Abstract

We propose and experimentally demonstrate a recorded 1-m bidirectional 20.231-Gbit/s tricolor R/G/B laser diode (LD) based visible-light communication (VLC) system supporting signal remodulation. In the signal remodulation system, an LD source is not needed at the client side. The client reuses the downstream signal sent from the central office (CO) and remodulates it to produce the upstream signal. As the LD sources are located at the CO, the laser wavelength and temperature managements at the cost-sensitive client side are not needed. This is the first demonstration, to our knowledge, of a >20  Gbit/s data rate tricolor R/G/B VLC signal transmission supporting upstream remodulation.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Demonstration of 575-Mb/s downlink and 225-Mb/s uplink bi-directional SCM-WDM visible light communication using RGB LED and phosphor-based LED

Yuanquan Wang, Yiguang Wang, Nan Chi, Jianjun Yu, and Huiliang Shang
Opt. Express 21(1) 1203-1208 (2013)

Dimming-discrete-multi-tone (DMT) for simultaneous color control and high speed visible light communication

Jiun-Yu Sung, Chi-Wai Chow, and Chien-Hung Yeh
Opt. Express 22(7) 7538-7543 (2014)

Going beyond 4 Gbps data rate by employing RGB laser diodes for visible light communication

Bilal Janjua, Hassan M. Oubei, Jose R. Durán Retamal, Tien Khee Ng, Cheng-Ting Tsai, Huai-Yung Wang, Yu-Chieh Chi, Hao-Chung Kuo, Gong-Ru Lin, Jr-Hau He, and Boon S. Ooi
Opt. Express 23(14) 18746-18753 (2015)

References

  • View by:
  • |
  • |
  • |

  1. S. Wu, H. Wang, and C. H. Youn, “Visible light communications for 5G wireless networking systems: from fixed to mobile communications,” IEEE Netw. 28, 41–45 (2014).
    [Crossref]
  2. C. W. Chow, C. H. Yeh, Y. Liu, and Y. F. Liu, “Digital signal processing for light emitting diode based visible light communication,” IEEE Photon. Soc. Newsl. 26, 9–13 (2012).
  3. F. Zafar, M. Bakaul, and R. Parthiban, “Laser-diode-based visible light communication: toward gigabit class communication,” IEEE Commun. Mag. 55, 144–151 (2017).
    [Crossref]
  4. Y. C. Chi, D. H. Hsieh, C. Y. Lin, H. Y. Chen, C. Y. Huang, J. H. He, B. Ooi, S. P. DenBaars, S. Nakamura, H. C. Kuo, and G. R. Lin, “Phosphorous diffuser diverged blue laser diode for indoor lighting and communication,” Sci. Rep. 5, 18690 (2015).
    [Crossref]
  5. D. H. Hsieh, T. C. Wu, Y. C. Chi, Y. R. Chen, C. Y. Huang, H. C. Kuo, and G. R. Lin, “The effect of phosphor concentration on laser-based white light communication system,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2016), paper SW1F.7.
  6. T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, Y. F. Huang, and G. R. Li, “Tricolor R/G/B laser diode based eye-safe white lighting communication beyond 8  Gbit/s,” Sci. Rep. 7, 11 (2017).
    [Crossref]
  7. C. H. Chang, C. Y. Li, H. H. Lu, C. Y. Lin, J. H. Chen, Z. W. Wan, and C. J. Cheng, “A 100-Gb/s multiple-input multiple-output visible laser light communication system,” J. Lightwave Technol. 32, 4723–4729 (2014).
    [Crossref]
  8. W. Y. Lin, C. Y. Chen, H. H. Lu, C. H. Chang, Y. P. Lin, H. C. Lin, and H. W. Wu, “10  m/500  Mbps WDM visible light communication systems,” Opt. Express 20, 9919–9924 (2012).
    [Crossref]
  9. S. Watson, M. Tan, S. P. Najda, P. Perlin, M. Leszczynski, G. Targowski, S. Grzanka, and A. E. Kelly, “Visible light communications using a directly modulated 422  nm GaN laser diode,” Opt. Lett. 38, 3792–3794 (2013).
    [Crossref]
  10. C. Lee, C. Zhang, M. Cantore, R. M. Farrell, S. H. Oh, T. Margalith, J. S. Speck, S. Nakamura, J. E. Bowers, and S. P. DenBaars, “4  Gbps direct modulation of 450  nm GaN laser for high-speed visible light communication,” Opt. Express 23, 16232–16237 (2015).
    [Crossref]
  11. H. M. Oubei, J. R. Duran, B. Janjua, H. Y. Wang, C. T. Tsai, Y. C. Chi, T. K. Ng, H. C. Kuo, J. H. He, M. S. Alouini, G. R. Lin, and B. S. Ooi, “4.8  Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication,” Opt. Express 23, 23302–23309 (2015).
    [Crossref]
  12. Y. C. Chi, D. H. Hsieh, C. T. Tsai, H. Y. Chen, H. C. Kuo, and G. R. Lin, “450-nm GaN laser diode enables high-speed visible light communication with 9-Gbps QAM-OFDM,” Opt. Express 23, 13051–13059 (2015).
    [Crossref]
  13. S. Pergoloni, A. Petroni, T. C. Bui, G. Scarano, R. Cusani, and M. Biagi, “ASK-based spatial multiplexing RGB scheme using symbol-dependent self-interference for detection,” Opt. Express 25, 15028–15042 (2017).
    [Crossref]
  14. S. Pergoloni, M. Biagi, S. Rinauro, S. Colonnese, R. Cusani, and G. Scarano, “Merging color shift keying and complementary pulse position modulation for visible light illumination and communication,” J. Lightwave Technol. 33, 192–200 (2015).
    [Crossref]
  15. Y. Qiu, H. H. Chen, and W. X. Meng, “Channel modeling for visible light communications—a survey,” Wireless Commun. Mobile Comput. 16, 2016–2034 (2016).
    [Crossref]
  16. J. Cho, C. Xie, and P. J. Winzer, “Analysis of soft-decision FEC on non-AWGN channels,” Opt. Express 20, 7915–7928 (2012).
    [Crossref]

2017 (3)

F. Zafar, M. Bakaul, and R. Parthiban, “Laser-diode-based visible light communication: toward gigabit class communication,” IEEE Commun. Mag. 55, 144–151 (2017).
[Crossref]

T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, Y. F. Huang, and G. R. Li, “Tricolor R/G/B laser diode based eye-safe white lighting communication beyond 8  Gbit/s,” Sci. Rep. 7, 11 (2017).
[Crossref]

S. Pergoloni, A. Petroni, T. C. Bui, G. Scarano, R. Cusani, and M. Biagi, “ASK-based spatial multiplexing RGB scheme using symbol-dependent self-interference for detection,” Opt. Express 25, 15028–15042 (2017).
[Crossref]

2016 (1)

Y. Qiu, H. H. Chen, and W. X. Meng, “Channel modeling for visible light communications—a survey,” Wireless Commun. Mobile Comput. 16, 2016–2034 (2016).
[Crossref]

2015 (5)

2014 (2)

S. Wu, H. Wang, and C. H. Youn, “Visible light communications for 5G wireless networking systems: from fixed to mobile communications,” IEEE Netw. 28, 41–45 (2014).
[Crossref]

C. H. Chang, C. Y. Li, H. H. Lu, C. Y. Lin, J. H. Chen, Z. W. Wan, and C. J. Cheng, “A 100-Gb/s multiple-input multiple-output visible laser light communication system,” J. Lightwave Technol. 32, 4723–4729 (2014).
[Crossref]

2013 (1)

2012 (3)

Alouini, M. S.

Bakaul, M.

F. Zafar, M. Bakaul, and R. Parthiban, “Laser-diode-based visible light communication: toward gigabit class communication,” IEEE Commun. Mag. 55, 144–151 (2017).
[Crossref]

Biagi, M.

Bowers, J. E.

Bui, T. C.

Cantore, M.

Chang, C. H.

C. H. Chang, C. Y. Li, H. H. Lu, C. Y. Lin, J. H. Chen, Z. W. Wan, and C. J. Cheng, “A 100-Gb/s multiple-input multiple-output visible laser light communication system,” J. Lightwave Technol. 32, 4723–4729 (2014).
[Crossref]

W. Y. Lin, C. Y. Chen, H. H. Lu, C. H. Chang, Y. P. Lin, H. C. Lin, and H. W. Wu, “10  m/500  Mbps WDM visible light communication systems,” Opt. Express 20, 9919–9924 (2012).
[Crossref]

Chen, C. Y.

Chen, H. H.

Y. Qiu, H. H. Chen, and W. X. Meng, “Channel modeling for visible light communications—a survey,” Wireless Commun. Mobile Comput. 16, 2016–2034 (2016).
[Crossref]

Chen, H. Y.

Y. C. Chi, D. H. Hsieh, C. T. Tsai, H. Y. Chen, H. C. Kuo, and G. R. Lin, “450-nm GaN laser diode enables high-speed visible light communication with 9-Gbps QAM-OFDM,” Opt. Express 23, 13051–13059 (2015).
[Crossref]

Y. C. Chi, D. H. Hsieh, C. Y. Lin, H. Y. Chen, C. Y. Huang, J. H. He, B. Ooi, S. P. DenBaars, S. Nakamura, H. C. Kuo, and G. R. Lin, “Phosphorous diffuser diverged blue laser diode for indoor lighting and communication,” Sci. Rep. 5, 18690 (2015).
[Crossref]

Chen, J. H.

C. H. Chang, C. Y. Li, H. H. Lu, C. Y. Lin, J. H. Chen, Z. W. Wan, and C. J. Cheng, “A 100-Gb/s multiple-input multiple-output visible laser light communication system,” J. Lightwave Technol. 32, 4723–4729 (2014).
[Crossref]

Chen, Y. R.

D. H. Hsieh, T. C. Wu, Y. C. Chi, Y. R. Chen, C. Y. Huang, H. C. Kuo, and G. R. Lin, “The effect of phosphor concentration on laser-based white light communication system,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2016), paper SW1F.7.

Cheng, C. J.

C. H. Chang, C. Y. Li, H. H. Lu, C. Y. Lin, J. H. Chen, Z. W. Wan, and C. J. Cheng, “A 100-Gb/s multiple-input multiple-output visible laser light communication system,” J. Lightwave Technol. 32, 4723–4729 (2014).
[Crossref]

Chi, Y. C.

T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, Y. F. Huang, and G. R. Li, “Tricolor R/G/B laser diode based eye-safe white lighting communication beyond 8  Gbit/s,” Sci. Rep. 7, 11 (2017).
[Crossref]

Y. C. Chi, D. H. Hsieh, C. Y. Lin, H. Y. Chen, C. Y. Huang, J. H. He, B. Ooi, S. P. DenBaars, S. Nakamura, H. C. Kuo, and G. R. Lin, “Phosphorous diffuser diverged blue laser diode for indoor lighting and communication,” Sci. Rep. 5, 18690 (2015).
[Crossref]

Y. C. Chi, D. H. Hsieh, C. T. Tsai, H. Y. Chen, H. C. Kuo, and G. R. Lin, “450-nm GaN laser diode enables high-speed visible light communication with 9-Gbps QAM-OFDM,” Opt. Express 23, 13051–13059 (2015).
[Crossref]

H. M. Oubei, J. R. Duran, B. Janjua, H. Y. Wang, C. T. Tsai, Y. C. Chi, T. K. Ng, H. C. Kuo, J. H. He, M. S. Alouini, G. R. Lin, and B. S. Ooi, “4.8  Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication,” Opt. Express 23, 23302–23309 (2015).
[Crossref]

D. H. Hsieh, T. C. Wu, Y. C. Chi, Y. R. Chen, C. Y. Huang, H. C. Kuo, and G. R. Lin, “The effect of phosphor concentration on laser-based white light communication system,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2016), paper SW1F.7.

Cho, J.

Chow, C. W.

C. W. Chow, C. H. Yeh, Y. Liu, and Y. F. Liu, “Digital signal processing for light emitting diode based visible light communication,” IEEE Photon. Soc. Newsl. 26, 9–13 (2012).

Colonnese, S.

Cusani, R.

DenBaars, S. P.

Y. C. Chi, D. H. Hsieh, C. Y. Lin, H. Y. Chen, C. Y. Huang, J. H. He, B. Ooi, S. P. DenBaars, S. Nakamura, H. C. Kuo, and G. R. Lin, “Phosphorous diffuser diverged blue laser diode for indoor lighting and communication,” Sci. Rep. 5, 18690 (2015).
[Crossref]

C. Lee, C. Zhang, M. Cantore, R. M. Farrell, S. H. Oh, T. Margalith, J. S. Speck, S. Nakamura, J. E. Bowers, and S. P. DenBaars, “4  Gbps direct modulation of 450  nm GaN laser for high-speed visible light communication,” Opt. Express 23, 16232–16237 (2015).
[Crossref]

Duran, J. R.

Farrell, R. M.

Grzanka, S.

He, J. H.

Y. C. Chi, D. H. Hsieh, C. Y. Lin, H. Y. Chen, C. Y. Huang, J. H. He, B. Ooi, S. P. DenBaars, S. Nakamura, H. C. Kuo, and G. R. Lin, “Phosphorous diffuser diverged blue laser diode for indoor lighting and communication,” Sci. Rep. 5, 18690 (2015).
[Crossref]

H. M. Oubei, J. R. Duran, B. Janjua, H. Y. Wang, C. T. Tsai, Y. C. Chi, T. K. Ng, H. C. Kuo, J. H. He, M. S. Alouini, G. R. Lin, and B. S. Ooi, “4.8  Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication,” Opt. Express 23, 23302–23309 (2015).
[Crossref]

Hsieh, D. H.

Y. C. Chi, D. H. Hsieh, C. T. Tsai, H. Y. Chen, H. C. Kuo, and G. R. Lin, “450-nm GaN laser diode enables high-speed visible light communication with 9-Gbps QAM-OFDM,” Opt. Express 23, 13051–13059 (2015).
[Crossref]

Y. C. Chi, D. H. Hsieh, C. Y. Lin, H. Y. Chen, C. Y. Huang, J. H. He, B. Ooi, S. P. DenBaars, S. Nakamura, H. C. Kuo, and G. R. Lin, “Phosphorous diffuser diverged blue laser diode for indoor lighting and communication,” Sci. Rep. 5, 18690 (2015).
[Crossref]

D. H. Hsieh, T. C. Wu, Y. C. Chi, Y. R. Chen, C. Y. Huang, H. C. Kuo, and G. R. Lin, “The effect of phosphor concentration on laser-based white light communication system,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2016), paper SW1F.7.

Huang, C. Y.

Y. C. Chi, D. H. Hsieh, C. Y. Lin, H. Y. Chen, C. Y. Huang, J. H. He, B. Ooi, S. P. DenBaars, S. Nakamura, H. C. Kuo, and G. R. Lin, “Phosphorous diffuser diverged blue laser diode for indoor lighting and communication,” Sci. Rep. 5, 18690 (2015).
[Crossref]

D. H. Hsieh, T. C. Wu, Y. C. Chi, Y. R. Chen, C. Y. Huang, H. C. Kuo, and G. R. Lin, “The effect of phosphor concentration on laser-based white light communication system,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2016), paper SW1F.7.

Huang, Y. F.

T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, Y. F. Huang, and G. R. Li, “Tricolor R/G/B laser diode based eye-safe white lighting communication beyond 8  Gbit/s,” Sci. Rep. 7, 11 (2017).
[Crossref]

Janjua, B.

Kelly, A. E.

Kuo, H. C.

Y. C. Chi, D. H. Hsieh, C. Y. Lin, H. Y. Chen, C. Y. Huang, J. H. He, B. Ooi, S. P. DenBaars, S. Nakamura, H. C. Kuo, and G. R. Lin, “Phosphorous diffuser diverged blue laser diode for indoor lighting and communication,” Sci. Rep. 5, 18690 (2015).
[Crossref]

H. M. Oubei, J. R. Duran, B. Janjua, H. Y. Wang, C. T. Tsai, Y. C. Chi, T. K. Ng, H. C. Kuo, J. H. He, M. S. Alouini, G. R. Lin, and B. S. Ooi, “4.8  Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication,” Opt. Express 23, 23302–23309 (2015).
[Crossref]

Y. C. Chi, D. H. Hsieh, C. T. Tsai, H. Y. Chen, H. C. Kuo, and G. R. Lin, “450-nm GaN laser diode enables high-speed visible light communication with 9-Gbps QAM-OFDM,” Opt. Express 23, 13051–13059 (2015).
[Crossref]

D. H. Hsieh, T. C. Wu, Y. C. Chi, Y. R. Chen, C. Y. Huang, H. C. Kuo, and G. R. Lin, “The effect of phosphor concentration on laser-based white light communication system,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2016), paper SW1F.7.

Lee, C.

Leszczynski, M.

Li, C. Y.

C. H. Chang, C. Y. Li, H. H. Lu, C. Y. Lin, J. H. Chen, Z. W. Wan, and C. J. Cheng, “A 100-Gb/s multiple-input multiple-output visible laser light communication system,” J. Lightwave Technol. 32, 4723–4729 (2014).
[Crossref]

Li, G. R.

T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, Y. F. Huang, and G. R. Li, “Tricolor R/G/B laser diode based eye-safe white lighting communication beyond 8  Gbit/s,” Sci. Rep. 7, 11 (2017).
[Crossref]

Lin, C. Y.

Y. C. Chi, D. H. Hsieh, C. Y. Lin, H. Y. Chen, C. Y. Huang, J. H. He, B. Ooi, S. P. DenBaars, S. Nakamura, H. C. Kuo, and G. R. Lin, “Phosphorous diffuser diverged blue laser diode for indoor lighting and communication,” Sci. Rep. 5, 18690 (2015).
[Crossref]

C. H. Chang, C. Y. Li, H. H. Lu, C. Y. Lin, J. H. Chen, Z. W. Wan, and C. J. Cheng, “A 100-Gb/s multiple-input multiple-output visible laser light communication system,” J. Lightwave Technol. 32, 4723–4729 (2014).
[Crossref]

Lin, G. R.

Y. C. Chi, D. H. Hsieh, C. Y. Lin, H. Y. Chen, C. Y. Huang, J. H. He, B. Ooi, S. P. DenBaars, S. Nakamura, H. C. Kuo, and G. R. Lin, “Phosphorous diffuser diverged blue laser diode for indoor lighting and communication,” Sci. Rep. 5, 18690 (2015).
[Crossref]

Y. C. Chi, D. H. Hsieh, C. T. Tsai, H. Y. Chen, H. C. Kuo, and G. R. Lin, “450-nm GaN laser diode enables high-speed visible light communication with 9-Gbps QAM-OFDM,” Opt. Express 23, 13051–13059 (2015).
[Crossref]

H. M. Oubei, J. R. Duran, B. Janjua, H. Y. Wang, C. T. Tsai, Y. C. Chi, T. K. Ng, H. C. Kuo, J. H. He, M. S. Alouini, G. R. Lin, and B. S. Ooi, “4.8  Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication,” Opt. Express 23, 23302–23309 (2015).
[Crossref]

D. H. Hsieh, T. C. Wu, Y. C. Chi, Y. R. Chen, C. Y. Huang, H. C. Kuo, and G. R. Lin, “The effect of phosphor concentration on laser-based white light communication system,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2016), paper SW1F.7.

Lin, H. C.

Lin, W. Y.

Lin, Y. P.

Liu, Y.

C. W. Chow, C. H. Yeh, Y. Liu, and Y. F. Liu, “Digital signal processing for light emitting diode based visible light communication,” IEEE Photon. Soc. Newsl. 26, 9–13 (2012).

Liu, Y. F.

C. W. Chow, C. H. Yeh, Y. Liu, and Y. F. Liu, “Digital signal processing for light emitting diode based visible light communication,” IEEE Photon. Soc. Newsl. 26, 9–13 (2012).

Lu, H. H.

C. H. Chang, C. Y. Li, H. H. Lu, C. Y. Lin, J. H. Chen, Z. W. Wan, and C. J. Cheng, “A 100-Gb/s multiple-input multiple-output visible laser light communication system,” J. Lightwave Technol. 32, 4723–4729 (2014).
[Crossref]

W. Y. Lin, C. Y. Chen, H. H. Lu, C. H. Chang, Y. P. Lin, H. C. Lin, and H. W. Wu, “10  m/500  Mbps WDM visible light communication systems,” Opt. Express 20, 9919–9924 (2012).
[Crossref]

Margalith, T.

Meng, W. X.

Y. Qiu, H. H. Chen, and W. X. Meng, “Channel modeling for visible light communications—a survey,” Wireless Commun. Mobile Comput. 16, 2016–2034 (2016).
[Crossref]

Najda, S. P.

Nakamura, S.

C. Lee, C. Zhang, M. Cantore, R. M. Farrell, S. H. Oh, T. Margalith, J. S. Speck, S. Nakamura, J. E. Bowers, and S. P. DenBaars, “4  Gbps direct modulation of 450  nm GaN laser for high-speed visible light communication,” Opt. Express 23, 16232–16237 (2015).
[Crossref]

Y. C. Chi, D. H. Hsieh, C. Y. Lin, H. Y. Chen, C. Y. Huang, J. H. He, B. Ooi, S. P. DenBaars, S. Nakamura, H. C. Kuo, and G. R. Lin, “Phosphorous diffuser diverged blue laser diode for indoor lighting and communication,” Sci. Rep. 5, 18690 (2015).
[Crossref]

Ng, T. K.

Oh, S. H.

Ooi, B.

Y. C. Chi, D. H. Hsieh, C. Y. Lin, H. Y. Chen, C. Y. Huang, J. H. He, B. Ooi, S. P. DenBaars, S. Nakamura, H. C. Kuo, and G. R. Lin, “Phosphorous diffuser diverged blue laser diode for indoor lighting and communication,” Sci. Rep. 5, 18690 (2015).
[Crossref]

Ooi, B. S.

Oubei, H. M.

Parthiban, R.

F. Zafar, M. Bakaul, and R. Parthiban, “Laser-diode-based visible light communication: toward gigabit class communication,” IEEE Commun. Mag. 55, 144–151 (2017).
[Crossref]

Pergoloni, S.

Perlin, P.

Petroni, A.

Qiu, Y.

Y. Qiu, H. H. Chen, and W. X. Meng, “Channel modeling for visible light communications—a survey,” Wireless Commun. Mobile Comput. 16, 2016–2034 (2016).
[Crossref]

Rinauro, S.

Scarano, G.

Speck, J. S.

Tan, M.

Targowski, G.

Tsai, C. T.

Wan, Z. W.

C. H. Chang, C. Y. Li, H. H. Lu, C. Y. Lin, J. H. Chen, Z. W. Wan, and C. J. Cheng, “A 100-Gb/s multiple-input multiple-output visible laser light communication system,” J. Lightwave Technol. 32, 4723–4729 (2014).
[Crossref]

Wang, H.

S. Wu, H. Wang, and C. H. Youn, “Visible light communications for 5G wireless networking systems: from fixed to mobile communications,” IEEE Netw. 28, 41–45 (2014).
[Crossref]

Wang, H. Y.

Watson, S.

Winzer, P. J.

Wu, H. W.

Wu, S.

S. Wu, H. Wang, and C. H. Youn, “Visible light communications for 5G wireless networking systems: from fixed to mobile communications,” IEEE Netw. 28, 41–45 (2014).
[Crossref]

Wu, T. C.

T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, Y. F. Huang, and G. R. Li, “Tricolor R/G/B laser diode based eye-safe white lighting communication beyond 8  Gbit/s,” Sci. Rep. 7, 11 (2017).
[Crossref]

D. H. Hsieh, T. C. Wu, Y. C. Chi, Y. R. Chen, C. Y. Huang, H. C. Kuo, and G. R. Lin, “The effect of phosphor concentration on laser-based white light communication system,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2016), paper SW1F.7.

Xie, C.

Yeh, C. H.

C. W. Chow, C. H. Yeh, Y. Liu, and Y. F. Liu, “Digital signal processing for light emitting diode based visible light communication,” IEEE Photon. Soc. Newsl. 26, 9–13 (2012).

Youn, C. H.

S. Wu, H. Wang, and C. H. Youn, “Visible light communications for 5G wireless networking systems: from fixed to mobile communications,” IEEE Netw. 28, 41–45 (2014).
[Crossref]

Zafar, F.

F. Zafar, M. Bakaul, and R. Parthiban, “Laser-diode-based visible light communication: toward gigabit class communication,” IEEE Commun. Mag. 55, 144–151 (2017).
[Crossref]

Zhang, C.

IEEE Commun. Mag. (1)

F. Zafar, M. Bakaul, and R. Parthiban, “Laser-diode-based visible light communication: toward gigabit class communication,” IEEE Commun. Mag. 55, 144–151 (2017).
[Crossref]

IEEE Netw. (1)

S. Wu, H. Wang, and C. H. Youn, “Visible light communications for 5G wireless networking systems: from fixed to mobile communications,” IEEE Netw. 28, 41–45 (2014).
[Crossref]

IEEE Photon. Soc. Newsl. (1)

C. W. Chow, C. H. Yeh, Y. Liu, and Y. F. Liu, “Digital signal processing for light emitting diode based visible light communication,” IEEE Photon. Soc. Newsl. 26, 9–13 (2012).

J. Lightwave Technol. (2)

C. H. Chang, C. Y. Li, H. H. Lu, C. Y. Lin, J. H. Chen, Z. W. Wan, and C. J. Cheng, “A 100-Gb/s multiple-input multiple-output visible laser light communication system,” J. Lightwave Technol. 32, 4723–4729 (2014).
[Crossref]

S. Pergoloni, M. Biagi, S. Rinauro, S. Colonnese, R. Cusani, and G. Scarano, “Merging color shift keying and complementary pulse position modulation for visible light illumination and communication,” J. Lightwave Technol. 33, 192–200 (2015).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

Sci. Rep. (2)

T. C. Wu, Y. C. Chi, H. Y. Wang, C. T. Tsai, Y. F. Huang, and G. R. Li, “Tricolor R/G/B laser diode based eye-safe white lighting communication beyond 8  Gbit/s,” Sci. Rep. 7, 11 (2017).
[Crossref]

Y. C. Chi, D. H. Hsieh, C. Y. Lin, H. Y. Chen, C. Y. Huang, J. H. He, B. Ooi, S. P. DenBaars, S. Nakamura, H. C. Kuo, and G. R. Lin, “Phosphorous diffuser diverged blue laser diode for indoor lighting and communication,” Sci. Rep. 5, 18690 (2015).
[Crossref]

Wireless Commun. Mobile Comput. (1)

Y. Qiu, H. H. Chen, and W. X. Meng, “Channel modeling for visible light communications—a survey,” Wireless Commun. Mobile Comput. 16, 2016–2034 (2016).
[Crossref]

Other (1)

D. H. Hsieh, T. C. Wu, Y. C. Chi, Y. R. Chen, C. Y. Huang, H. C. Kuo, and G. R. Lin, “The effect of phosphor concentration on laser-based white light communication system,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2016), paper SW1F.7.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. (a) Experimental setup of tricolor RGB LD-based bidirectional VLC system. (b) OFDM signal encoding and decoding processes. (c) Photography of tricolor RGB LD to produce white light. AWG, arbitrary waveform generator; PBS, polarization beamsplitter; DM, dichroic mirror; PD, photodiode; RTO, real-time oscilloscope; CF, color filter; AOM, acousto-optic modulator; ED, error detector; PPG, pulse-pattern generator; LPF, low pass filter.
Fig. 2.
Fig. 2. Experimental output optical power and biased current responses of the RGB LDs. Inset: measured optical spectra.
Fig. 3.
Fig. 3. (a) Measured SNRs and bit-loading of different OFDM subcarriers. (b) Constellation diagrams of 16, 32, 64, 128, 256-QAM of red LD.
Fig. 4.
Fig. 4. (a) Measured SNRs and bit-loading of different OFDM subcarriers. (b) Constellation diagrams of 8, 16, 32, 64-QAM of green LD.
Fig. 5.
Fig. 5. (a) Measured SNRs and bit-loading of different OFDM subcarriers. (b) Constellation diagrams of 8, 16, 32, 64-QAM of blue LD.
Fig. 6.
Fig. 6. Measured log(BER) of red LD at different received powers and influence on red LD with G/B LDs off and G/B LDs on.
Fig. 7.
Fig. 7. Measured log(BER) of green LD at different received powers and influence on green LD with R/B LDs off and R/B LDs on.
Fig. 8.
Fig. 8. Measured log(BER) of blue LD at different received powers and influence on blue LD with R/G LDs off and R/G LDs on.
Fig. 9.
Fig. 9. Measured Q-value of the remodulated upstream OOK signal (red points: 1 Mbit/s, blue points: 2 Mbit/s) against different received optical powers when different LPFs are used.

Metrics