index and thermo-optic coefficient measurement at APL,” Johns Hopkins APL Tech. Dig. 19, 293–297 (1998).
  20. H. Mutschke, A. Andersen, D. Clement, T. Henning, and G. Peiter, “Infrared properties of SiC particles,” Astron. Astrophys. 345, 187–202 (1999).
  21. F. De Leonardis, B. Troia, R. A. Soref, and V. M. N. Passaro, “Dispersion of nonresonant third-order nonlinearities in silicon carbide,” Sci. Rep. 6, 32622 (2016).
    [Crossref]
  22. D. J. Moss, E. Ghahramani, and J. E. Sipe, “Semi-ab initio tight-binding band-structure calculations of χ3 (−3ω; ω, ω, ω) in C, Si, Ge, Sic, BP, Alp, AlAs, AISb, Gap, GaAs, GaSb, InP, InAs, and InSb,” Phys. Status Solidi C, 164, 587–604 (1991).
    [Crossref]
  23. G. L. Harris, Properties of Silicon Carbide (INSPEC, the Institution of Electrical Engineers, 1995).
  24. C. A. Zorman, A. J. Fleischman, A. S. Dewa, M. Mehregany, C. Jacob, S. Nishino, and P. Pirouz, “Epitaxial growth of 3C-SiC films on 4 in. diam (100) silicon wafers by atmospheric pressure chemical vapor deposition,” J. Appl. Phys. 78, 5136–5138 (1995).
    [Crossref]
  25. H. Nagasawa, K. Yagi, and T. Kawahara, “3C-SiC hetero-epitaxial growth on undulant Si (0 0 1) substrate,” J. Crys. Grow. 237–239, 1244–1249 (2002).
    [Crossref]
  26. S. Yamada, B. S. Song, T. Asano, and S. Noda, “Silicon carbide-based photonic crystal nanocavities for ultra-broadband operation from infrared to visible wavelengths,” Appl. Phys. Lett. 99, 201102 (2011).
    [Crossref]
  27. X. Tang, K. Wongchotigul, and M. G. Spencer, “Optical waveguide formed by cubic silicon carbide on sapphire substrates,” Appl. Phys. Lett. 58, 917–918 (1991).
    [Crossref]
  28. X. Lu, J. Y. Lee, P. X. L. Feng, and Q. Lin, “High Q silicon carbide microdisk resonator,” Appl. Phys. Lett. 104, 181103 (2014).
    [Crossref]
  29. M. Radulaski, T. M. Babinec, K. Mu, K. G. Lagoudakis, J. L. Zhang, S. Buckley, Y. A. Kelaita, K. Alassaad, and G. Ferro, “Visible photoluminescence from cubic (3C) silicon carbide microdisks coupled to high quality whispering gallery modes,” ACS Photon. 2, 14–19 (2015).
    [Crossref]
  30. D. Allioux, A. Belarouci, D. Hudson, N. Singh, E. Magi, G. Beaudin, A. Michon, R. Orobtchouk, and C. Grillet, “Silicon carbide microdisk on silicon pillar probed by evanescent coupling,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2016), paper SF2P.1.
  31. F. Martini and A. Politi, “Linear integrated optics in 3C silicon carbide,” Opt. Express 25, 10735–10742 (2017).
    [Crossref]
  32. J. Cardenas, M. Zhang, C. T. Phare, S. Y. Shah, C. B. Poitras, B. Guha, and M. Lipson, “High Q SiC microresonators,” Opt. Express 21, 16882–16887 (2013).
    [Crossref]
  33. T. Herr, V. Brasch, J. D. Jost, I. Mirgorodskiy, G. Lihachev, M. L. Gorodetsky, and T. J. Kippenberg, “Mode spectrum and temporal soliton formation in optical microresonators,” Phys. Rev. Lett. 113, 123901 (2014).
    [Crossref]
  34. C. Grillet, E. Magi, and B. J. Eggleton, “Fiber taper coupling to chalcogenide microsphere modes,” Appl. Phys. Lett. 92, 171109 (2008).
    [Crossref]
  35. T. Johnson, “Silicon microdisk resonators for nonlinear optics and dynamics,” Ph.D. dissertation (California Institute of Technology, 2009).
  36. A. Kordts, M. Pfeiffer, H. Guo, V. Brasch, and T. J. Kippenberg, “Higher order mode suppression in high-Q anomalous dispersion SiN microresonators for temporal dissipative Kerr soliton formation,” Opt. Lett. 41, 452–455 (2016).
    [Crossref]
  37. M. Masi, R. Orobtchouk, G. Fan, J. M. Fedeli, and L. Pavesi, “Towards a realistic modelling of ultra-compact racetrack resonators,” J. Lightwave Technol. 28, 3233–3242 (2010).
    [Crossref]
  38. V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137, 393–397 (1989).
    [Crossref]
  39. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Modal coupling in traveling-wave resonators,” Opt. Lett. 27, 1669–1671 (2002).
    [Crossref]
  40. B. E. Little and J. P. Laine, “Surface-roughness-induced contradirectional coupling in ring and disk resonators,” Opt. Lett. 22, 4–6 (1997).
    [Crossref]
  41. S. Ramelow, A. Farsi, S. Clemmen, J. S. Levy, A. R. Johnson, Y. Okawachi, M. R. E. Lamont, M. Lipson, and A. L. Gaeta, “Strong polarization mode coupling in microresonators,” Opt. Lett. 39, 5134–5137 (2014).
    [Crossref]
  42. A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
    [Crossref]
  43. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
    [Crossref]
  44. S. Coen and M. Erkintalo, “Universal scaling laws of Kerr frequency combs,” Opt. Lett. 38, 1790–1792 (2013).
    [Crossref]
  45. S. A. Diddams, “The evolving optical frequency comb,” J. Opt. Soc. Am. B 27, B51–B62 (2010).
    [Crossref]
  46. X. Song, J. F. Michaud, F. Cayrel, M. Zielinski, M. Portail, T. Chassagne, E. Collard, and D. Alquier, “Evidence of electrical activity of extended defects in 3C-SiC grown on Si,” Appl. Phys. Lett. 96, 142104 (2010).
    [Crossref]
  47. R. Khazaka, E. Bahette, M. Portail, D. Alquier, and J. F. Michaud, “Toward high-quality 3C-SiC membrane on a 3C-SiC pseudo-substrate,” Mater. Lett. 160, 28–30 (2015).
    [Crossref]
  48. H. S. Jha and P. Agarwal, “Effects of substrate temperature on structural and electrical properties of cubic silicon carbide films deposited by hot wire chemical vapor deposition technique,” J. Mater. Sci. Mater. Electron. 26, 2844–2850 (2015).
    [Crossref]
  49. X. Lu, J. Y. Lee, P. X.-L. Feng, and Q. Lin, “Silicon carbide microdisk resonator,” Opt. Lett. 38, 1304–1306 (2013).
    [Crossref]
  50. H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
    [Crossref]

2017 (1)

2016 (2)

A. Kordts, M. Pfeiffer, H. Guo, V. Brasch, and T. J. Kippenberg, “Higher order mode suppression in high-Q anomalous dispersion SiN microresonators for temporal dissipative Kerr soliton formation,” Opt. Lett. 41, 452–455 (2016).
[Crossref]

F. De Leonardis, B. Troia, R. A. Soref, and V. M. N. Passaro, “Dispersion of nonresonant third-order nonlinearities in silicon carbide,” Sci. Rep. 6, 32622 (2016).
[Crossref]

2015 (9)

M. Radulaski, T. M. Babinec, K. Mu, K. G. Lagoudakis, J. L. Zhang, S. Buckley, Y. A. Kelaita, K. Alassaad, and G. Ferro, “Visible photoluminescence from cubic (3C) silicon carbide microdisks coupled to high quality whispering gallery modes,” ACS Photon. 2, 14–19 (2015).
[Crossref]

L. Carletti, P. Ma, Y. Yu, B. Luther-Davies, D. Hudson, C. Monat, R. Orobtchouk, S. Madden, D. J. Moss, M. Brun, S. Ortiz, P. Labeye, S. Nicoletti, and C. Grillet, “Nonlinear optical response of low loss silicon germanium waveguides in the mid-infrared,” Opt. Express 23, 8261–8271 (2015).
[Crossref]

L. Carletti, M. Sinobad, P. Ma, Y. Yu, D. Allioux, R. Orobtchouk, M. Brun, S. Ortiz, P. Labeye, J. M. Hartmann, S. Nicoletti, S. Madden, B. Luther-Davies, D. J. Moss, C. Monat, and C. Grillet, “Mid-infrared nonlinear optical response of Si-Ge waveguides with ultra-short optical pulses,” Opt. Express 23, 32202–32214 (2015).
[Crossref]

N. Singh, D. D. Hudson, Y. Yu, C. Grillet, S. D. Jackson, A. Casas-Bedoya, A. Read, P. Atanackovic, S. G. Duval, S. Palomba, B. Luther-Davies, S. Madden, D. J. Moss, and B. J. Eggleton, “Midinfrared supercontinuum generation from 2 to 6 μm in a silicon nanowire,” Optica 2, 797–802 (2015).
[Crossref]

A. Griffith, R. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

J. Cardenas, M. Yu, Y. Okawachi, C. B. Poitras, R. K. W. Lau, A. Dutt, A. L. Gaeta, and M. Lipson, “Optical nonlinearities in high-confinement silicon carbide waveguides,” Opt. Lett. 40, 4138–4141 (2015).
[Crossref]

R. Khazaka, E. Bahette, M. Portail, D. Alquier, and J. F. Michaud, “Toward high-quality 3C-SiC membrane on a 3C-SiC pseudo-substrate,” Mater. Lett. 160, 28–30 (2015).
[Crossref]

H. S. Jha and P. Agarwal, “Effects of substrate temperature on structural and electrical properties of cubic silicon carbide films deposited by hot wire chemical vapor deposition technique,” J. Mater. Sci. Mater. Electron. 26, 2844–2850 (2015).
[Crossref]

2014 (5)

S. Ramelow, A. Farsi, S. Clemmen, J. S. Levy, A. R. Johnson, Y. Okawachi, M. R. E. Lamont, M. Lipson, and A. L. Gaeta, “Strong polarization mode coupling in microresonators,” Opt. Lett. 39, 5134–5137 (2014).
[Crossref]

X. Lu, J. Y. Lee, S. Rogers, and Q. Lin, “Optical Kerr nonlinearity in a high-Q silicon carbide microresonator,” Opt. Express 22, 30826–30832 (2014).
[Crossref]

C. Monat, C. Grillet, M. Collins, A. Clark, J. Schroeder, C. Xiong, J. Li, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Integrated optical auto-correlator based on third-harmonic generation in a silicon photonic crystal waveguide,” Nat. Commun. 5, 3246 (2014).
[Crossref]

X. Lu, J. Y. Lee, P. X. L. Feng, and Q. Lin, “High Q silicon carbide microdisk resonator,” Appl. Phys. Lett. 104, 181103 (2014).
[Crossref]

T. Herr, V. Brasch, J. D. Jost, I. Mirgorodskiy, G. Lihachev, M. L. Gorodetsky, and T. J. Kippenberg, “Mode spectrum and temporal soliton formation in optical microresonators,” Phys. Rev. Lett. 113, 123901 (2014).
[Crossref]

2013 (6)

J. Cardenas, M. Zhang, C. T. Phare, S. Y. Shah, C. B. Poitras, B. Guha, and M. Lipson, “High Q SiC microresonators,” Opt. Express 21, 16882–16887 (2013).
[Crossref]

X. Gai, Y. Yu, B. Kuyken, P. Ma, S. J. Madden, J. Van Campenhout, P. Verheyen, G. Roelkens, R. Baets, and B. Luther-Davies, “Nonlinear absorption and refraction in crystalline silicon in the mid-infrared,” Laser Photon. Rev. 7, 1054–1064 (2013).
[Crossref]

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref]

S. Wang, M. Zhan, G. Wang, H. Xuan, W. Zhang, C. Liu, C. Xu, Y. Liu, Z. Wei, and X. Chen, “4H-SiC: a new nonlinear material for midinfrared lasers,” Laser Photon. Rev. 7, 831–838 (2013).
[Crossref]

X. Lu, J. Y. Lee, P. X.-L. Feng, and Q. Lin, “Silicon carbide microdisk resonator,” Opt. Lett. 38, 1304–1306 (2013).
[Crossref]

S. Coen and M. Erkintalo, “Universal scaling laws of Kerr frequency combs,” Opt. Lett. 38, 1790–1792 (2013).
[Crossref]

2012 (4)

2011 (2)

S. Yamada, B. S. Song, T. Asano, and S. Noda, “Silicon carbide-based photonic crystal nanocavities for ultra-broadband operation from infrared to visible wavelengths,” Appl. Phys. Lett. 99, 201102 (2011).
[Crossref]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref]

2010 (4)

S. A. Diddams, “The evolving optical frequency comb,” J. Opt. Soc. Am. B 27, B51–B62 (2010).
[Crossref]

X. Song, J. F. Michaud, F. Cayrel, M. Zielinski, M. Portail, T. Chassagne, E. Collard, and D. Alquier, “Evidence of electrical activity of extended defects in 3C-SiC grown on Si,” Appl. Phys. Lett. 96, 142104 (2010).
[Crossref]

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4, 495–497 (2010).
[Crossref]

M. Masi, R. Orobtchouk, G. Fan, J. M. Fedeli, and L. Pavesi, “Towards a realistic modelling of ultra-compact racetrack resonators,” J. Lightwave Technol. 28, 3233–3242 (2010).
[Crossref]

2009 (1)

2008 (1)

C. Grillet, E. Magi, and B. J. Eggleton, “Fiber taper coupling to chalcogenide microsphere modes,” Appl. Phys. Lett. 92, 171109 (2008).
[Crossref]

2007 (1)

2002 (2)

H. Nagasawa, K. Yagi, and T. Kawahara, “3C-SiC hetero-epitaxial growth on undulant Si (0 0 1) substrate,” J. Crys. Grow. 237–239, 1244–1249 (2002).
[Crossref]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Modal coupling in traveling-wave resonators,” Opt. Lett. 27, 1669–1671 (2002).
[Crossref]

1999 (1)

H. Mutschke, A. Andersen, D. Clement, T. Henning, and G. Peiter, “Infrared properties of SiC particles,” Astron. Astrophys. 345, 187–202 (1999).

1998 (1)

W. J. Tropf and M. E. Thomas, “Infrared refractive index and thermo-optic coefficient measurement at APL,” Johns Hopkins APL Tech. Dig. 19, 293–297 (1998).

1997 (1)

1996 (1)

J. B. Casady and R. W. Johnson, “Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: a review,” Solid-State Electron. 39, 1409–1422 (1996).
[Crossref]

1995 (1)

C. A. Zorman, A. J. Fleischman, A. S. Dewa, M. Mehregany, C. Jacob, S. Nishino, and P. Pirouz, “Epitaxial growth of 3C-SiC films on 4 in. diam (100) silicon wafers by atmospheric pressure chemical vapor deposition,” J. Appl. Phys. 78, 5136–5138 (1995).
[Crossref]

1991 (2)

X. Tang, K. Wongchotigul, and M. G. Spencer, “Optical waveguide formed by cubic silicon carbide on sapphire substrates,” Appl. Phys. Lett. 58, 917–918 (1991).
[Crossref]

D. J. Moss, E. Ghahramani, and J. E. Sipe, “Semi-ab initio tight-binding band-structure calculations of χ3 (−3ω; ω, ω, ω) in C, Si, Ge, Sic, BP, Alp, AlAs, AISb, Gap, GaAs, GaSb, InP, InAs, and InSb,” Phys. Status Solidi C, 164, 587–604 (1991).
[Crossref]

1989 (1)

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137, 393–397 (1989).
[Crossref]

Abe, M.

Agarwal, P.

H. S. Jha and P. Agarwal, “Effects of substrate temperature on structural and electrical properties of cubic silicon carbide films deposited by hot wire chemical vapor deposition technique,” J. Mater. Sci. Mater. Electron. 26, 2844–2850 (2015).
[Crossref]

Alassaad, K.

M. Radulaski, T. M. Babinec, K. Mu, K. G. Lagoudakis, J. L. Zhang, S. Buckley, Y. A. Kelaita, K. Alassaad, and G. Ferro, “Visible photoluminescence from cubic (3C) silicon carbide microdisks coupled to high quality whispering gallery modes,” ACS Photon. 2, 14–19 (2015).
[Crossref]

Allioux, D.

L. Carletti, M. Sinobad, P. Ma, Y. Yu, D. Allioux, R. Orobtchouk, M. Brun, S. Ortiz, P. Labeye, J. M. Hartmann, S. Nicoletti, S. Madden, B. Luther-Davies, D. J. Moss, C. Monat, and C. Grillet, “Mid-infrared nonlinear optical response of Si-Ge waveguides with ultra-short optical pulses,” Opt. Express 23, 32202–32214 (2015).
[Crossref]

D. Allioux, A. Belarouci, D. Hudson, N. Singh, E. Magi, G. Beaudin, A. Michon, R. Orobtchouk, and C. Grillet, “Silicon carbide microdisk on silicon pillar probed by evanescent coupling,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2016), paper SF2P.1.

Alquier, D.

R. Khazaka, E. Bahette, M. Portail, D. Alquier, and J. F. Michaud, “Toward high-quality 3C-SiC membrane on a 3C-SiC pseudo-substrate,” Mater. Lett. 160, 28–30 (2015).
[Crossref]

X. Song, J. F. Michaud, F. Cayrel, M. Zielinski, M. Portail, T. Chassagne, E. Collard, and D. Alquier, “Evidence of electrical activity of extended defects in 3C-SiC grown on Si,” Appl. Phys. Lett. 96, 142104 (2010).
[Crossref]

Andersen, A.

H. Mutschke, A. Andersen, D. Clement, T. Henning, and G. Peiter, “Infrared properties of SiC particles,” Astron. Astrophys. 345, 187–202 (1999).

Asano, T.

S. Yamada, B. S. Song, J. Upham, T. Asano, Y. Tanaka, and S. Noda, “Suppression of multiple photon absorption in a SiC photonic crystal nanocavity operating at 1.55 μm,” Opt. Express 20, 14789–14796 (2012).
[Crossref]

S. Yamada, B. S. Song, T. Asano, and S. Noda, “Silicon carbide-based photonic crystal nanocavities for ultra-broadband operation from infrared to visible wavelengths,” Appl. Phys. Lett. 99, 201102 (2011).
[Crossref]

Atanackovic, P.

Babinec, T. M.

M. Radulaski, T. M. Babinec, K. Mu, K. G. Lagoudakis, J. L. Zhang, S. Buckley, Y. A. Kelaita, K. Alassaad, and G. Ferro, “Visible photoluminescence from cubic (3C) silicon carbide microdisks coupled to high quality whispering gallery modes,” ACS Photon. 2, 14–19 (2015).
[Crossref]

Baets, R.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

X. Gai, Y. Yu, B. Kuyken, P. Ma, S. J. Madden, J. Van Campenhout, P. Verheyen, G. Roelkens, R. Baets, and B. Luther-Davies, “Nonlinear absorption and refraction in crystalline silicon in the mid-infrared,” Laser Photon. Rev. 7, 1054–1064 (2013).
[Crossref]

Bahette, E.

R. Khazaka, E. Bahette, M. Portail, D. Alquier, and J. F. Michaud, “Toward high-quality 3C-SiC membrane on a 3C-SiC pseudo-substrate,” Mater. Lett. 160, 28–30 (2015).
[Crossref]

Beaudin, G.

D. Allioux, A. Belarouci, D. Hudson, N. Singh, E. Magi, G. Beaudin, A. Michon, R. Orobtchouk, and C. Grillet, “Silicon carbide microdisk on silicon pillar probed by evanescent coupling,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2016), paper SF2P.1.

Belarouci, A.

D. Allioux, A. Belarouci, D. Hudson, N. Singh, E. Magi, G. Beaudin, A. Michon, R. Orobtchouk, and C. Grillet, “Silicon carbide microdisk on silicon pillar probed by evanescent coupling,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2016), paper SF2P.1.

Ben Bakir, B.

Braginsky, V. B.

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137, 393–397 (1989).
[Crossref]

Brasch, V.

A. Kordts, M. Pfeiffer, H. Guo, V. Brasch, and T. J. Kippenberg, “Higher order mode suppression in high-Q anomalous dispersion SiN microresonators for temporal dissipative Kerr soliton formation,” Opt. Lett. 41, 452–455 (2016).
[Crossref]

T. Herr, V. Brasch, J. D. Jost, I. Mirgorodskiy, G. Lihachev, M. L. Gorodetsky, and T. J. Kippenberg, “Mode spectrum and temporal soliton formation in optical microresonators,” Phys. Rev. Lett. 113, 123901 (2014).
[Crossref]

Brun, M.

Buckley, S.

M. Radulaski, T. M. Babinec, K. Mu, K. G. Lagoudakis, J. L. Zhang, S. Buckley, Y. A. Kelaita, K. Alassaad, and G. Ferro, “Visible photoluminescence from cubic (3C) silicon carbide microdisks coupled to high quality whispering gallery modes,” ACS Photon. 2, 14–19 (2015).
[Crossref]

Cardenas, J.

Carletti, L.

Casady, J. B.

J. B. Casady and R. W. Johnson, “Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: a review,” Solid-State Electron. 39, 1409–1422 (1996).
[Crossref]

Casas-Bedoya, A.

Cayrel, F.

X. Song, J. F. Michaud, F. Cayrel, M. Zielinski, M. Portail, T. Chassagne, E. Collard, and D. Alquier, “Evidence of electrical activity of extended defects in 3C-SiC grown on Si,” Appl. Phys. Lett. 96, 142104 (2010).
[Crossref]

Chassagne, T.

X. Song, J. F. Michaud, F. Cayrel, M. Zielinski, M. Portail, T. Chassagne, E. Collard, and D. Alquier, “Evidence of electrical activity of extended defects in 3C-SiC grown on Si,” Appl. Phys. Lett. 96, 142104 (2010).
[Crossref]

Chen, T.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

Chen, X.

S. Wang, M. Zhan, G. Wang, H. Xuan, W. Zhang, C. Liu, C. Xu, Y. Liu, Z. Wei, and X. Chen, “4H-SiC: a new nonlinear material for midinfrared lasers,” Laser Photon. Rev. 7, 831–838 (2013).
[Crossref]

Clark, A.

C. Monat, C. Grillet, M. Collins, A. Clark, J. Schroeder, C. Xiong, J. Li, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Integrated optical auto-correlator based on third-harmonic generation in a silicon photonic crystal waveguide,” Nat. Commun. 5, 3246 (2014).
[Crossref]

Clement, D.

H. Mutschke, A. Andersen, D. Clement, T. Henning, and G. Peiter, “Infrared properties of SiC particles,” Astron. Astrophys. 345, 187–202 (1999).

Clemmen, S.

Coen, S.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

S. Coen and M. Erkintalo, “Universal scaling laws of Kerr frequency combs,” Opt. Lett. 38, 1790–1792 (2013).
[Crossref]

Collard, E.

X. Song, J. F. Michaud, F. Cayrel, M. Zielinski, M. Portail, T. Chassagne, E. Collard, and D. Alquier, “Evidence of electrical activity of extended defects in 3C-SiC grown on Si,” Appl. Phys. Lett. 96, 142104 (2010).
[Crossref]

Collins, M.

C. Monat, C. Grillet, M. Collins, A. Clark, J. Schroeder, C. Xiong, J. Li, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Integrated optical auto-correlator based on third-harmonic generation in a silicon photonic crystal waveguide,” Nat. Commun. 5, 3246 (2014).
[Crossref]

De Leonardis, F.

F. De Leonardis, B. Troia, R. A. Soref, and V. M. N. Passaro, “Dispersion of nonresonant third-order nonlinearities in silicon carbide,” Sci. Rep. 6, 32622 (2016).
[Crossref]

Del’Haye, P.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref]

Dewa, A. S.

C. A. Zorman, A. J. Fleischman, A. S. Dewa, M. Mehregany, C. Jacob, S. Nishino, and P. Pirouz, “Epitaxial growth of 3C-SiC films on 4 in. diam (100) silicon wafers by atmospheric pressure chemical vapor deposition,” J. Appl. Phys. 78, 5136–5138 (1995).
[Crossref]

Diddams, S. A.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref]

S. A. Diddams, “The evolving optical frequency comb,” J. Opt. Soc. Am. B 27, B51–B62 (2010).
[Crossref]

Dutt, A.

Duval, S. G.

Eggleton, B. J.

N. Singh, D. D. Hudson, Y. Yu, C. Grillet, S. D. Jackson, A. Casas-Bedoya, A. Read, P. Atanackovic, S. G. Duval, S. Palomba, B. Luther-Davies, S. Madden, D. J. Moss, and B. J. Eggleton, “Midinfrared supercontinuum generation from 2 to 6 μm in a silicon nanowire,” Optica 2, 797–802 (2015).
[Crossref]

C. Monat, C. Grillet, M. Collins, A. Clark, J. Schroeder, C. Xiong, J. Li, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Integrated optical auto-correlator based on third-harmonic generation in a silicon photonic crystal waveguide,” Nat. Commun. 5, 3246 (2014).
[Crossref]

C. Grillet, E. Magi, and B. J. Eggleton, “Fiber taper coupling to chalcogenide microsphere modes,” Appl. Phys. Lett. 92, 171109 (2008).
[Crossref]

Erkintalo, M.

Fain, R.

A. Griffith, R. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Fan, G.

Farsi, A.

Fedeli, J. M.

Feng, P. X. L.

X. Lu, J. Y. Lee, P. X. L. Feng, and Q. Lin, “High Q silicon carbide microdisk resonator,” Appl. Phys. Lett. 104, 181103 (2014).
[Crossref]

Feng, P. X.-L.

Ferro, G.

M. Radulaski, T. M. Babinec, K. Mu, K. G. Lagoudakis, J. L. Zhang, S. Buckley, Y. A. Kelaita, K. Alassaad, and G. Ferro, “Visible photoluminescence from cubic (3C) silicon carbide microdisks coupled to high quality whispering gallery modes,” ACS Photon. 2, 14–19 (2015).
[Crossref]

Fleischman, A. J.

C. A. Zorman, A. J. Fleischman, A. S. Dewa, M. Mehregany, C. Jacob, S. Nishino, and P. Pirouz, “Epitaxial growth of 3C-SiC films on 4 in. diam (100) silicon wafers by atmospheric pressure chemical vapor deposition,” J. Appl. Phys. 78, 5136–5138 (1995).
[Crossref]

Gaeta, A. L.

Gai, X.

X. Gai, Y. Yu, B. Kuyken, P. Ma, S. J. Madden, J. Van Campenhout, P. Verheyen, G. Roelkens, R. Baets, and B. Luther-Davies, “Nonlinear absorption and refraction in crystalline silicon in the mid-infrared,” Laser Photon. Rev. 7, 1054–1064 (2013).
[Crossref]

Ghahramani, E.

D. J. Moss, E. Ghahramani, and J. E. Sipe, “Semi-ab initio tight-binding band-structure calculations of χ3 (−3ω; ω, ω, ω) in C, Si, Ge, Sic, BP, Alp, AlAs, AISb, Gap, GaAs, GaSb, InP, InAs, and InSb,” Phys. Status Solidi C, 164, 587–604 (1991).
[Crossref]

Gorodetsky, M. L.

T. Herr, V. Brasch, J. D. Jost, I. Mirgorodskiy, G. Lihachev, M. L. Gorodetsky, and T. J. Kippenberg, “Mode spectrum and temporal soliton formation in optical microresonators,” Phys. Rev. Lett. 113, 123901 (2014).
[Crossref]

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137, 393–397 (1989).
[Crossref]

Griffith, A.

A. Griffith, R. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Grillet, C.

L. Carletti, P. Ma, Y. Yu, B. Luther-Davies, D. Hudson, C. Monat, R. Orobtchouk, S. Madden, D. J. Moss, M. Brun, S. Ortiz, P. Labeye, S. Nicoletti, and C. Grillet, “Nonlinear optical response of low loss silicon germanium waveguides in the mid-infrared,” Opt. Express 23, 8261–8271 (2015).
[Crossref]

N. Singh, D. D. Hudson, Y. Yu, C. Grillet, S. D. Jackson, A. Casas-Bedoya, A. Read, P. Atanackovic, S. G. Duval, S. Palomba, B. Luther-Davies, S. Madden, D. J. Moss, and B. J. Eggleton, “Midinfrared supercontinuum generation from 2 to 6 μm in a silicon nanowire,” Optica 2, 797–802 (2015).
[Crossref]

L. Carletti, M. Sinobad, P. Ma, Y. Yu, D. Allioux, R. Orobtchouk, M. Brun, S. Ortiz, P. Labeye, J. M. Hartmann, S. Nicoletti, S. Madden, B. Luther-Davies, D. J. Moss, C. Monat, and C. Grillet, “Mid-infrared nonlinear optical response of Si-Ge waveguides with ultra-short optical pulses,” Opt. Express 23, 32202–32214 (2015).
[Crossref]

C. Monat, C. Grillet, M. Collins, A. Clark, J. Schroeder, C. Xiong, J. Li, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Integrated optical auto-correlator based on third-harmonic generation in a silicon photonic crystal waveguide,” Nat. Commun. 5, 3246 (2014).
[Crossref]

C. Grillet, L. Carletti, C. Monat, P. Grosse, B. Ben Bakir, S. Menezo, J. M. Fedeli, and D. J. Moss, “Amorphous silicon nanowires combining high nonlinearity, FOM and optical stability,” Opt. Express 20, 22609–22615 (2012).
[Crossref]

C. Grillet, E. Magi, and B. J. Eggleton, “Fiber taper coupling to chalcogenide microsphere modes,” Appl. Phys. Lett. 92, 171109 (2008).
[Crossref]

D. Allioux, A. Belarouci, D. Hudson, N. Singh, E. Magi, G. Beaudin, A. Michon, R. Orobtchouk, and C. Grillet, “Silicon carbide microdisk on silicon pillar probed by evanescent coupling,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2016), paper SF2P.1.

Grosse, P.

Guha, B.

Guo, H.

Hänsch, T. W.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref]

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

Harris, G. L.

G. L. Harris, Properties of Silicon Carbide (INSPEC, the Institution of Electrical Engineers, 1995).

Hartmann, J. M.

Henning, T.

H. Mutschke, A. Andersen, D. Clement, T. Henning, and G. Peiter, “Infrared properties of SiC particles,” Astron. Astrophys. 345, 187–202 (1999).

Herr, T.

T. Herr, V. Brasch, J. D. Jost, I. Mirgorodskiy, G. Lihachev, M. L. Gorodetsky, and T. J. Kippenberg, “Mode spectrum and temporal soliton formation in optical microresonators,” Phys. Rev. Lett. 113, 123901 (2014).
[Crossref]

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref]

Hofer, J.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref]

Holzner, S.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

Holzwarth, R.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref]

Hudson, D.

L. Carletti, P. Ma, Y. Yu, B. Luther-Davies, D. Hudson, C. Monat, R. Orobtchouk, S. Madden, D. J. Moss, M. Brun, S. Ortiz, P. Labeye, S. Nicoletti, and C. Grillet, “Nonlinear optical response of low loss silicon germanium waveguides in the mid-infrared,” Opt. Express 23, 8261–8271 (2015).
[Crossref]

D. Allioux, A. Belarouci, D. Hudson, N. Singh, E. Magi, G. Beaudin, A. Michon, R. Orobtchouk, and C. Grillet, “Silicon carbide microdisk on silicon pillar probed by evanescent coupling,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2016), paper SF2P.1.

Hudson, D. D.

Ideguchi, T.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

Ilchenko, V. S.

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137, 393–397 (1989).
[Crossref]

Jackson, S. D.

Jacob, C.

C. A. Zorman, A. J. Fleischman, A. S. Dewa, M. Mehregany, C. Jacob, S. Nishino, and P. Pirouz, “Epitaxial growth of 3C-SiC films on 4 in. diam (100) silicon wafers by atmospheric pressure chemical vapor deposition,” J. Appl. Phys. 78, 5136–5138 (1995).
[Crossref]

Jeon, S.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

Jha, H. S.

H. S. Jha and P. Agarwal, “Effects of substrate temperature on structural and electrical properties of cubic silicon carbide films deposited by hot wire chemical vapor deposition technique,” J. Mater. Sci. Mater. Electron. 26, 2844–2850 (2015).
[Crossref]

Johnson, A. R.

Johnson, R. W.

J. B. Casady and R. W. Johnson, “Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: a review,” Solid-State Electron. 39, 1409–1422 (1996).
[Crossref]

Johnson, T.

T. Johnson, “Silicon microdisk resonators for nonlinear optics and dynamics,” Ph.D. dissertation (California Institute of Technology, 2009).

Jonasz, M.

Jost, J. D.

T. Herr, V. Brasch, J. D. Jost, I. Mirgorodskiy, G. Lihachev, M. L. Gorodetsky, and T. J. Kippenberg, “Mode spectrum and temporal soliton formation in optical microresonators,” Phys. Rev. Lett. 113, 123901 (2014).
[Crossref]

Kawahara, T.

H. Nagasawa, K. Yagi, and T. Kawahara, “3C-SiC hetero-epitaxial growth on undulant Si (0 0 1) substrate,” J. Crys. Grow. 237–239, 1244–1249 (2002).
[Crossref]

Kelaita, Y. A.

M. Radulaski, T. M. Babinec, K. Mu, K. G. Lagoudakis, J. L. Zhang, S. Buckley, Y. A. Kelaita, K. Alassaad, and G. Ferro, “Visible photoluminescence from cubic (3C) silicon carbide microdisks coupled to high quality whispering gallery modes,” ACS Photon. 2, 14–19 (2015).
[Crossref]

Khazaka, R.

R. Khazaka, E. Bahette, M. Portail, D. Alquier, and J. F. Michaud, “Toward high-quality 3C-SiC membrane on a 3C-SiC pseudo-substrate,” Mater. Lett. 160, 28–30 (2015).
[Crossref]

Kippenberg, T. J.

A. Kordts, M. Pfeiffer, H. Guo, V. Brasch, and T. J. Kippenberg, “Higher order mode suppression in high-Q anomalous dispersion SiN microresonators for temporal dissipative Kerr soliton formation,” Opt. Lett. 41, 452–455 (2016).
[Crossref]

T. Herr, V. Brasch, J. D. Jost, I. Mirgorodskiy, G. Lihachev, M. L. Gorodetsky, and T. J. Kippenberg, “Mode spectrum and temporal soliton formation in optical microresonators,” Phys. Rev. Lett. 113, 123901 (2014).
[Crossref]

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Modal coupling in traveling-wave resonators,” Opt. Lett. 27, 1669–1671 (2002).
[Crossref]

Kitamura, R.

Kondo, T.

Kordts, A.

Krauss, T. F.

C. Monat, C. Grillet, M. Collins, A. Clark, J. Schroeder, C. Xiong, J. Li, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Integrated optical auto-correlator based on third-harmonic generation in a silicon photonic crystal waveguide,” Nat. Commun. 5, 3246 (2014).
[Crossref]

Kuyken, B.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

X. Gai, Y. Yu, B. Kuyken, P. Ma, S. J. Madden, J. Van Campenhout, P. Verheyen, G. Roelkens, R. Baets, and B. Luther-Davies, “Nonlinear absorption and refraction in crystalline silicon in the mid-infrared,” Laser Photon. Rev. 7, 1054–1064 (2013).
[Crossref]

Labeye, P.

Lagoudakis, K. G.

M. Radulaski, T. M. Babinec, K. Mu, K. G. Lagoudakis, J. L. Zhang, S. Buckley, Y. A. Kelaita, K. Alassaad, and G. Ferro, “Visible photoluminescence from cubic (3C) silicon carbide microdisks coupled to high quality whispering gallery modes,” ACS Photon. 2, 14–19 (2015).
[Crossref]

Laine, J. P.

Lamont, M. R. E.

Lau, R.

A. Griffith, R. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Lau, R. K. W.

Lee, H.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

Lee, J. Y.

Lee, Y. H. D.

A. Griffith, R. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Leo, F.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

Levy, J. S.

Li, J.

C. Monat, C. Grillet, M. Collins, A. Clark, J. Schroeder, C. Xiong, J. Li, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Integrated optical auto-correlator based on third-harmonic generation in a silicon photonic crystal waveguide,” Nat. Commun. 5, 3246 (2014).
[Crossref]

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

Lihachev, G.

T. Herr, V. Brasch, J. D. Jost, I. Mirgorodskiy, G. Lihachev, M. L. Gorodetsky, and T. J. Kippenberg, “Mode spectrum and temporal soliton formation in optical microresonators,” Phys. Rev. Lett. 113, 123901 (2014).
[Crossref]

Lin, Q.

Lipson, M.

Little, B. E.

Liu, C.

S. Wang, M. Zhan, G. Wang, H. Xuan, W. Zhang, C. Liu, C. Xu, Y. Liu, Z. Wei, and X. Chen, “4H-SiC: a new nonlinear material for midinfrared lasers,” Laser Photon. Rev. 7, 831–838 (2013).
[Crossref]

Liu, Y.

S. Wang, M. Zhan, G. Wang, H. Xuan, W. Zhang, C. Liu, C. Xu, Y. Liu, Z. Wei, and X. Chen, “4H-SiC: a new nonlinear material for midinfrared lasers,” Laser Photon. Rev. 7, 831–838 (2013).
[Crossref]

Lu, X.

Luther-Davies, B.

Ma, P.

Madden, S.

Madden, S. J.

X. Gai, Y. Yu, B. Kuyken, P. Ma, S. J. Madden, J. Van Campenhout, P. Verheyen, G. Roelkens, R. Baets, and B. Luther-Davies, “Nonlinear absorption and refraction in crystalline silicon in the mid-infrared,” Laser Photon. Rev. 7, 1054–1064 (2013).
[Crossref]

Magi, E.

C. Grillet, E. Magi, and B. J. Eggleton, “Fiber taper coupling to chalcogenide microsphere modes,” Appl. Phys. Lett. 92, 171109 (2008).
[Crossref]

D. Allioux, A. Belarouci, D. Hudson, N. Singh, E. Magi, G. Beaudin, A. Michon, R. Orobtchouk, and C. Grillet, “Silicon carbide microdisk on silicon pillar probed by evanescent coupling,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2016), paper SF2P.1.

Martini, F.

F. Martini and A. Politi, “Linear integrated optics in 3C silicon carbide,” Opt. Express 25, 10735–10742 (2017).
[Crossref]

F. Martini and A. Politi, “Four wave mixing in 3C SiC ring resonators,” arXiv:1707.03645 (2017).

Masi, M.

Mehregany, M.

C. A. Zorman, A. J. Fleischman, A. S. Dewa, M. Mehregany, C. Jacob, S. Nishino, and P. Pirouz, “Epitaxial growth of 3C-SiC films on 4 in. diam (100) silicon wafers by atmospheric pressure chemical vapor deposition,” J. Appl. Phys. 78, 5136–5138 (1995).
[Crossref]

Menezo, S.

Michaud, J. F.

R. Khazaka, E. Bahette, M. Portail, D. Alquier, and J. F. Michaud, “Toward high-quality 3C-SiC membrane on a 3C-SiC pseudo-substrate,” Mater. Lett. 160, 28–30 (2015).
[Crossref]

X. Song, J. F. Michaud, F. Cayrel, M. Zielinski, M. Portail, T. Chassagne, E. Collard, and D. Alquier, “Evidence of electrical activity of extended defects in 3C-SiC grown on Si,” Appl. Phys. Lett. 96, 142104 (2010).
[Crossref]

Michon, A.

D. Allioux, A. Belarouci, D. Hudson, N. Singh, E. Magi, G. Beaudin, A. Michon, R. Orobtchouk, and C. Grillet, “Silicon carbide microdisk on silicon pillar probed by evanescent coupling,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2016), paper SF2P.1.

Mirgorodskiy, I.

T. Herr, V. Brasch, J. D. Jost, I. Mirgorodskiy, G. Lihachev, M. L. Gorodetsky, and T. J. Kippenberg, “Mode spectrum and temporal soliton formation in optical microresonators,” Phys. Rev. Lett. 113, 123901 (2014).
[Crossref]

Mohanty, A.

A. Griffith, R. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Monat, C.

Moss, D. J.

L. Carletti, P. Ma, Y. Yu, B. Luther-Davies, D. Hudson, C. Monat, R. Orobtchouk, S. Madden, D. J. Moss, M. Brun, S. Ortiz, P. Labeye, S. Nicoletti, and C. Grillet, “Nonlinear optical response of low loss silicon germanium waveguides in the mid-infrared,” Opt. Express 23, 8261–8271 (2015).
[Crossref]

N. Singh, D. D. Hudson, Y. Yu, C. Grillet, S. D. Jackson, A. Casas-Bedoya, A. Read, P. Atanackovic, S. G. Duval, S. Palomba, B. Luther-Davies, S. Madden, D. J. Moss, and B. J. Eggleton, “Midinfrared supercontinuum generation from 2 to 6 μm in a silicon nanowire,” Optica 2, 797–802 (2015).
[Crossref]

L. Carletti, M. Sinobad, P. Ma, Y. Yu, D. Allioux, R. Orobtchouk, M. Brun, S. Ortiz, P. Labeye, J. M. Hartmann, S. Nicoletti, S. Madden, B. Luther-Davies, D. J. Moss, C. Monat, and C. Grillet, “Mid-infrared nonlinear optical response of Si-Ge waveguides with ultra-short optical pulses,” Opt. Express 23, 32202–32214 (2015).
[Crossref]

C. Monat, C. Grillet, M. Collins, A. Clark, J. Schroeder, C. Xiong, J. Li, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Integrated optical auto-correlator based on third-harmonic generation in a silicon photonic crystal waveguide,” Nat. Commun. 5, 3246 (2014).
[Crossref]

C. Grillet, L. Carletti, C. Monat, P. Grosse, B. Ben Bakir, S. Menezo, J. M. Fedeli, and D. J. Moss, “Amorphous silicon nanowires combining high nonlinearity, FOM and optical stability,” Opt. Express 20, 22609–22615 (2012).
[Crossref]

D. J. Moss, E. Ghahramani, and J. E. Sipe, “Semi-ab initio tight-binding band-structure calculations of χ3 (−3ω; ω, ω, ω) in C, Si, Ge, Sic, BP, Alp, AlAs, AISb, Gap, GaAs, GaSb, InP, InAs, and InSb,” Phys. Status Solidi C, 164, 587–604 (1991).
[Crossref]

Mu, K.

M. Radulaski, T. M. Babinec, K. Mu, K. G. Lagoudakis, J. L. Zhang, S. Buckley, Y. A. Kelaita, K. Alassaad, and G. Ferro, “Visible photoluminescence from cubic (3C) silicon carbide microdisks coupled to high quality whispering gallery modes,” ACS Photon. 2, 14–19 (2015).
[Crossref]

Mutschke, H.

H. Mutschke, A. Andersen, D. Clement, T. Henning, and G. Peiter, “Infrared properties of SiC particles,” Astron. Astrophys. 345, 187–202 (1999).

Nagasawa, H.

H. Nagasawa, K. Yagi, and T. Kawahara, “3C-SiC hetero-epitaxial growth on undulant Si (0 0 1) substrate,” J. Crys. Grow. 237–239, 1244–1249 (2002).
[Crossref]

Nicoletti, S.

Nishino, S.

C. A. Zorman, A. J. Fleischman, A. S. Dewa, M. Mehregany, C. Jacob, S. Nishino, and P. Pirouz, “Epitaxial growth of 3C-SiC films on 4 in. diam (100) silicon wafers by atmospheric pressure chemical vapor deposition,” J. Appl. Phys. 78, 5136–5138 (1995).
[Crossref]

Noda, S.

S. Yamada, B. S. Song, J. Upham, T. Asano, Y. Tanaka, and S. Noda, “Suppression of multiple photon absorption in a SiC photonic crystal nanocavity operating at 1.55 μm,” Opt. Express 20, 14789–14796 (2012).
[Crossref]

S. Yamada, B. S. Song, T. Asano, and S. Noda, “Silicon carbide-based photonic crystal nanocavities for ultra-broadband operation from infrared to visible wavelengths,” Appl. Phys. Lett. 99, 201102 (2011).
[Crossref]

O’Faolain, L.

C. Monat, C. Grillet, M. Collins, A. Clark, J. Schroeder, C. Xiong, J. Li, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Integrated optical auto-correlator based on third-harmonic generation in a silicon photonic crystal waveguide,” Nat. Commun. 5, 3246 (2014).
[Crossref]

Okawachi, Y.

Orobtchouk, R.

Ortiz, S.

Painter, O.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

Palomba, S.

Passaro, V. M. N.

F. De Leonardis, B. Troia, R. A. Soref, and V. M. N. Passaro, “Dispersion of nonresonant third-order nonlinearities in silicon carbide,” Sci. Rep. 6, 32622 (2016).
[Crossref]

Pavesi, L.

Peiter, G.

H. Mutschke, A. Andersen, D. Clement, T. Henning, and G. Peiter, “Infrared properties of SiC particles,” Astron. Astrophys. 345, 187–202 (1999).

Pfeiffer, M.

Phare, C. T.

A. Griffith, R. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

J. Cardenas, M. Zhang, C. T. Phare, S. Y. Shah, C. B. Poitras, B. Guha, and M. Lipson, “High Q SiC microresonators,” Opt. Express 21, 16882–16887 (2013).
[Crossref]

Picqué, N.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref]

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

Pilon, L.

Pirouz, P.

C. A. Zorman, A. J. Fleischman, A. S. Dewa, M. Mehregany, C. Jacob, S. Nishino, and P. Pirouz, “Epitaxial growth of 3C-SiC films on 4 in. diam (100) silicon wafers by atmospheric pressure chemical vapor deposition,” J. Appl. Phys. 78, 5136–5138 (1995).
[Crossref]

Poitras, C. B.

Politi, A.

F. Martini and A. Politi, “Linear integrated optics in 3C silicon carbide,” Opt. Express 25, 10735–10742 (2017).
[Crossref]

F. Martini and A. Politi, “Four wave mixing in 3C SiC ring resonators,” arXiv:1707.03645 (2017).

Portail, M.

R. Khazaka, E. Bahette, M. Portail, D. Alquier, and J. F. Michaud, “Toward high-quality 3C-SiC membrane on a 3C-SiC pseudo-substrate,” Mater. Lett. 160, 28–30 (2015).
[Crossref]

X. Song, J. F. Michaud, F. Cayrel, M. Zielinski, M. Portail, T. Chassagne, E. Collard, and D. Alquier, “Evidence of electrical activity of extended defects in 3C-SiC grown on Si,” Appl. Phys. Lett. 96, 142104 (2010).
[Crossref]

Radulaski, M.

M. Radulaski, T. M. Babinec, K. Mu, K. G. Lagoudakis, J. L. Zhang, S. Buckley, Y. A. Kelaita, K. Alassaad, and G. Ferro, “Visible photoluminescence from cubic (3C) silicon carbide microdisks coupled to high quality whispering gallery modes,” ACS Photon. 2, 14–19 (2015).
[Crossref]

Ramelow, S.

Read, A.

Roelkens, G.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

X. Gai, Y. Yu, B. Kuyken, P. Ma, S. J. Madden, J. Van Campenhout, P. Verheyen, G. Roelkens, R. Baets, and B. Luther-Davies, “Nonlinear absorption and refraction in crystalline silicon in the mid-infrared,” Laser Photon. Rev. 7, 1054–1064 (2013).
[Crossref]

Rogers, S.

Sato, H.

Schliesser, A.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref]

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

Schroeder, J.

C. Monat, C. Grillet, M. Collins, A. Clark, J. Schroeder, C. Xiong, J. Li, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Integrated optical auto-correlator based on third-harmonic generation in a silicon photonic crystal waveguide,” Nat. Commun. 5, 3246 (2014).
[Crossref]

Shah, S. Y.

Shoji, I.

Singh, N.

N. Singh, D. D. Hudson, Y. Yu, C. Grillet, S. D. Jackson, A. Casas-Bedoya, A. Read, P. Atanackovic, S. G. Duval, S. Palomba, B. Luther-Davies, S. Madden, D. J. Moss, and B. J. Eggleton, “Midinfrared supercontinuum generation from 2 to 6 μm in a silicon nanowire,” Optica 2, 797–802 (2015).
[Crossref]

D. Allioux, A. Belarouci, D. Hudson, N. Singh, E. Magi, G. Beaudin, A. Michon, R. Orobtchouk, and C. Grillet, “Silicon carbide microdisk on silicon pillar probed by evanescent coupling,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2016), paper SF2P.1.

Sinobad, M.

Sipe, J. E.

D. J. Moss, E. Ghahramani, and J. E. Sipe, “Semi-ab initio tight-binding band-structure calculations of χ3 (−3ω; ω, ω, ω) in C, Si, Ge, Sic, BP, Alp, AlAs, AISb, Gap, GaAs, GaSb, InP, InAs, and InSb,” Phys. Status Solidi C, 164, 587–604 (1991).
[Crossref]

Song, B. S.

S. Yamada, B. S. Song, J. Upham, T. Asano, Y. Tanaka, and S. Noda, “Suppression of multiple photon absorption in a SiC photonic crystal nanocavity operating at 1.55 μm,” Opt. Express 20, 14789–14796 (2012).
[Crossref]

S. Yamada, B. S. Song, T. Asano, and S. Noda, “Silicon carbide-based photonic crystal nanocavities for ultra-broadband operation from infrared to visible wavelengths,” Appl. Phys. Lett. 99, 201102 (2011).
[Crossref]

Song, X.

X. Song, J. F. Michaud, F. Cayrel, M. Zielinski, M. Portail, T. Chassagne, E. Collard, and D. Alquier, “Evidence of electrical activity of extended defects in 3C-SiC grown on Si,” Appl. Phys. Lett. 96, 142104 (2010).
[Crossref]

Soref, R.

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4, 495–497 (2010).
[Crossref]

Soref, R. A.

F. De Leonardis, B. Troia, R. A. Soref, and V. M. N. Passaro, “Dispersion of nonresonant third-order nonlinearities in silicon carbide,” Sci. Rep. 6, 32622 (2016).
[Crossref]

Spencer, M. G.

X. Tang, K. Wongchotigul, and M. G. Spencer, “Optical waveguide formed by cubic silicon carbide on sapphire substrates,” Appl. Phys. Lett. 58, 917–918 (1991).
[Crossref]

Spillane, S. M.

Suda, J.

Tanaka, Y.

Tang, X.

X. Tang, K. Wongchotigul, and M. G. Spencer, “Optical waveguide formed by cubic silicon carbide on sapphire substrates,” Appl. Phys. Lett. 58, 917–918 (1991).
[Crossref]

Thomas, M. E.

W. J. Tropf and M. E. Thomas, “Infrared refractive index and thermo-optic coefficient measurement at APL,” Johns Hopkins APL Tech. Dig. 19, 293–297 (1998).

Troia, B.

F. De Leonardis, B. Troia, R. A. Soref, and V. M. N. Passaro, “Dispersion of nonresonant third-order nonlinearities in silicon carbide,” Sci. Rep. 6, 32622 (2016).
[Crossref]

Tropf, W. J.

W. J. Tropf and M. E. Thomas, “Infrared refractive index and thermo-optic coefficient measurement at APL,” Johns Hopkins APL Tech. Dig. 19, 293–297 (1998).

Upham, J.

Vahala, K. J.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Modal coupling in traveling-wave resonators,” Opt. Lett. 27, 1669–1671 (2002).
[Crossref]

Van Campenhout, J.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

X. Gai, Y. Yu, B. Kuyken, P. Ma, S. J. Madden, J. Van Campenhout, P. Verheyen, G. Roelkens, R. Baets, and B. Luther-Davies, “Nonlinear absorption and refraction in crystalline silicon in the mid-infrared,” Laser Photon. Rev. 7, 1054–1064 (2013).
[Crossref]

Verheyen, P.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

X. Gai, Y. Yu, B. Kuyken, P. Ma, S. J. Madden, J. Van Campenhout, P. Verheyen, G. Roelkens, R. Baets, and B. Luther-Davies, “Nonlinear absorption and refraction in crystalline silicon in the mid-infrared,” Laser Photon. Rev. 7, 1054–1064 (2013).
[Crossref]

Wang, C. Y.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref]

Wang, G.

S. Wang, M. Zhan, G. Wang, H. Xuan, W. Zhang, C. Liu, C. Xu, Y. Liu, Z. Wei, and X. Chen, “4H-SiC: a new nonlinear material for midinfrared lasers,” Laser Photon. Rev. 7, 831–838 (2013).
[Crossref]

Wang, S.

S. Wang, M. Zhan, G. Wang, H. Xuan, W. Zhang, C. Liu, C. Xu, Y. Liu, Z. Wei, and X. Chen, “4H-SiC: a new nonlinear material for midinfrared lasers,” Laser Photon. Rev. 7, 831–838 (2013).
[Crossref]

Wei, Z.

S. Wang, M. Zhan, G. Wang, H. Xuan, W. Zhang, C. Liu, C. Xu, Y. Liu, Z. Wei, and X. Chen, “4H-SiC: a new nonlinear material for midinfrared lasers,” Laser Photon. Rev. 7, 831–838 (2013).
[Crossref]

Wongchotigul, K.

X. Tang, K. Wongchotigul, and M. G. Spencer, “Optical waveguide formed by cubic silicon carbide on sapphire substrates,” Appl. Phys. Lett. 58, 917–918 (1991).
[Crossref]

Xiong, C.

C. Monat, C. Grillet, M. Collins, A. Clark, J. Schroeder, C. Xiong, J. Li, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Integrated optical auto-correlator based on third-harmonic generation in a silicon photonic crystal waveguide,” Nat. Commun. 5, 3246 (2014).
[Crossref]

Xu, C.

S. Wang, M. Zhan, G. Wang, H. Xuan, W. Zhang, C. Liu, C. Xu, Y. Liu, Z. Wei, and X. Chen, “4H-SiC: a new nonlinear material for midinfrared lasers,” Laser Photon. Rev. 7, 831–838 (2013).
[Crossref]

Xuan, H.

S. Wang, M. Zhan, G. Wang, H. Xuan, W. Zhang, C. Liu, C. Xu, Y. Liu, Z. Wei, and X. Chen, “4H-SiC: a new nonlinear material for midinfrared lasers,” Laser Photon. Rev. 7, 831–838 (2013).
[Crossref]

Yagi, K.

H. Nagasawa, K. Yagi, and T. Kawahara, “3C-SiC hetero-epitaxial growth on undulant Si (0 0 1) substrate,” J. Crys. Grow. 237–239, 1244–1249 (2002).
[Crossref]

Yamada, S.

S. Yamada, B. S. Song, J. Upham, T. Asano, Y. Tanaka, and S. Noda, “Suppression of multiple photon absorption in a SiC photonic crystal nanocavity operating at 1.55 μm,” Opt. Express 20, 14789–14796 (2012).
[Crossref]

S. Yamada, B. S. Song, T. Asano, and S. Noda, “Silicon carbide-based photonic crystal nanocavities for ultra-broadband operation from infrared to visible wavelengths,” Appl. Phys. Lett. 99, 201102 (2011).
[Crossref]

Yan, M.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

Yang, K. Y.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

Yu, M.

J. Cardenas, M. Yu, Y. Okawachi, C. B. Poitras, R. K. W. Lau, A. Dutt, A. L. Gaeta, and M. Lipson, “Optical nonlinearities in high-confinement silicon carbide waveguides,” Opt. Lett. 40, 4138–4141 (2015).
[Crossref]

A. Griffith, R. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Yu, Y.

Zhan, M.

S. Wang, M. Zhan, G. Wang, H. Xuan, W. Zhang, C. Liu, C. Xu, Y. Liu, Z. Wei, and X. Chen, “4H-SiC: a new nonlinear material for midinfrared lasers,” Laser Photon. Rev. 7, 831–838 (2013).
[Crossref]

Zhang, J. L.

M. Radulaski, T. M. Babinec, K. Mu, K. G. Lagoudakis, J. L. Zhang, S. Buckley, Y. A. Kelaita, K. Alassaad, and G. Ferro, “Visible photoluminescence from cubic (3C) silicon carbide microdisks coupled to high quality whispering gallery modes,” ACS Photon. 2, 14–19 (2015).
[Crossref]

Zhang, M.

Zhang, W.

S. Wang, M. Zhan, G. Wang, H. Xuan, W. Zhang, C. Liu, C. Xu, Y. Liu, Z. Wei, and X. Chen, “4H-SiC: a new nonlinear material for midinfrared lasers,” Laser Photon. Rev. 7, 831–838 (2013).
[Crossref]

Zielinski, M.

X. Song, J. F. Michaud, F. Cayrel, M. Zielinski, M. Portail, T. Chassagne, E. Collard, and D. Alquier, “Evidence of electrical activity of extended defects in 3C-SiC grown on Si,” Appl. Phys. Lett. 96, 142104 (2010).
[Crossref]

Zorman, C. A.

C. A. Zorman, A. J. Fleischman, A. S. Dewa, M. Mehregany, C. Jacob, S. Nishino, and P. Pirouz, “Epitaxial growth of 3C-SiC films on 4 in. diam (100) silicon wafers by atmospheric pressure chemical vapor deposition,” J. Appl. Phys. 78, 5136–5138 (1995).
[Crossref]

ACS Photon. (1)

M. Radulaski, T. M. Babinec, K. Mu, K. G. Lagoudakis, J. L. Zhang, S. Buckley, Y. A. Kelaita, K. Alassaad, and G. Ferro, “Visible photoluminescence from cubic (3C) silicon carbide microdisks coupled to high quality whispering gallery modes,” ACS Photon. 2, 14–19 (2015).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (5)

S. Yamada, B. S. Song, T. Asano, and S. Noda, “Silicon carbide-based photonic crystal nanocavities for ultra-broadband operation from infrared to visible wavelengths,” Appl. Phys. Lett. 99, 201102 (2011).
[Crossref]

X. Tang, K. Wongchotigul, and M. G. Spencer, “Optical waveguide formed by cubic silicon carbide on sapphire substrates,” Appl. Phys. Lett. 58, 917–918 (1991).
[Crossref]

X. Lu, J. Y. Lee, P. X. L. Feng, and Q. Lin, “High Q silicon carbide microdisk resonator,” Appl. Phys. Lett. 104, 181103 (2014).
[Crossref]

C. Grillet, E. Magi, and B. J. Eggleton, “Fiber taper coupling to chalcogenide microsphere modes,” Appl. Phys. Lett. 92, 171109 (2008).
[Crossref]

X. Song, J. F. Michaud, F. Cayrel, M. Zielinski, M. Portail, T. Chassagne, E. Collard, and D. Alquier, “Evidence of electrical activity of extended defects in 3C-SiC grown on Si,” Appl. Phys. Lett. 96, 142104 (2010).
[Crossref]

Astron. Astrophys. (1)

H. Mutschke, A. Andersen, D. Clement, T. Henning, and G. Peiter, “Infrared properties of SiC particles,” Astron. Astrophys. 345, 187–202 (1999).

J. Appl. Phys. (1)

C. A. Zorman, A. J. Fleischman, A. S. Dewa, M. Mehregany, C. Jacob, S. Nishino, and P. Pirouz, “Epitaxial growth of 3C-SiC films on 4 in. diam (100) silicon wafers by atmospheric pressure chemical vapor deposition,” J. Appl. Phys. 78, 5136–5138 (1995).
[Crossref]

J. Crys. Grow. (1)

H. Nagasawa, K. Yagi, and T. Kawahara, “3C-SiC hetero-epitaxial growth on undulant Si (0 0 1) substrate,” J. Crys. Grow. 237–239, 1244–1249 (2002).
[Crossref]

J. Lightwave Technol. (1)

J. Mater. Sci. Mater. Electron. (1)

H. S. Jha and P. Agarwal, “Effects of substrate temperature on structural and electrical properties of cubic silicon carbide films deposited by hot wire chemical vapor deposition technique,” J. Mater. Sci. Mater. Electron. 26, 2844–2850 (2015).
[Crossref]

J. Opt. Soc. Am. B (2)

Johns Hopkins APL Tech. Dig. (1)

W. J. Tropf and M. E. Thomas, “Infrared refractive index and thermo-optic coefficient measurement at APL,” Johns Hopkins APL Tech. Dig. 19, 293–297 (1998).

Laser Photon. Rev. (2)

X. Gai, Y. Yu, B. Kuyken, P. Ma, S. J. Madden, J. Van Campenhout, P. Verheyen, G. Roelkens, R. Baets, and B. Luther-Davies, “Nonlinear absorption and refraction in crystalline silicon in the mid-infrared,” Laser Photon. Rev. 7, 1054–1064 (2013).
[Crossref]

S. Wang, M. Zhan, G. Wang, H. Xuan, W. Zhang, C. Liu, C. Xu, Y. Liu, Z. Wei, and X. Chen, “4H-SiC: a new nonlinear material for midinfrared lasers,” Laser Photon. Rev. 7, 831–838 (2013).
[Crossref]

Mater. Lett. (1)

R. Khazaka, E. Bahette, M. Portail, D. Alquier, and J. F. Michaud, “Toward high-quality 3C-SiC membrane on a 3C-SiC pseudo-substrate,” Mater. Lett. 160, 28–30 (2015).
[Crossref]

Nat. Commun. (4)

A. Griffith, R. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref]

C. Monat, C. Grillet, M. Collins, A. Clark, J. Schroeder, C. Xiong, J. Li, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Integrated optical auto-correlator based on third-harmonic generation in a silicon photonic crystal waveguide,” Nat. Commun. 5, 3246 (2014).
[Crossref]

Nat. Photonics (3)

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4, 495–497 (2010).
[Crossref]

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

Opt. Express (7)

L. Carletti, P. Ma, Y. Yu, B. Luther-Davies, D. Hudson, C. Monat, R. Orobtchouk, S. Madden, D. J. Moss, M. Brun, S. Ortiz, P. Labeye, S. Nicoletti, and C. Grillet, “Nonlinear optical response of low loss silicon germanium waveguides in the mid-infrared,” Opt. Express 23, 8261–8271 (2015).
[Crossref]

L. Carletti, M. Sinobad, P. Ma, Y. Yu, D. Allioux, R. Orobtchouk, M. Brun, S. Ortiz, P. Labeye, J. M. Hartmann, S. Nicoletti, S. Madden, B. Luther-Davies, D. J. Moss, C. Monat, and C. Grillet, “Mid-infrared nonlinear optical response of Si-Ge waveguides with ultra-short optical pulses,” Opt. Express 23, 32202–32214 (2015).
[Crossref]

C. Grillet, L. Carletti, C. Monat, P. Grosse, B. Ben Bakir, S. Menezo, J. M. Fedeli, and D. J. Moss, “Amorphous silicon nanowires combining high nonlinearity, FOM and optical stability,” Opt. Express 20, 22609–22615 (2012).
[Crossref]

X. Lu, J. Y. Lee, S. Rogers, and Q. Lin, “Optical Kerr nonlinearity in a high-Q silicon carbide microresonator,” Opt. Express 22, 30826–30832 (2014).
[Crossref]

S. Yamada, B. S. Song, J. Upham, T. Asano, Y. Tanaka, and S. Noda, “Suppression of multiple photon absorption in a SiC photonic crystal nanocavity operating at 1.55 μm,” Opt. Express 20, 14789–14796 (2012).
[Crossref]

F. Martini and A. Politi, “Linear integrated optics in 3C silicon carbide,” Opt. Express 25, 10735–10742 (2017).
[Crossref]

J. Cardenas, M. Zhang, C. T. Phare, S. Y. Shah, C. B. Poitras, B. Guha, and M. Lipson, “High Q SiC microresonators,” Opt. Express 21, 16882–16887 (2013).
[Crossref]

Opt. Lett. (7)

Optica (1)

Phys. Lett. A (1)

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137, 393–397 (1989).
[Crossref]

Phys. Rev. Lett. (1)

T. Herr, V. Brasch, J. D. Jost, I. Mirgorodskiy, G. Lihachev, M. L. Gorodetsky, and T. J. Kippenberg, “Mode spectrum and temporal soliton formation in optical microresonators,” Phys. Rev. Lett. 113, 123901 (2014).
[Crossref]

Phys. Status Solidi C (1)

D. J. Moss, E. Ghahramani, and J. E. Sipe, “Semi-ab initio tight-binding band-structure calculations of χ3 (−3ω; ω, ω, ω) in C, Si, Ge, Sic, BP, Alp, AlAs, AISb, Gap, GaAs, GaSb, InP, InAs, and InSb,” Phys. Status Solidi C, 164, 587–604 (1991).
[Crossref]

Sci. Rep. (1)

F. De Leonardis, B. Troia, R. A. Soref, and V. M. N. Passaro, “Dispersion of nonresonant third-order nonlinearities in silicon carbide,” Sci. Rep. 6, 32622 (2016).
[Crossref]

Science (1)

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref]

Solid-State Electron. (1)

J. B. Casady and R. W. Johnson, “Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: a review,” Solid-State Electron. 39, 1409–1422 (1996).
[Crossref]

Other (4)

F. Martini and A. Politi, “Four wave mixing in 3C SiC ring resonators,” arXiv:1707.03645 (2017).

G. L. Harris, Properties of Silicon Carbide (INSPEC, the Institution of Electrical Engineers, 1995).

T. Johnson, “Silicon microdisk resonators for nonlinear optics and dynamics,” Ph.D. dissertation (California Institute of Technology, 2009).

D. Allioux, A. Belarouci, D. Hudson, N. Singh, E. Magi, G. Beaudin, A. Michon, R. Orobtchouk, and C. Grillet, “Silicon carbide microdisk on silicon pillar probed by evanescent coupling,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2016), paper SF2P.1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Evolution of the theoretical intrinsic Q factor with the radius of the pillar at λ=1.55  μm for a 10 μm disk with perfect edges. The six radial-order modes with the highest theoretical Q factors and lowest effective areas are plotted. The single-mode operation for the TE mode is achieved with a pillar radius around 3.5 μm.
Fig. 2.
Fig. 2. (a) Intensity mode profile of a simulated WGM at λ=1.55  μm in a 10 μm disk with 4 μm lateral under-etching (FVFD mode solver). The mode is a second-order TE mode leaking in the Si. Scanning electron microscope images of 10 μm disks with (b) 4 μm and (c) 1.4 μm lateral under-etching, and (d) fabrication process.
Fig. 3.
Fig. 3. (a) Scheme of the evanescent coupling technique, and (b) coupling between the tapered fiber and a 10 μm disk.
Fig. 4.
Fig. 4. (a) Experimental transmitted spectrum for a 10 μm diameter disk with 4 μm of lateral under-etching. Two polarizations are plotted: 0° in blue and 90° in red. Note that some modes appear in both polarizations. Below, two FSRs are plotted. Using mode solver, we inferred that they correspond to the TE20 modes for the dark one and to the TE40 for the green one. The power mode profiles are represented in (b) and (c), respectively.
Fig. 5.
Fig. 5. (a) Experimental (blue) and simulated (red) TM normalized transmitted spectra for a 10 μm diameter disk with 4 μm Si lateral under-etching. (b) TM (blue) and TE (black) polarizations of the transmitted spectra for a 10 μm diameter disk with a 4 μm lateral under-etching.
Fig. 6.
Fig. 6. Effective index as a function of wavelength of the WGMs for a 10 μm disk with (a) 4 μm and (b) 1.4 μm Si lateral under-etching.
Fig. 7.
Fig. 7. (a) Experimental transmission spectrum from a 10 μm diameter disk with 1.4 μm Si lateral under-etching in blue. Equivalent simulated transmission spectrum with FDTD in red and mode solver resonances in green. (b) Zoom of the resonance. (c) Power mode profile obtained with mode solver.
Fig. 8.
Fig. 8. Group velocity dispersion Dλ evolution with radius (x axis) and height (y axis) for a SiC microdisk at λ=4  μm wavelength. The dotted red line indicates the zero of dispersion. The dashed gray lines indicate the effective area of the mode in square micrometers.
Fig. 9.
Fig. 9. Dispersion parameter Dλ evolution with radius (x axis) and wavelength (y axis) for a SiC microdisk with a height of 800 nm. The dotted red line indicates the zero of dispersion. The dashed gray lines indicate the effective area of the mode in square micrometers.
Fig. 10.
Fig. 10. Theoretical maximum generated frequency comb bandwidth as a function of FSR for a pump power of 1.5 W, a GVD Dλ=1  ps/(nm·km), and a wavelength of 4 μm as obtained with Eq. (1). The different curves are for Q factors from 1×104 to 5×106. The dotted line indicates the bandwidth needed to achieve an octave spanning from 2.7 to 5.4 μm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δftheo=0.3151.7632γPinQλpFSRπC|β2|.

Metrics