Abstract

Although plasmonic nanostructure has attracted widespread research interest in recent years, it is still a major challenge to realize large-scale active plasmonic nanostructure operation in the visible optical frequency. Herein, we demonstrate a heterostructure geometry comprising a centimeter-scale Au nanoparticle monolayer and VO2 films, in which the plasmonic peak is inversely tuned between 685 nm and 618 nm by a heating process since the refractive index will change when VO2 films undergo the transition between the insulating phase and the metallic phase. Simultaneously, the phase transition of VO2 films can be improved by plasmonic arrays due to plasmonic enhanced light absorption and the photothermal effect. The phase transition temperature for Au/VO2 films is lower than that for bare VO2 films and can decrease to room temperature under the laser irradiation. For light-induced phase transition of VO2 films, the laser power of Au/VO2 film phase transition is 28.6% lower than that of bare VO2 films. Our work raises the feasibility to use active plasmonic arrays in the visible region.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Temperature-controlled surface plasmon resonance in VO2 nanorods

R. Lopez, T. E. Haynes, L. A. Boatner, L. C. Feldman, and R. F. Haglund
Opt. Lett. 27(15) 1327-1329 (2002)

Single-particle plasmon resonance spectroscopy of phase transition in vanadium dioxide

Dang Yuan Lei, Kannatassen Appavoo, Yannick Sonnefraud, Richard F. Haglund, Jr., and Stefan A. Maier
Opt. Lett. 35(23) 3988-3990 (2010)

Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material

Mikhail A. Kats, Romain Blanchard, Patrice Genevet, Zheng Yang, M. Mumtaz Qazilbash, D. N. Basov, Shriram Ramanathan, and Federico Capasso
Opt. Lett. 38(3) 368-370 (2013)

References

  • View by:
  • |
  • |
  • |

  1. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
    [Crossref]
  2. X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11, 3232–3238 (2011).
    [Crossref]
  3. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
    [Crossref]
  4. A. Arbabi, E. Arbabi, S. M. Kamali, Y. Horie, S. Han, and A. Faraon, “Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations,” Nat. Commun. 7, 13682 (2016).
    [Crossref]
  5. W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C. W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7, 11930 (2016).
    [Crossref]
  6. Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10, 60–65 (2016).
    [Crossref]
  7. L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26, 5031–5036 (2014).
    [Crossref]
  8. E. Almeida, O. Bitton, and Y. Prior, “Nonlinear metamaterials for holography,” Nat. Commun. 7, 12533 (2016).
    [Crossref]
  9. M. R. Hashemi, S. H. Yang, T. Wang, N. Sepúlveda, and M. Jarrahi, “Electronically-controlled beam-steering through vanadium dioxide metasurfaces,” Sci. Rep. 6, 35439 (2016).
    [Crossref]
  10. C. Liu, Y. Bai, Q. Zhao, Y. Yang, H. Chen, J. Zhou, and L. Qiao, “Fully controllable Pancharatnam–Berry metasurface array with high conversion efficiency and broad bandwidth,” Sci. Rep. 6, 34819 (2016).
    [Crossref]
  11. X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
    [Crossref]
  12. N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
    [Crossref]
  13. L. Kang, Y. Cui, S. Lan, S. P. Rodrigues, M. L. Brongersma, and W. Cai, “Electrifying photonic metamaterials for tunable nonlinear optics,” Nat. Commun. 5, 4680 (2014).
    [Crossref]
  14. J. Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8, 252–255 (2013).
    [Crossref]
  15. L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12, 5750–5755 (2012).
    [Crossref]
  16. F. Qin, L. Ding, L. Zhang, F. Monticone, C. C. Chum, J. Deng, S. Mei, Y. Li, J. Teng, M. Hong, S. Zhang, A. Alu, and C. W. Qiu, “Hybrid bilayer plasmonic metasurface efficiently manipulates visible light,” Sci. Adv. 2, e1501168 (2016).
    [Crossref]
  17. J. Shi, X. Fang, E. T. F. Rogers, E. Plum, K. F. MacDonald, and N. I. Zheludev, “Coherent control of Snell’s law at metasurfaces,” Opt. Express 22, 21051–21060 (2014).
    [Crossref]
  18. Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflect array for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14, 1394–1399 (2014).
    [Crossref]
  19. L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
    [Crossref]
  20. J. Kobashi, H. Yoshida, and M. Ozaki, “Planar optics with patterned chiral liquid crystals,” Nat. Photonics 10, 389–392 (2016).
    [Crossref]
  21. Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14, 6526–6532 (2014).
    [Crossref]
  22. P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511, 206–211 (2014).
    [Crossref]
  23. J. He, Z. Xie, W. Sun, X. Wang, Y. Ji, S. Wang, Y. Lin, and Y. Zhang, “Terahertz tunable metasurface lens based on vanadium dioxide phase transition,” Plasmonics 11, 1285–1290 (2016).
    [Crossref]
  24. J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16, 1050–1055 (2016).
    [Crossref]
  25. K. Appavoo and R. F. Haglund, “Detecting nanoscale size dependence in VO2 phase transition using a split-ring resonator metamaterial,” Nano Lett. 11, 1025–1031 (2011).
    [Crossref]
  26. D. Y. Lei, K. Appavoo, F. Ligmajer, Y. Sonnefraud, R. F. Haglund, and S. A. Maier, “Optically-triggered nanoscale memory effect in a hybrid plasmonic-phase changing nanostructure,” ACS Photon. 2, 1306–1313 (2015).
    [Crossref]
  27. O. L. Muskens, L. Bergamini, Y. Wang, J. M. Gaskell, N. Zabala, C. H. de Groot, D. W. Sheel, and J. Aizpurua, “Antenna-assisted picosecond control of nanoscale phase transition in vanadium dioxide,” Light Sci. Appl. 5, e16173 (2016).
    [Crossref]
  28. D. W. Ferrara, J. Nag, E. R. MacQuarrie, A. B. Kaye, and R. F. Haglund, “Plasmonic probe of the semiconductor to metal phase transition in vanadium dioxide,” Nano Lett. 13, 4169–4175 (2013).
    [Crossref]
  29. J. Y. Suh, E. U. Donev, D. W. Ferrara, K. A. Tetz, L. C. Feldman, and R. F. Haglund, “Modulation of the gold particle-plasmon resonance by the metal-semiconductor transition of vanadium dioxide,” J. Opt. A 10, 055202 (2008).
    [Crossref]
  30. G. Xu, Y. Chen, M. Tazawa, and P. Jin, “Surface plasmon resonance of silver nanoparticles on vanadium dioxide,” J. Phys. Chem. B 110, 2051–2056 (2006).
    [Crossref]
  31. L. Liu, L. Kang, T. S. Mayer, and D. H. Werner, “Hybrid metamaterials for electrically triggered multifunctional control,” Nat. Commun. 7, 13236 (2016).
    [Crossref]
  32. H. Kocer, S. Butun, B. Banar, K. Wang, S. Tongay, J. Wu, and K. Aydin, “Thermal tuning of infrared resonant absorbers based on hybrid gold-VO2 nanostructures,” Appl. Phys. Lett. 106, 161104 (2015).
    [Crossref]
  33. L. Shao, Q. Ruan, R. Jiang, and J. Wang, “Macroscale colloidal noble metal nanocrystal arrays and their refractive index-based sensing characteristics,” Small 10, 802–811 (2014).
    [Crossref]
  34. B. Peng, G. Li, D. Li, S. Dodson, Q. Zhang, J. Zhang, Y. H. Lee, H. V. Demir, X. Y. Ling, and Q. Xiong, “Vertically aligned gold nanorod monolayer on arbitrary substrates: self-assembly and femtomolar detection of food contaminants,” ACS Nano 7, 5993–6000 (2013).
    [Crossref]
  35. H. Chen, L. Shao, Q. Li, and J. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42, 2679–2724 (2013).
    [Crossref]
  36. J. Cao, T. Sun, and K. T. V. Grattan, “Gold nanorod-based localized surface plasmon resonance biosensors: a review,” Sens. Actuators B 195, 332–351 (2014).
    [Crossref]
  37. B. M. I. van der Zande, M. R. Böhmer, L. G. J. Fokkink, and C. Schönenberger, “Colloidal dispersions of gold rods: synthesis and optical properties,” Langmuir 16, 451–458 (2000).
    [Crossref]
  38. X. Huang and M. A. El-Sayed, “Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy,” J. Adv. Res. 1, 13–28 (2010).
  39. S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 103, 3073–3077 (1999).
    [Crossref]
  40. K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl, and J. H. Hafner, “A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods,” ACS Nano 2, 687–692 (2008).
    [Crossref]
  41. J. Pérez-Justea, I. Pastoriza-santos, L. Liz-Marzána, and P. Mulvaney, “Gold nanorods: synthesis, characterization and applications,” Coord. Chem. Rev. 249, 1870–1901 (2005).
    [Crossref]
  42. H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape- and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24, 5233–5237 (2008).
    [Crossref]
  43. M. Maaza, O. Nemraoui, C. Sella, and A. C. Beye, “Surface plasmon resonance tunability in Au-VO2 thermochromic nano-composites,” Gold Bull. 38, 100–106 (2005).
    [Crossref]
  44. M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17, 18330–18339 (2009).
    [Crossref]
  45. M. Currie, M. A. Mastro, and V. D. Wheeler, “Characterizing the tunable refractive index of vanadium dioxide,” Opt. Mater. Express 7, 1697–1707 (2017).
    [Crossref]
  46. M. Chaker and F. Rosei, “Materials research in Africa: rising from the falls,” Nat. Mater. 11, 187–188 (2012).
    [Crossref]
  47. H. Kakiuchida, P. Jin, S. Nakao, and M. Tazawa, “Optical properties of vanadium dioxide film during semiconductive-metallic phase transition,” Jpn. J. Appl. Phys. 46, L113–L116 (2007).
    [Crossref]
  48. M. A. García, V. Bouzas, and N. Carmona, “Synthesis of gold nanorods for biomedical applications,” AIP Conf. Proc. 1275, 84–87 (2010).
    [Crossref]
  49. P. Schilbe, “Raman scattering in VO2,” Physica B 316–317, 600–602 (2002).
    [Crossref]
  50. M. Pan, J. Liu, H. Zhong, S. Wang, Z. F. Li, X. Chen, and W. Lu, “Raman study of the phase transition in VO2 thin films,” J. Cryst. Growth 268, 178–183 (2004).
    [Crossref]
  51. E. U. Donev, R. Lopez, L. C. Feldman, and R. F. Haglund, “Confocal Raman microscopy across the metal-insulator transition of single vanadium dioxide nanoparticles,” Nano Lett. 9, 702–706 (2009).
    [Crossref]
  52. D. H. Jung, H. S. So, K. H. Ko, J. W. Park, H. Lee, T. T. T. Nguyen, and S. Yoon, “Electrical and optical properties of VO2 thin films grown on various sapphire substrates by using RF sputtering deposition,” J. Korean Phys. Soc. 69, 1787–1797 (2016).
    [Crossref]
  53. H.-T. Kim, B.-G. Chae, D.-H. Youn, G. Kim, K.-Y. Kang, S.-J. Lee, K. Kim, and Y.-S. Lim, “Raman study of electric-field-induced first-order metal-insulator transition in VO2-based devices,” Appl. Phys. Lett. 86, 242101 (2005).
    [Crossref]
  54. H. Zhang, Q. Li, P. Shen, Q. Dong, B. Liu, R. Liu, T. Cui, and B. Liu, “The structural phase transition process of free-standing monoclinic vanadium dioxide micron-sized rods: temperature-dependent Raman study,” RSC Adv. 5, 83139–83143 (2015).
    [Crossref]
  55. J. Li, M. Yang, X. Sun, X. Yang, J. Xue, C. Zhu, H. Liu, and Y. Xia, “Micropatterning of the ferroelectric phase in a poly(vinylidene difluoride) film by plasmonic heating with gold nanocages,” Angew. Chem. 128, 14032–14036 (2016).
  56. B. Peng, Q. Zhang, X. Liu, Y. Ji, H. V. Demir, C. H. Huan, T. C. Sum, and Q. Xiong, “Fluorophore-doped core-multishell spherical plasmonic nanocavities: resonant energy transfer toward a loss compensation,” ACS Nano 6, 6250–6259 (2012).
    [Crossref]
  57. S. Link and M. A. El-Sayed, “Optical properties and ultrafast dynamics of metallic nanocrystals,” Annu. Rev. Phys. Chem. 54, 331–366 (2003).
    [Crossref]
  58. S. Link and M. A. El-Sayed, “Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals,” Int. Rev. Phys. Chem. 19, 409–453 (2000).
    [Crossref]
  59. P. Vilanova-Martínez, J. Hernández-Velasco, A. R. Landa-Cánovas, and F. Agulló-Rueda, “Laser heating induced phase changes of VO2 crystals in air monitored by Raman spectroscopy,” J. Alloys Compd. 661, 122–125 (2016).
    [Crossref]
  60. D. W. Ferrara, E. R. MacQuarrie, J. Nag, A. B. Kaye, and R. F. Haglund, “Plasmon-enhanced low-intensity laser switching of gold::vanadium dioxide nanocomposites,” Appl. Phys. Lett. 98, 241112 (2011).
    [Crossref]
  61. T. Jostmeier, J. Zimmer, H. Karl, H. J. Krenner, and M. Betz, “Optically imprinted reconfigurable photonic elements in a VO2 nanocomposite,” Appl. Phys. Lett. 105, 071107 (2014).
    [Crossref]
  62. K. Appavoo, B. Wang, N. F. Brady, M. Seo, J. Nag, R. P. Prasankumar, D. J. Hilton, S. T. Pantelides, and R. F. Haglund, “Ultrafast phase transition via catastrophic phonon collapse driven by plasmonic hot-electron injection,” Nano Lett. 14, 1127–1133 (2014).
    [Crossref]
  63. M. Yi, C. Lu, Y. Gong, Z. Qi, and Y. Cui, “Dual-functional sensor based on switchable plasmonic structure of VO2 nano-crystal films and Ag nanoparticles,” Opt. Express 22, 29627–29635 (2014).
    [Crossref]
  64. X. Wen, Q. Zhang, J. Chai, L. M. Wong, S. Wang, and Q. Xiong, “Near-infrared active metamaterials and their applications in tunable surface-enhanced Raman scattering,” Opt. Express 22, 2989–2995 (2014).
    [Crossref]
  65. E. U. Donev, J. I. Ziegler, R. F. Haglund, and L. C. Feldman, “Size effects in the structural phase transition of VO2 nanoparticles studied by surface-enhanced Raman scattering,” J. Opt. A 11, 125002 (2009).
    [Crossref]
  66. B. Peng, Z. Li, E. Mutlugun, P. L. Hernández Martínez, D. Li, Q. Zhang, Y. Gao, H. V. Demir, and Q. Xiong, “Quantum dots on vertically aligned gold nanorod monolayer: plasmon enhanced fluorescence,” Nanoscale 6, 5592–5598 (2014).
    [Crossref]
  67. R. Lopez, T. E. Haynes, and L. A. Boatner, “Size effects in the structural phase transition of VO2 nanoparticles,” Phys. Rev. B 65, 224113 (2002).
    [Crossref]
  68. Y. Ji, Y. Zhang, M. Gao, Z. Yuan, Y. Xia, C. Jin, B. Tao, C. Chen, Q. Jia, and Y. Lin, “Role of microstructures on the M1-M2 phase transition in epitaxial VO2 thin films,” Sci. Rep. 4, 4854 (2014).
    [Crossref]

2017 (1)

2016 (15)

D. H. Jung, H. S. So, K. H. Ko, J. W. Park, H. Lee, T. T. T. Nguyen, and S. Yoon, “Electrical and optical properties of VO2 thin films grown on various sapphire substrates by using RF sputtering deposition,” J. Korean Phys. Soc. 69, 1787–1797 (2016).
[Crossref]

J. Li, M. Yang, X. Sun, X. Yang, J. Xue, C. Zhu, H. Liu, and Y. Xia, “Micropatterning of the ferroelectric phase in a poly(vinylidene difluoride) film by plasmonic heating with gold nanocages,” Angew. Chem. 128, 14032–14036 (2016).

P. Vilanova-Martínez, J. Hernández-Velasco, A. R. Landa-Cánovas, and F. Agulló-Rueda, “Laser heating induced phase changes of VO2 crystals in air monitored by Raman spectroscopy,” J. Alloys Compd. 661, 122–125 (2016).
[Crossref]

A. Arbabi, E. Arbabi, S. M. Kamali, Y. Horie, S. Han, and A. Faraon, “Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations,” Nat. Commun. 7, 13682 (2016).
[Crossref]

W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C. W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7, 11930 (2016).
[Crossref]

Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10, 60–65 (2016).
[Crossref]

E. Almeida, O. Bitton, and Y. Prior, “Nonlinear metamaterials for holography,” Nat. Commun. 7, 12533 (2016).
[Crossref]

M. R. Hashemi, S. H. Yang, T. Wang, N. Sepúlveda, and M. Jarrahi, “Electronically-controlled beam-steering through vanadium dioxide metasurfaces,” Sci. Rep. 6, 35439 (2016).
[Crossref]

C. Liu, Y. Bai, Q. Zhao, Y. Yang, H. Chen, J. Zhou, and L. Qiao, “Fully controllable Pancharatnam–Berry metasurface array with high conversion efficiency and broad bandwidth,” Sci. Rep. 6, 34819 (2016).
[Crossref]

F. Qin, L. Ding, L. Zhang, F. Monticone, C. C. Chum, J. Deng, S. Mei, Y. Li, J. Teng, M. Hong, S. Zhang, A. Alu, and C. W. Qiu, “Hybrid bilayer plasmonic metasurface efficiently manipulates visible light,” Sci. Adv. 2, e1501168 (2016).
[Crossref]

J. Kobashi, H. Yoshida, and M. Ozaki, “Planar optics with patterned chiral liquid crystals,” Nat. Photonics 10, 389–392 (2016).
[Crossref]

J. He, Z. Xie, W. Sun, X. Wang, Y. Ji, S. Wang, Y. Lin, and Y. Zhang, “Terahertz tunable metasurface lens based on vanadium dioxide phase transition,” Plasmonics 11, 1285–1290 (2016).
[Crossref]

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16, 1050–1055 (2016).
[Crossref]

O. L. Muskens, L. Bergamini, Y. Wang, J. M. Gaskell, N. Zabala, C. H. de Groot, D. W. Sheel, and J. Aizpurua, “Antenna-assisted picosecond control of nanoscale phase transition in vanadium dioxide,” Light Sci. Appl. 5, e16173 (2016).
[Crossref]

L. Liu, L. Kang, T. S. Mayer, and D. H. Werner, “Hybrid metamaterials for electrically triggered multifunctional control,” Nat. Commun. 7, 13236 (2016).
[Crossref]

2015 (3)

H. Kocer, S. Butun, B. Banar, K. Wang, S. Tongay, J. Wu, and K. Aydin, “Thermal tuning of infrared resonant absorbers based on hybrid gold-VO2 nanostructures,” Appl. Phys. Lett. 106, 161104 (2015).
[Crossref]

D. Y. Lei, K. Appavoo, F. Ligmajer, Y. Sonnefraud, R. F. Haglund, and S. A. Maier, “Optically-triggered nanoscale memory effect in a hybrid plasmonic-phase changing nanostructure,” ACS Photon. 2, 1306–1313 (2015).
[Crossref]

H. Zhang, Q. Li, P. Shen, Q. Dong, B. Liu, R. Liu, T. Cui, and B. Liu, “The structural phase transition process of free-standing monoclinic vanadium dioxide micron-sized rods: temperature-dependent Raman study,” RSC Adv. 5, 83139–83143 (2015).
[Crossref]

2014 (15)

B. Peng, Z. Li, E. Mutlugun, P. L. Hernández Martínez, D. Li, Q. Zhang, Y. Gao, H. V. Demir, and Q. Xiong, “Quantum dots on vertically aligned gold nanorod monolayer: plasmon enhanced fluorescence,” Nanoscale 6, 5592–5598 (2014).
[Crossref]

Y. Ji, Y. Zhang, M. Gao, Z. Yuan, Y. Xia, C. Jin, B. Tao, C. Chen, Q. Jia, and Y. Lin, “Role of microstructures on the M1-M2 phase transition in epitaxial VO2 thin films,” Sci. Rep. 4, 4854 (2014).
[Crossref]

T. Jostmeier, J. Zimmer, H. Karl, H. J. Krenner, and M. Betz, “Optically imprinted reconfigurable photonic elements in a VO2 nanocomposite,” Appl. Phys. Lett. 105, 071107 (2014).
[Crossref]

K. Appavoo, B. Wang, N. F. Brady, M. Seo, J. Nag, R. P. Prasankumar, D. J. Hilton, S. T. Pantelides, and R. F. Haglund, “Ultrafast phase transition via catastrophic phonon collapse driven by plasmonic hot-electron injection,” Nano Lett. 14, 1127–1133 (2014).
[Crossref]

M. Yi, C. Lu, Y. Gong, Z. Qi, and Y. Cui, “Dual-functional sensor based on switchable plasmonic structure of VO2 nano-crystal films and Ag nanoparticles,” Opt. Express 22, 29627–29635 (2014).
[Crossref]

X. Wen, Q. Zhang, J. Chai, L. M. Wong, S. Wang, and Q. Xiong, “Near-infrared active metamaterials and their applications in tunable surface-enhanced Raman scattering,” Opt. Express 22, 2989–2995 (2014).
[Crossref]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
[Crossref]

J. Cao, T. Sun, and K. T. V. Grattan, “Gold nanorod-based localized surface plasmon resonance biosensors: a review,” Sens. Actuators B 195, 332–351 (2014).
[Crossref]

L. Shao, Q. Ruan, R. Jiang, and J. Wang, “Macroscale colloidal noble metal nanocrystal arrays and their refractive index-based sensing characteristics,” Small 10, 802–811 (2014).
[Crossref]

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14, 6526–6532 (2014).
[Crossref]

P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511, 206–211 (2014).
[Crossref]

J. Shi, X. Fang, E. T. F. Rogers, E. Plum, K. F. MacDonald, and N. I. Zheludev, “Coherent control of Snell’s law at metasurfaces,” Opt. Express 22, 21051–21060 (2014).
[Crossref]

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflect array for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14, 1394–1399 (2014).
[Crossref]

L. Kang, Y. Cui, S. Lan, S. P. Rodrigues, M. L. Brongersma, and W. Cai, “Electrifying photonic metamaterials for tunable nonlinear optics,” Nat. Commun. 5, 4680 (2014).
[Crossref]

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26, 5031–5036 (2014).
[Crossref]

2013 (6)

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
[Crossref]

J. Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8, 252–255 (2013).
[Crossref]

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

D. W. Ferrara, J. Nag, E. R. MacQuarrie, A. B. Kaye, and R. F. Haglund, “Plasmonic probe of the semiconductor to metal phase transition in vanadium dioxide,” Nano Lett. 13, 4169–4175 (2013).
[Crossref]

B. Peng, G. Li, D. Li, S. Dodson, Q. Zhang, J. Zhang, Y. H. Lee, H. V. Demir, X. Y. Ling, and Q. Xiong, “Vertically aligned gold nanorod monolayer on arbitrary substrates: self-assembly and femtomolar detection of food contaminants,” ACS Nano 7, 5993–6000 (2013).
[Crossref]

H. Chen, L. Shao, Q. Li, and J. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42, 2679–2724 (2013).
[Crossref]

2012 (4)

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12, 5750–5755 (2012).
[Crossref]

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
[Crossref]

B. Peng, Q. Zhang, X. Liu, Y. Ji, H. V. Demir, C. H. Huan, T. C. Sum, and Q. Xiong, “Fluorophore-doped core-multishell spherical plasmonic nanocavities: resonant energy transfer toward a loss compensation,” ACS Nano 6, 6250–6259 (2012).
[Crossref]

M. Chaker and F. Rosei, “Materials research in Africa: rising from the falls,” Nat. Mater. 11, 187–188 (2012).
[Crossref]

2011 (4)

D. W. Ferrara, E. R. MacQuarrie, J. Nag, A. B. Kaye, and R. F. Haglund, “Plasmon-enhanced low-intensity laser switching of gold::vanadium dioxide nanocomposites,” Appl. Phys. Lett. 98, 241112 (2011).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11, 3232–3238 (2011).
[Crossref]

K. Appavoo and R. F. Haglund, “Detecting nanoscale size dependence in VO2 phase transition using a split-ring resonator metamaterial,” Nano Lett. 11, 1025–1031 (2011).
[Crossref]

2010 (2)

X. Huang and M. A. El-Sayed, “Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy,” J. Adv. Res. 1, 13–28 (2010).

M. A. García, V. Bouzas, and N. Carmona, “Synthesis of gold nanorods for biomedical applications,” AIP Conf. Proc. 1275, 84–87 (2010).
[Crossref]

2009 (3)

M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17, 18330–18339 (2009).
[Crossref]

E. U. Donev, R. Lopez, L. C. Feldman, and R. F. Haglund, “Confocal Raman microscopy across the metal-insulator transition of single vanadium dioxide nanoparticles,” Nano Lett. 9, 702–706 (2009).
[Crossref]

E. U. Donev, J. I. Ziegler, R. F. Haglund, and L. C. Feldman, “Size effects in the structural phase transition of VO2 nanoparticles studied by surface-enhanced Raman scattering,” J. Opt. A 11, 125002 (2009).
[Crossref]

2008 (3)

K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl, and J. H. Hafner, “A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods,” ACS Nano 2, 687–692 (2008).
[Crossref]

H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape- and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24, 5233–5237 (2008).
[Crossref]

J. Y. Suh, E. U. Donev, D. W. Ferrara, K. A. Tetz, L. C. Feldman, and R. F. Haglund, “Modulation of the gold particle-plasmon resonance by the metal-semiconductor transition of vanadium dioxide,” J. Opt. A 10, 055202 (2008).
[Crossref]

2007 (1)

H. Kakiuchida, P. Jin, S. Nakao, and M. Tazawa, “Optical properties of vanadium dioxide film during semiconductive-metallic phase transition,” Jpn. J. Appl. Phys. 46, L113–L116 (2007).
[Crossref]

2006 (1)

G. Xu, Y. Chen, M. Tazawa, and P. Jin, “Surface plasmon resonance of silver nanoparticles on vanadium dioxide,” J. Phys. Chem. B 110, 2051–2056 (2006).
[Crossref]

2005 (3)

M. Maaza, O. Nemraoui, C. Sella, and A. C. Beye, “Surface plasmon resonance tunability in Au-VO2 thermochromic nano-composites,” Gold Bull. 38, 100–106 (2005).
[Crossref]

J. Pérez-Justea, I. Pastoriza-santos, L. Liz-Marzána, and P. Mulvaney, “Gold nanorods: synthesis, characterization and applications,” Coord. Chem. Rev. 249, 1870–1901 (2005).
[Crossref]

H.-T. Kim, B.-G. Chae, D.-H. Youn, G. Kim, K.-Y. Kang, S.-J. Lee, K. Kim, and Y.-S. Lim, “Raman study of electric-field-induced first-order metal-insulator transition in VO2-based devices,” Appl. Phys. Lett. 86, 242101 (2005).
[Crossref]

2004 (1)

M. Pan, J. Liu, H. Zhong, S. Wang, Z. F. Li, X. Chen, and W. Lu, “Raman study of the phase transition in VO2 thin films,” J. Cryst. Growth 268, 178–183 (2004).
[Crossref]

2003 (1)

S. Link and M. A. El-Sayed, “Optical properties and ultrafast dynamics of metallic nanocrystals,” Annu. Rev. Phys. Chem. 54, 331–366 (2003).
[Crossref]

2002 (2)

R. Lopez, T. E. Haynes, and L. A. Boatner, “Size effects in the structural phase transition of VO2 nanoparticles,” Phys. Rev. B 65, 224113 (2002).
[Crossref]

P. Schilbe, “Raman scattering in VO2,” Physica B 316–317, 600–602 (2002).
[Crossref]

2000 (2)

S. Link and M. A. El-Sayed, “Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals,” Int. Rev. Phys. Chem. 19, 409–453 (2000).
[Crossref]

B. M. I. van der Zande, M. R. Böhmer, L. G. J. Fokkink, and C. Schönenberger, “Colloidal dispersions of gold rods: synthesis and optical properties,” Langmuir 16, 451–458 (2000).
[Crossref]

1999 (1)

S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 103, 3073–3077 (1999).
[Crossref]

Agulló-Rueda, F.

P. Vilanova-Martínez, J. Hernández-Velasco, A. R. Landa-Cánovas, and F. Agulló-Rueda, “Laser heating induced phase changes of VO2 crystals in air monitored by Raman spectroscopy,” J. Alloys Compd. 661, 122–125 (2016).
[Crossref]

Aieta, F.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Aizpurua, J.

O. L. Muskens, L. Bergamini, Y. Wang, J. M. Gaskell, N. Zabala, C. H. de Groot, D. W. Sheel, and J. Aizpurua, “Antenna-assisted picosecond control of nanoscale phase transition in vanadium dioxide,” Light Sci. Appl. 5, e16173 (2016).
[Crossref]

Almeida, E.

E. Almeida, O. Bitton, and Y. Prior, “Nonlinear metamaterials for holography,” Nat. Commun. 7, 12533 (2016).
[Crossref]

Alu, A.

F. Qin, L. Ding, L. Zhang, F. Monticone, C. C. Chum, J. Deng, S. Mei, Y. Li, J. Teng, M. Hong, S. Zhang, A. Alu, and C. W. Qiu, “Hybrid bilayer plasmonic metasurface efficiently manipulates visible light,” Sci. Adv. 2, e1501168 (2016).
[Crossref]

Appavoo, K.

D. Y. Lei, K. Appavoo, F. Ligmajer, Y. Sonnefraud, R. F. Haglund, and S. A. Maier, “Optically-triggered nanoscale memory effect in a hybrid plasmonic-phase changing nanostructure,” ACS Photon. 2, 1306–1313 (2015).
[Crossref]

K. Appavoo, B. Wang, N. F. Brady, M. Seo, J. Nag, R. P. Prasankumar, D. J. Hilton, S. T. Pantelides, and R. F. Haglund, “Ultrafast phase transition via catastrophic phonon collapse driven by plasmonic hot-electron injection,” Nano Lett. 14, 1127–1133 (2014).
[Crossref]

K. Appavoo and R. F. Haglund, “Detecting nanoscale size dependence in VO2 phase transition using a split-ring resonator metamaterial,” Nano Lett. 11, 1025–1031 (2011).
[Crossref]

Arbabi, A.

A. Arbabi, E. Arbabi, S. M. Kamali, Y. Horie, S. Han, and A. Faraon, “Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations,” Nat. Commun. 7, 13682 (2016).
[Crossref]

Arbabi, E.

A. Arbabi, E. Arbabi, S. M. Kamali, Y. Horie, S. Han, and A. Faraon, “Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations,” Nat. Commun. 7, 13682 (2016).
[Crossref]

Atwater, H. A.

Aydin, K.

H. Kocer, S. Butun, B. Banar, K. Wang, S. Tongay, J. Wu, and K. Aydin, “Thermal tuning of infrared resonant absorbers based on hybrid gold-VO2 nanostructures,” Appl. Phys. Lett. 106, 161104 (2015).
[Crossref]

M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17, 18330–18339 (2009).
[Crossref]

Bai, B.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12, 5750–5755 (2012).
[Crossref]

Bai, Y.

C. Liu, Y. Bai, Q. Zhao, Y. Yang, H. Chen, J. Zhou, and L. Qiao, “Fully controllable Pancharatnam–Berry metasurface array with high conversion efficiency and broad bandwidth,” Sci. Rep. 6, 34819 (2016).
[Crossref]

Banar, B.

H. Kocer, S. Butun, B. Banar, K. Wang, S. Tongay, J. Wu, and K. Aydin, “Thermal tuning of infrared resonant absorbers based on hybrid gold-VO2 nanostructures,” Appl. Phys. Lett. 106, 161104 (2015).
[Crossref]

Basov, D. N.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16, 1050–1055 (2016).
[Crossref]

Bergamini, L.

O. L. Muskens, L. Bergamini, Y. Wang, J. M. Gaskell, N. Zabala, C. H. de Groot, D. W. Sheel, and J. Aizpurua, “Antenna-assisted picosecond control of nanoscale phase transition in vanadium dioxide,” Light Sci. Appl. 5, e16173 (2016).
[Crossref]

Betz, M.

T. Jostmeier, J. Zimmer, H. Karl, H. J. Krenner, and M. Betz, “Optically imprinted reconfigurable photonic elements in a VO2 nanocomposite,” Appl. Phys. Lett. 105, 071107 (2014).
[Crossref]

Beye, A. C.

M. Maaza, O. Nemraoui, C. Sella, and A. C. Beye, “Surface plasmon resonance tunability in Au-VO2 thermochromic nano-composites,” Gold Bull. 38, 100–106 (2005).
[Crossref]

Bhaskaran, H.

P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511, 206–211 (2014).
[Crossref]

Bitton, O.

E. Almeida, O. Bitton, and Y. Prior, “Nonlinear metamaterials for holography,” Nat. Commun. 7, 12533 (2016).
[Crossref]

Boatner, L. A.

R. Lopez, T. E. Haynes, and L. A. Boatner, “Size effects in the structural phase transition of VO2 nanoparticles,” Phys. Rev. B 65, 224113 (2002).
[Crossref]

Böhmer, M. R.

B. M. I. van der Zande, M. R. Böhmer, L. G. J. Fokkink, and C. Schönenberger, “Colloidal dispersions of gold rods: synthesis and optical properties,” Langmuir 16, 451–458 (2000).
[Crossref]

Bouzas, V.

M. A. García, V. Bouzas, and N. Carmona, “Synthesis of gold nanorods for biomedical applications,” AIP Conf. Proc. 1275, 84–87 (2010).
[Crossref]

Boyd, E. M.

Brady, N. F.

K. Appavoo, B. Wang, N. F. Brady, M. Seo, J. Nag, R. P. Prasankumar, D. J. Hilton, S. T. Pantelides, and R. F. Haglund, “Ultrafast phase transition via catastrophic phonon collapse driven by plasmonic hot-electron injection,” Nano Lett. 14, 1127–1133 (2014).
[Crossref]

Briggs, D. P.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflect array for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14, 1394–1399 (2014).
[Crossref]

Brongersma, M. L.

L. Kang, Y. Cui, S. Lan, S. P. Rodrigues, M. L. Brongersma, and W. Cai, “Electrifying photonic metamaterials for tunable nonlinear optics,” Nat. Commun. 5, 4680 (2014).
[Crossref]

Butun, S.

H. Kocer, S. Butun, B. Banar, K. Wang, S. Tongay, J. Wu, and K. Aydin, “Thermal tuning of infrared resonant absorbers based on hybrid gold-VO2 nanostructures,” Appl. Phys. Lett. 106, 161104 (2015).
[Crossref]

Cai, W.

L. Kang, Y. Cui, S. Lan, S. P. Rodrigues, M. L. Brongersma, and W. Cai, “Electrifying photonic metamaterials for tunable nonlinear optics,” Nat. Commun. 5, 4680 (2014).
[Crossref]

Cao, J.

J. Cao, T. Sun, and K. T. V. Grattan, “Gold nanorod-based localized surface plasmon resonance biosensors: a review,” Sens. Actuators B 195, 332–351 (2014).
[Crossref]

Capasso, F.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16, 1050–1055 (2016).
[Crossref]

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14, 6526–6532 (2014).
[Crossref]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
[Crossref]

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Carmona, N.

M. A. García, V. Bouzas, and N. Carmona, “Synthesis of gold nanorods for biomedical applications,” AIP Conf. Proc. 1275, 84–87 (2010).
[Crossref]

Chae, B.-G.

H.-T. Kim, B.-G. Chae, D.-H. Youn, G. Kim, K.-Y. Kang, S.-J. Lee, K. Kim, and Y.-S. Lim, “Raman study of electric-field-induced first-order metal-insulator transition in VO2-based devices,” Appl. Phys. Lett. 86, 242101 (2005).
[Crossref]

Chai, J.

Chaker, M.

M. Chaker and F. Rosei, “Materials research in Africa: rising from the falls,” Nat. Mater. 11, 187–188 (2012).
[Crossref]

Cheah, K.-W.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Chen, C.

Y. Ji, Y. Zhang, M. Gao, Z. Yuan, Y. Xia, C. Jin, B. Tao, C. Chen, Q. Jia, and Y. Lin, “Role of microstructures on the M1-M2 phase transition in epitaxial VO2 thin films,” Sci. Rep. 4, 4854 (2014).
[Crossref]

Chen, H.

C. Liu, Y. Bai, Q. Zhao, Y. Yang, H. Chen, J. Zhou, and L. Qiao, “Fully controllable Pancharatnam–Berry metasurface array with high conversion efficiency and broad bandwidth,” Sci. Rep. 6, 34819 (2016).
[Crossref]

H. Chen, L. Shao, Q. Li, and J. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42, 2679–2724 (2013).
[Crossref]

H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape- and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24, 5233–5237 (2008).
[Crossref]

Chen, S.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Chen, X.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12, 5750–5755 (2012).
[Crossref]

M. Pan, J. Liu, H. Zhong, S. Wang, Z. F. Li, X. Chen, and W. Lu, “Raman study of the phase transition in VO2 thin films,” J. Cryst. Growth 268, 178–183 (2004).
[Crossref]

Chen, Y.

G. Xu, Y. Chen, M. Tazawa, and P. Jin, “Surface plasmon resonance of silver nanoparticles on vanadium dioxide,” J. Phys. Chem. B 110, 2051–2056 (2006).
[Crossref]

Chum, C. C.

F. Qin, L. Ding, L. Zhang, F. Monticone, C. C. Chum, J. Deng, S. Mei, Y. Li, J. Teng, M. Hong, S. Zhang, A. Alu, and C. W. Qiu, “Hybrid bilayer plasmonic metasurface efficiently manipulates visible light,” Sci. Adv. 2, e1501168 (2016).
[Crossref]

Cui, T.

H. Zhang, Q. Li, P. Shen, Q. Dong, B. Liu, R. Liu, T. Cui, and B. Liu, “The structural phase transition process of free-standing monoclinic vanadium dioxide micron-sized rods: temperature-dependent Raman study,” RSC Adv. 5, 83139–83143 (2015).
[Crossref]

Cui, Y.

M. Yi, C. Lu, Y. Gong, Z. Qi, and Y. Cui, “Dual-functional sensor based on switchable plasmonic structure of VO2 nano-crystal films and Ag nanoparticles,” Opt. Express 22, 29627–29635 (2014).
[Crossref]

L. Kang, Y. Cui, S. Lan, S. P. Rodrigues, M. L. Brongersma, and W. Cai, “Electrifying photonic metamaterials for tunable nonlinear optics,” Nat. Commun. 5, 4680 (2014).
[Crossref]

Currie, M.

de Groot, C. H.

O. L. Muskens, L. Bergamini, Y. Wang, J. M. Gaskell, N. Zabala, C. H. de Groot, D. W. Sheel, and J. Aizpurua, “Antenna-assisted picosecond control of nanoscale phase transition in vanadium dioxide,” Light Sci. Appl. 5, e16173 (2016).
[Crossref]

Demir, H. V.

B. Peng, Z. Li, E. Mutlugun, P. L. Hernández Martínez, D. Li, Q. Zhang, Y. Gao, H. V. Demir, and Q. Xiong, “Quantum dots on vertically aligned gold nanorod monolayer: plasmon enhanced fluorescence,” Nanoscale 6, 5592–5598 (2014).
[Crossref]

B. Peng, G. Li, D. Li, S. Dodson, Q. Zhang, J. Zhang, Y. H. Lee, H. V. Demir, X. Y. Ling, and Q. Xiong, “Vertically aligned gold nanorod monolayer on arbitrary substrates: self-assembly and femtomolar detection of food contaminants,” ACS Nano 7, 5993–6000 (2013).
[Crossref]

B. Peng, Q. Zhang, X. Liu, Y. Ji, H. V. Demir, C. H. Huan, T. C. Sum, and Q. Xiong, “Fluorophore-doped core-multishell spherical plasmonic nanocavities: resonant energy transfer toward a loss compensation,” ACS Nano 6, 6250–6259 (2012).
[Crossref]

Deng, J.

F. Qin, L. Ding, L. Zhang, F. Monticone, C. C. Chum, J. Deng, S. Mei, Y. Li, J. Teng, M. Hong, S. Zhang, A. Alu, and C. W. Qiu, “Hybrid bilayer plasmonic metasurface efficiently manipulates visible light,” Sci. Adv. 2, e1501168 (2016).
[Crossref]

Dicken, M. J.

Ding, L.

F. Qin, L. Ding, L. Zhang, F. Monticone, C. C. Chum, J. Deng, S. Mei, Y. Li, J. Teng, M. Hong, S. Zhang, A. Alu, and C. W. Qiu, “Hybrid bilayer plasmonic metasurface efficiently manipulates visible light,” Sci. Adv. 2, e1501168 (2016).
[Crossref]

Dodson, S.

B. Peng, G. Li, D. Li, S. Dodson, Q. Zhang, J. Zhang, Y. H. Lee, H. V. Demir, X. Y. Ling, and Q. Xiong, “Vertically aligned gold nanorod monolayer on arbitrary substrates: self-assembly and femtomolar detection of food contaminants,” ACS Nano 7, 5993–6000 (2013).
[Crossref]

Donev, E. U.

E. U. Donev, R. Lopez, L. C. Feldman, and R. F. Haglund, “Confocal Raman microscopy across the metal-insulator transition of single vanadium dioxide nanoparticles,” Nano Lett. 9, 702–706 (2009).
[Crossref]

E. U. Donev, J. I. Ziegler, R. F. Haglund, and L. C. Feldman, “Size effects in the structural phase transition of VO2 nanoparticles studied by surface-enhanced Raman scattering,” J. Opt. A 11, 125002 (2009).
[Crossref]

J. Y. Suh, E. U. Donev, D. W. Ferrara, K. A. Tetz, L. C. Feldman, and R. F. Haglund, “Modulation of the gold particle-plasmon resonance by the metal-semiconductor transition of vanadium dioxide,” J. Opt. A 10, 055202 (2008).
[Crossref]

Dong, Q.

H. Zhang, Q. Li, P. Shen, Q. Dong, B. Liu, R. Liu, T. Cui, and B. Liu, “The structural phase transition process of free-standing monoclinic vanadium dioxide micron-sized rods: temperature-dependent Raman study,” RSC Adv. 5, 83139–83143 (2015).
[Crossref]

El-Sayed, M. A.

X. Huang and M. A. El-Sayed, “Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy,” J. Adv. Res. 1, 13–28 (2010).

S. Link and M. A. El-Sayed, “Optical properties and ultrafast dynamics of metallic nanocrystals,” Annu. Rev. Phys. Chem. 54, 331–366 (2003).
[Crossref]

S. Link and M. A. El-Sayed, “Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals,” Int. Rev. Phys. Chem. 19, 409–453 (2000).
[Crossref]

S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 103, 3073–3077 (1999).
[Crossref]

Fang, X.

Faraon, A.

A. Arbabi, E. Arbabi, S. M. Kamali, Y. Horie, S. Han, and A. Faraon, “Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations,” Nat. Commun. 7, 13682 (2016).
[Crossref]

Feldman, L. C.

E. U. Donev, R. Lopez, L. C. Feldman, and R. F. Haglund, “Confocal Raman microscopy across the metal-insulator transition of single vanadium dioxide nanoparticles,” Nano Lett. 9, 702–706 (2009).
[Crossref]

E. U. Donev, J. I. Ziegler, R. F. Haglund, and L. C. Feldman, “Size effects in the structural phase transition of VO2 nanoparticles studied by surface-enhanced Raman scattering,” J. Opt. A 11, 125002 (2009).
[Crossref]

J. Y. Suh, E. U. Donev, D. W. Ferrara, K. A. Tetz, L. C. Feldman, and R. F. Haglund, “Modulation of the gold particle-plasmon resonance by the metal-semiconductor transition of vanadium dioxide,” J. Opt. A 10, 055202 (2008).
[Crossref]

Ferrara, D. W.

D. W. Ferrara, J. Nag, E. R. MacQuarrie, A. B. Kaye, and R. F. Haglund, “Plasmonic probe of the semiconductor to metal phase transition in vanadium dioxide,” Nano Lett. 13, 4169–4175 (2013).
[Crossref]

D. W. Ferrara, E. R. MacQuarrie, J. Nag, A. B. Kaye, and R. F. Haglund, “Plasmon-enhanced low-intensity laser switching of gold::vanadium dioxide nanocomposites,” Appl. Phys. Lett. 98, 241112 (2011).
[Crossref]

J. Y. Suh, E. U. Donev, D. W. Ferrara, K. A. Tetz, L. C. Feldman, and R. F. Haglund, “Modulation of the gold particle-plasmon resonance by the metal-semiconductor transition of vanadium dioxide,” J. Opt. A 10, 055202 (2008).
[Crossref]

Fokkink, L. G. J.

B. M. I. van der Zande, M. R. Böhmer, L. G. J. Fokkink, and C. Schönenberger, “Colloidal dispersions of gold rods: synthesis and optical properties,” Langmuir 16, 451–458 (2000).
[Crossref]

Fuentes, A.

K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl, and J. H. Hafner, “A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods,” ACS Nano 2, 687–692 (2008).
[Crossref]

Gaburro, Z.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Gao, M.

Y. Ji, Y. Zhang, M. Gao, Z. Yuan, Y. Xia, C. Jin, B. Tao, C. Chen, Q. Jia, and Y. Lin, “Role of microstructures on the M1-M2 phase transition in epitaxial VO2 thin films,” Sci. Rep. 4, 4854 (2014).
[Crossref]

Gao, Y.

B. Peng, Z. Li, E. Mutlugun, P. L. Hernández Martínez, D. Li, Q. Zhang, Y. Gao, H. V. Demir, and Q. Xiong, “Quantum dots on vertically aligned gold nanorod monolayer: plasmon enhanced fluorescence,” Nanoscale 6, 5592–5598 (2014).
[Crossref]

García, M. A.

M. A. García, V. Bouzas, and N. Carmona, “Synthesis of gold nanorods for biomedical applications,” AIP Conf. Proc. 1275, 84–87 (2010).
[Crossref]

Gaskell, J. M.

O. L. Muskens, L. Bergamini, Y. Wang, J. M. Gaskell, N. Zabala, C. H. de Groot, D. W. Sheel, and J. Aizpurua, “Antenna-assisted picosecond control of nanoscale phase transition in vanadium dioxide,” Light Sci. Appl. 5, e16173 (2016).
[Crossref]

Genevet, P.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Gholipour, B.

Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10, 60–65 (2016).
[Crossref]

Goldflam, M.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16, 1050–1055 (2016).
[Crossref]

Gong, Y.

Grattan, K. T. V.

J. Cao, T. Sun, and K. T. V. Grattan, “Gold nanorod-based localized surface plasmon resonance biosensors: a review,” Sens. Actuators B 195, 332–351 (2014).
[Crossref]

Hafner, J. H.

K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl, and J. H. Hafner, “A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods,” ACS Nano 2, 687–692 (2008).
[Crossref]

Haglund, R. F.

D. Y. Lei, K. Appavoo, F. Ligmajer, Y. Sonnefraud, R. F. Haglund, and S. A. Maier, “Optically-triggered nanoscale memory effect in a hybrid plasmonic-phase changing nanostructure,” ACS Photon. 2, 1306–1313 (2015).
[Crossref]

K. Appavoo, B. Wang, N. F. Brady, M. Seo, J. Nag, R. P. Prasankumar, D. J. Hilton, S. T. Pantelides, and R. F. Haglund, “Ultrafast phase transition via catastrophic phonon collapse driven by plasmonic hot-electron injection,” Nano Lett. 14, 1127–1133 (2014).
[Crossref]

D. W. Ferrara, J. Nag, E. R. MacQuarrie, A. B. Kaye, and R. F. Haglund, “Plasmonic probe of the semiconductor to metal phase transition in vanadium dioxide,” Nano Lett. 13, 4169–4175 (2013).
[Crossref]

K. Appavoo and R. F. Haglund, “Detecting nanoscale size dependence in VO2 phase transition using a split-ring resonator metamaterial,” Nano Lett. 11, 1025–1031 (2011).
[Crossref]

D. W. Ferrara, E. R. MacQuarrie, J. Nag, A. B. Kaye, and R. F. Haglund, “Plasmon-enhanced low-intensity laser switching of gold::vanadium dioxide nanocomposites,” Appl. Phys. Lett. 98, 241112 (2011).
[Crossref]

E. U. Donev, J. I. Ziegler, R. F. Haglund, and L. C. Feldman, “Size effects in the structural phase transition of VO2 nanoparticles studied by surface-enhanced Raman scattering,” J. Opt. A 11, 125002 (2009).
[Crossref]

E. U. Donev, R. Lopez, L. C. Feldman, and R. F. Haglund, “Confocal Raman microscopy across the metal-insulator transition of single vanadium dioxide nanoparticles,” Nano Lett. 9, 702–706 (2009).
[Crossref]

J. Y. Suh, E. U. Donev, D. W. Ferrara, K. A. Tetz, L. C. Feldman, and R. F. Haglund, “Modulation of the gold particle-plasmon resonance by the metal-semiconductor transition of vanadium dioxide,” J. Opt. A 10, 055202 (2008).
[Crossref]

Han, J.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26, 5031–5036 (2014).
[Crossref]

Han, S.

A. Arbabi, E. Arbabi, S. M. Kamali, Y. Horie, S. Han, and A. Faraon, “Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations,” Nat. Commun. 7, 13682 (2016).
[Crossref]

Hashemi, M. R.

M. R. Hashemi, S. H. Yang, T. Wang, N. Sepúlveda, and M. Jarrahi, “Electronically-controlled beam-steering through vanadium dioxide metasurfaces,” Sci. Rep. 6, 35439 (2016).
[Crossref]

Haynes, T. E.

R. Lopez, T. E. Haynes, and L. A. Boatner, “Size effects in the structural phase transition of VO2 nanoparticles,” Phys. Rev. B 65, 224113 (2002).
[Crossref]

He, J.

J. He, Z. Xie, W. Sun, X. Wang, Y. Ji, S. Wang, Y. Lin, and Y. Zhang, “Terahertz tunable metasurface lens based on vanadium dioxide phase transition,” Plasmonics 11, 1285–1290 (2016).
[Crossref]

He, S.

W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C. W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7, 11930 (2016).
[Crossref]

Hernández Martínez, P. L.

B. Peng, Z. Li, E. Mutlugun, P. L. Hernández Martínez, D. Li, Q. Zhang, Y. Gao, H. V. Demir, and Q. Xiong, “Quantum dots on vertically aligned gold nanorod monolayer: plasmon enhanced fluorescence,” Nanoscale 6, 5592–5598 (2014).
[Crossref]

Hernández-Velasco, J.

P. Vilanova-Martínez, J. Hernández-Velasco, A. R. Landa-Cánovas, and F. Agulló-Rueda, “Laser heating induced phase changes of VO2 crystals in air monitored by Raman spectroscopy,” J. Alloys Compd. 661, 122–125 (2016).
[Crossref]

Hilton, D. J.

K. Appavoo, B. Wang, N. F. Brady, M. Seo, J. Nag, R. P. Prasankumar, D. J. Hilton, S. T. Pantelides, and R. F. Haglund, “Ultrafast phase transition via catastrophic phonon collapse driven by plasmonic hot-electron injection,” Nano Lett. 14, 1127–1133 (2014).
[Crossref]

Hong, M.

F. Qin, L. Ding, L. Zhang, F. Monticone, C. C. Chum, J. Deng, S. Mei, Y. Li, J. Teng, M. Hong, S. Zhang, A. Alu, and C. W. Qiu, “Hybrid bilayer plasmonic metasurface efficiently manipulates visible light,” Sci. Adv. 2, e1501168 (2016).
[Crossref]

Horie, Y.

A. Arbabi, E. Arbabi, S. M. Kamali, Y. Horie, S. Han, and A. Faraon, “Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations,” Nat. Commun. 7, 13682 (2016).
[Crossref]

Hosseini, P.

P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511, 206–211 (2014).
[Crossref]

Huan, C. H.

B. Peng, Q. Zhang, X. Liu, Y. Ji, H. V. Demir, C. H. Huan, T. C. Sum, and Q. Xiong, “Fluorophore-doped core-multishell spherical plasmonic nanocavities: resonant energy transfer toward a loss compensation,” ACS Nano 6, 6250–6259 (2012).
[Crossref]

Huang, L.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12, 5750–5755 (2012).
[Crossref]

Huang, X.

X. Huang and M. A. El-Sayed, “Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy,” J. Adv. Res. 1, 13–28 (2010).

Jarrahi, M.

M. R. Hashemi, S. H. Yang, T. Wang, N. Sepúlveda, and M. Jarrahi, “Electronically-controlled beam-steering through vanadium dioxide metasurfaces,” Sci. Rep. 6, 35439 (2016).
[Crossref]

Ji, Y.

J. He, Z. Xie, W. Sun, X. Wang, Y. Ji, S. Wang, Y. Lin, and Y. Zhang, “Terahertz tunable metasurface lens based on vanadium dioxide phase transition,” Plasmonics 11, 1285–1290 (2016).
[Crossref]

Y. Ji, Y. Zhang, M. Gao, Z. Yuan, Y. Xia, C. Jin, B. Tao, C. Chen, Q. Jia, and Y. Lin, “Role of microstructures on the M1-M2 phase transition in epitaxial VO2 thin films,” Sci. Rep. 4, 4854 (2014).
[Crossref]

B. Peng, Q. Zhang, X. Liu, Y. Ji, H. V. Demir, C. H. Huan, T. C. Sum, and Q. Xiong, “Fluorophore-doped core-multishell spherical plasmonic nanocavities: resonant energy transfer toward a loss compensation,” ACS Nano 6, 6250–6259 (2012).
[Crossref]

Jia, Q.

Y. Ji, Y. Zhang, M. Gao, Z. Yuan, Y. Xia, C. Jin, B. Tao, C. Chen, Q. Jia, and Y. Lin, “Role of microstructures on the M1-M2 phase transition in epitaxial VO2 thin films,” Sci. Rep. 4, 4854 (2014).
[Crossref]

Jiang, R.

L. Shao, Q. Ruan, R. Jiang, and J. Wang, “Macroscale colloidal noble metal nanocrystal arrays and their refractive index-based sensing characteristics,” Small 10, 802–811 (2014).
[Crossref]

Jin, C.

Y. Ji, Y. Zhang, M. Gao, Z. Yuan, Y. Xia, C. Jin, B. Tao, C. Chen, Q. Jia, and Y. Lin, “Role of microstructures on the M1-M2 phase transition in epitaxial VO2 thin films,” Sci. Rep. 4, 4854 (2014).
[Crossref]

Jin, G.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12, 5750–5755 (2012).
[Crossref]

Jin, P.

H. Kakiuchida, P. Jin, S. Nakao, and M. Tazawa, “Optical properties of vanadium dioxide film during semiconductive-metallic phase transition,” Jpn. J. Appl. Phys. 46, L113–L116 (2007).
[Crossref]

G. Xu, Y. Chen, M. Tazawa, and P. Jin, “Surface plasmon resonance of silver nanoparticles on vanadium dioxide,” J. Phys. Chem. B 110, 2051–2056 (2006).
[Crossref]

Jostmeier, T.

T. Jostmeier, J. Zimmer, H. Karl, H. J. Krenner, and M. Betz, “Optically imprinted reconfigurable photonic elements in a VO2 nanocomposite,” Appl. Phys. Lett. 105, 071107 (2014).
[Crossref]

Jung, D. H.

D. H. Jung, H. S. So, K. H. Ko, J. W. Park, H. Lee, T. T. T. Nguyen, and S. Yoon, “Electrical and optical properties of VO2 thin films grown on various sapphire substrates by using RF sputtering deposition,” J. Korean Phys. Soc. 69, 1787–1797 (2016).
[Crossref]

Kakiuchida, H.

H. Kakiuchida, P. Jin, S. Nakao, and M. Tazawa, “Optical properties of vanadium dioxide film during semiconductive-metallic phase transition,” Jpn. J. Appl. Phys. 46, L113–L116 (2007).
[Crossref]

Kamali, S. M.

A. Arbabi, E. Arbabi, S. M. Kamali, Y. Horie, S. Han, and A. Faraon, “Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations,” Nat. Commun. 7, 13682 (2016).
[Crossref]

Kang, K.-Y.

H.-T. Kim, B.-G. Chae, D.-H. Youn, G. Kim, K.-Y. Kang, S.-J. Lee, K. Kim, and Y.-S. Lim, “Raman study of electric-field-induced first-order metal-insulator transition in VO2-based devices,” Appl. Phys. Lett. 86, 242101 (2005).
[Crossref]

Kang, L.

L. Liu, L. Kang, T. S. Mayer, and D. H. Werner, “Hybrid metamaterials for electrically triggered multifunctional control,” Nat. Commun. 7, 13236 (2016).
[Crossref]

L. Kang, Y. Cui, S. Lan, S. P. Rodrigues, M. L. Brongersma, and W. Cai, “Electrifying photonic metamaterials for tunable nonlinear optics,” Nat. Commun. 5, 4680 (2014).
[Crossref]

Karl, H.

T. Jostmeier, J. Zimmer, H. Karl, H. J. Krenner, and M. Betz, “Optically imprinted reconfigurable photonic elements in a VO2 nanocomposite,” Appl. Phys. Lett. 105, 071107 (2014).
[Crossref]

Kats, M. A.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16, 1050–1055 (2016).
[Crossref]

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14, 6526–6532 (2014).
[Crossref]

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Kaye, A. B.

D. W. Ferrara, J. Nag, E. R. MacQuarrie, A. B. Kaye, and R. F. Haglund, “Plasmonic probe of the semiconductor to metal phase transition in vanadium dioxide,” Nano Lett. 13, 4169–4175 (2013).
[Crossref]

D. W. Ferrara, E. R. MacQuarrie, J. Nag, A. B. Kaye, and R. F. Haglund, “Plasmon-enhanced low-intensity laser switching of gold::vanadium dioxide nanocomposites,” Appl. Phys. Lett. 98, 241112 (2011).
[Crossref]

Kenney, M.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26, 5031–5036 (2014).
[Crossref]

Kerbusch, J.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16, 1050–1055 (2016).
[Crossref]

Kildishev, A. V.

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
[Crossref]

Kim, G.

H.-T. Kim, B.-G. Chae, D.-H. Youn, G. Kim, K.-Y. Kang, S.-J. Lee, K. Kim, and Y.-S. Lim, “Raman study of electric-field-induced first-order metal-insulator transition in VO2-based devices,” Appl. Phys. Lett. 86, 242101 (2005).
[Crossref]

Kim, H.-T.

H.-T. Kim, B.-G. Chae, D.-H. Youn, G. Kim, K.-Y. Kang, S.-J. Lee, K. Kim, and Y.-S. Lim, “Raman study of electric-field-induced first-order metal-insulator transition in VO2-based devices,” Appl. Phys. Lett. 86, 242101 (2005).
[Crossref]

Kim, K.

H.-T. Kim, B.-G. Chae, D.-H. Youn, G. Kim, K.-Y. Kang, S.-J. Lee, K. Kim, and Y.-S. Lim, “Raman study of electric-field-induced first-order metal-insulator transition in VO2-based devices,” Appl. Phys. Lett. 86, 242101 (2005).
[Crossref]

Ko, K. H.

D. H. Jung, H. S. So, K. H. Ko, J. W. Park, H. Lee, T. T. T. Nguyen, and S. Yoon, “Electrical and optical properties of VO2 thin films grown on various sapphire substrates by using RF sputtering deposition,” J. Korean Phys. Soc. 69, 1787–1797 (2016).
[Crossref]

Kobashi, J.

J. Kobashi, H. Yoshida, and M. Ozaki, “Planar optics with patterned chiral liquid crystals,” Nat. Photonics 10, 389–392 (2016).
[Crossref]

Kocer, H.

H. Kocer, S. Butun, B. Banar, K. Wang, S. Tongay, J. Wu, and K. Aydin, “Thermal tuning of infrared resonant absorbers based on hybrid gold-VO2 nanostructures,” Appl. Phys. Lett. 106, 161104 (2015).
[Crossref]

Kong, J.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14, 6526–6532 (2014).
[Crossref]

Kou, X.

H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape- and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24, 5233–5237 (2008).
[Crossref]

Kravchenko, I. I.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflect array for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14, 1394–1399 (2014).
[Crossref]

Krenner, H. J.

T. Jostmeier, J. Zimmer, H. Karl, H. J. Krenner, and M. Betz, “Optically imprinted reconfigurable photonic elements in a VO2 nanocomposite,” Appl. Phys. Lett. 105, 071107 (2014).
[Crossref]

Lan, S.

L. Kang, Y. Cui, S. Lan, S. P. Rodrigues, M. L. Brongersma, and W. Cai, “Electrifying photonic metamaterials for tunable nonlinear optics,” Nat. Commun. 5, 4680 (2014).
[Crossref]

Landa-Cánovas, A. R.

P. Vilanova-Martínez, J. Hernández-Velasco, A. R. Landa-Cánovas, and F. Agulló-Rueda, “Laser heating induced phase changes of VO2 crystals in air monitored by Raman spectroscopy,” J. Alloys Compd. 661, 122–125 (2016).
[Crossref]

Lee, H.

D. H. Jung, H. S. So, K. H. Ko, J. W. Park, H. Lee, T. T. T. Nguyen, and S. Yoon, “Electrical and optical properties of VO2 thin films grown on various sapphire substrates by using RF sputtering deposition,” J. Korean Phys. Soc. 69, 1787–1797 (2016).
[Crossref]

Lee, S.

K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl, and J. H. Hafner, “A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods,” ACS Nano 2, 687–692 (2008).
[Crossref]

Lee, S.-J.

H.-T. Kim, B.-G. Chae, D.-H. Youn, G. Kim, K.-Y. Kang, S.-J. Lee, K. Kim, and Y.-S. Lim, “Raman study of electric-field-induced first-order metal-insulator transition in VO2-based devices,” Appl. Phys. Lett. 86, 242101 (2005).
[Crossref]

Lee, Y. H.

B. Peng, G. Li, D. Li, S. Dodson, Q. Zhang, J. Zhang, Y. H. Lee, H. V. Demir, X. Y. Ling, and Q. Xiong, “Vertically aligned gold nanorod monolayer on arbitrary substrates: self-assembly and femtomolar detection of food contaminants,” ACS Nano 7, 5993–6000 (2013).
[Crossref]

Lei, D. Y.

D. Y. Lei, K. Appavoo, F. Ligmajer, Y. Sonnefraud, R. F. Haglund, and S. A. Maier, “Optically-triggered nanoscale memory effect in a hybrid plasmonic-phase changing nanostructure,” ACS Photon. 2, 1306–1313 (2015).
[Crossref]

Li, D.

B. Peng, Z. Li, E. Mutlugun, P. L. Hernández Martínez, D. Li, Q. Zhang, Y. Gao, H. V. Demir, and Q. Xiong, “Quantum dots on vertically aligned gold nanorod monolayer: plasmon enhanced fluorescence,” Nanoscale 6, 5592–5598 (2014).
[Crossref]

B. Peng, G. Li, D. Li, S. Dodson, Q. Zhang, J. Zhang, Y. H. Lee, H. V. Demir, X. Y. Ling, and Q. Xiong, “Vertically aligned gold nanorod monolayer on arbitrary substrates: self-assembly and femtomolar detection of food contaminants,” ACS Nano 7, 5993–6000 (2013).
[Crossref]

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11, 3232–3238 (2011).
[Crossref]

Li, G.

B. Peng, G. Li, D. Li, S. Dodson, Q. Zhang, J. Zhang, Y. H. Lee, H. V. Demir, X. Y. Ling, and Q. Xiong, “Vertically aligned gold nanorod monolayer on arbitrary substrates: self-assembly and femtomolar detection of food contaminants,” ACS Nano 7, 5993–6000 (2013).
[Crossref]

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12, 5750–5755 (2012).
[Crossref]

Li, J.

J. Li, M. Yang, X. Sun, X. Yang, J. Xue, C. Zhu, H. Liu, and Y. Xia, “Micropatterning of the ferroelectric phase in a poly(vinylidene difluoride) film by plasmonic heating with gold nanocages,” Angew. Chem. 128, 14032–14036 (2016).

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Li, Q.

H. Zhang, Q. Li, P. Shen, Q. Dong, B. Liu, R. Liu, T. Cui, and B. Liu, “The structural phase transition process of free-standing monoclinic vanadium dioxide micron-sized rods: temperature-dependent Raman study,” RSC Adv. 5, 83139–83143 (2015).
[Crossref]

H. Chen, L. Shao, Q. Li, and J. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42, 2679–2724 (2013).
[Crossref]

Li, X.

W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C. W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7, 11930 (2016).
[Crossref]

Li, Y.

F. Qin, L. Ding, L. Zhang, F. Monticone, C. C. Chum, J. Deng, S. Mei, Y. Li, J. Teng, M. Hong, S. Zhang, A. Alu, and C. W. Qiu, “Hybrid bilayer plasmonic metasurface efficiently manipulates visible light,” Sci. Adv. 2, e1501168 (2016).
[Crossref]

Li, Z.

B. Peng, Z. Li, E. Mutlugun, P. L. Hernández Martínez, D. Li, Q. Zhang, Y. Gao, H. V. Demir, and Q. Xiong, “Quantum dots on vertically aligned gold nanorod monolayer: plasmon enhanced fluorescence,” Nanoscale 6, 5592–5598 (2014).
[Crossref]

Li, Z. F.

M. Pan, J. Liu, H. Zhong, S. Wang, Z. F. Li, X. Chen, and W. Lu, “Raman study of the phase transition in VO2 thin films,” J. Cryst. Growth 268, 178–183 (2004).
[Crossref]

Liao, H.

K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl, and J. H. Hafner, “A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods,” ACS Nano 2, 687–692 (2008).
[Crossref]

Ligmajer, F.

D. Y. Lei, K. Appavoo, F. Ligmajer, Y. Sonnefraud, R. F. Haglund, and S. A. Maier, “Optically-triggered nanoscale memory effect in a hybrid plasmonic-phase changing nanostructure,” ACS Photon. 2, 1306–1313 (2015).
[Crossref]

Lim, Y.-S.

H.-T. Kim, B.-G. Chae, D.-H. Youn, G. Kim, K.-Y. Kang, S.-J. Lee, K. Kim, and Y.-S. Lim, “Raman study of electric-field-induced first-order metal-insulator transition in VO2-based devices,” Appl. Phys. Lett. 86, 242101 (2005).
[Crossref]

Lin, Y.

J. He, Z. Xie, W. Sun, X. Wang, Y. Ji, S. Wang, Y. Lin, and Y. Zhang, “Terahertz tunable metasurface lens based on vanadium dioxide phase transition,” Plasmonics 11, 1285–1290 (2016).
[Crossref]

Y. Ji, Y. Zhang, M. Gao, Z. Yuan, Y. Xia, C. Jin, B. Tao, C. Chen, Q. Jia, and Y. Lin, “Role of microstructures on the M1-M2 phase transition in epitaxial VO2 thin films,” Sci. Rep. 4, 4854 (2014).
[Crossref]

Ling, X. Y.

B. Peng, G. Li, D. Li, S. Dodson, Q. Zhang, J. Zhang, Y. H. Lee, H. V. Demir, X. Y. Ling, and Q. Xiong, “Vertically aligned gold nanorod monolayer on arbitrary substrates: self-assembly and femtomolar detection of food contaminants,” ACS Nano 7, 5993–6000 (2013).
[Crossref]

Link, S.

S. Link and M. A. El-Sayed, “Optical properties and ultrafast dynamics of metallic nanocrystals,” Annu. Rev. Phys. Chem. 54, 331–366 (2003).
[Crossref]

S. Link and M. A. El-Sayed, “Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals,” Int. Rev. Phys. Chem. 19, 409–453 (2000).
[Crossref]

S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 103, 3073–3077 (1999).
[Crossref]

Liu, B.

H. Zhang, Q. Li, P. Shen, Q. Dong, B. Liu, R. Liu, T. Cui, and B. Liu, “The structural phase transition process of free-standing monoclinic vanadium dioxide micron-sized rods: temperature-dependent Raman study,” RSC Adv. 5, 83139–83143 (2015).
[Crossref]

H. Zhang, Q. Li, P. Shen, Q. Dong, B. Liu, R. Liu, T. Cui, and B. Liu, “The structural phase transition process of free-standing monoclinic vanadium dioxide micron-sized rods: temperature-dependent Raman study,” RSC Adv. 5, 83139–83143 (2015).
[Crossref]

Liu, C.

C. Liu, Y. Bai, Q. Zhao, Y. Yang, H. Chen, J. Zhou, and L. Qiao, “Fully controllable Pancharatnam–Berry metasurface array with high conversion efficiency and broad bandwidth,” Sci. Rep. 6, 34819 (2016).
[Crossref]

Liu, H.

J. Li, M. Yang, X. Sun, X. Yang, J. Xue, C. Zhu, H. Liu, and Y. Xia, “Micropatterning of the ferroelectric phase in a poly(vinylidene difluoride) film by plasmonic heating with gold nanocages,” Angew. Chem. 128, 14032–14036 (2016).

Liu, J.

W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C. W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7, 11930 (2016).
[Crossref]

M. Pan, J. Liu, H. Zhong, S. Wang, Z. F. Li, X. Chen, and W. Lu, “Raman study of the phase transition in VO2 thin films,” J. Cryst. Growth 268, 178–183 (2004).
[Crossref]

Liu, L.

L. Liu, L. Kang, T. S. Mayer, and D. H. Werner, “Hybrid metamaterials for electrically triggered multifunctional control,” Nat. Commun. 7, 13236 (2016).
[Crossref]

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26, 5031–5036 (2014).
[Crossref]

Liu, M.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16, 1050–1055 (2016).
[Crossref]

Liu, R.

H. Zhang, Q. Li, P. Shen, Q. Dong, B. Liu, R. Liu, T. Cui, and B. Liu, “The structural phase transition process of free-standing monoclinic vanadium dioxide micron-sized rods: temperature-dependent Raman study,” RSC Adv. 5, 83139–83143 (2015).
[Crossref]

Liu, X.

B. Peng, Q. Zhang, X. Liu, Y. Ji, H. V. Demir, C. H. Huan, T. C. Sum, and Q. Xiong, “Fluorophore-doped core-multishell spherical plasmonic nanocavities: resonant energy transfer toward a loss compensation,” ACS Nano 6, 6250–6259 (2012).
[Crossref]

Liz-Marzána, L.

J. Pérez-Justea, I. Pastoriza-santos, L. Liz-Marzána, and P. Mulvaney, “Gold nanorods: synthesis, characterization and applications,” Coord. Chem. Rev. 249, 1870–1901 (2005).
[Crossref]

Loncar, M.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14, 6526–6532 (2014).
[Crossref]

Lopez, R.

E. U. Donev, R. Lopez, L. C. Feldman, and R. F. Haglund, “Confocal Raman microscopy across the metal-insulator transition of single vanadium dioxide nanoparticles,” Nano Lett. 9, 702–706 (2009).
[Crossref]

R. Lopez, T. E. Haynes, and L. A. Boatner, “Size effects in the structural phase transition of VO2 nanoparticles,” Phys. Rev. B 65, 224113 (2002).
[Crossref]

Lu, C.

Lu, W.

M. Pan, J. Liu, H. Zhong, S. Wang, Z. F. Li, X. Chen, and W. Lu, “Raman study of the phase transition in VO2 thin films,” J. Cryst. Growth 268, 178–183 (2004).
[Crossref]

Ma, J.

Maaza, M.

M. Maaza, O. Nemraoui, C. Sella, and A. C. Beye, “Surface plasmon resonance tunability in Au-VO2 thermochromic nano-composites,” Gold Bull. 38, 100–106 (2005).
[Crossref]

MacDonald, K. F.

MacQuarrie, E. R.

D. W. Ferrara, J. Nag, E. R. MacQuarrie, A. B. Kaye, and R. F. Haglund, “Plasmonic probe of the semiconductor to metal phase transition in vanadium dioxide,” Nano Lett. 13, 4169–4175 (2013).
[Crossref]

D. W. Ferrara, E. R. MacQuarrie, J. Nag, A. B. Kaye, and R. F. Haglund, “Plasmon-enhanced low-intensity laser switching of gold::vanadium dioxide nanocomposites,” Appl. Phys. Lett. 98, 241112 (2011).
[Crossref]

Maier, S. A.

D. Y. Lei, K. Appavoo, F. Ligmajer, Y. Sonnefraud, R. F. Haglund, and S. A. Maier, “Optically-triggered nanoscale memory effect in a hybrid plasmonic-phase changing nanostructure,” ACS Photon. 2, 1306–1313 (2015).
[Crossref]

Mastro, M. A.

Mayer, K. M.

K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl, and J. H. Hafner, “A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods,” ACS Nano 2, 687–692 (2008).
[Crossref]

Mayer, T. S.

L. Liu, L. Kang, T. S. Mayer, and D. H. Werner, “Hybrid metamaterials for electrically triggered multifunctional control,” Nat. Commun. 7, 13236 (2016).
[Crossref]

McLeod, A. S.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16, 1050–1055 (2016).
[Crossref]

Mei, S.

F. Qin, L. Ding, L. Zhang, F. Monticone, C. C. Chum, J. Deng, S. Mei, Y. Li, J. Teng, M. Hong, S. Zhang, A. Alu, and C. W. Qiu, “Hybrid bilayer plasmonic metasurface efficiently manipulates visible light,” Sci. Adv. 2, e1501168 (2016).
[Crossref]

Mohamed, M. B.

S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 103, 3073–3077 (1999).
[Crossref]

Moitra, P.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflect array for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14, 1394–1399 (2014).
[Crossref]

Monticone, F.

F. Qin, L. Ding, L. Zhang, F. Monticone, C. C. Chum, J. Deng, S. Mei, Y. Li, J. Teng, M. Hong, S. Zhang, A. Alu, and C. W. Qiu, “Hybrid bilayer plasmonic metasurface efficiently manipulates visible light,” Sci. Adv. 2, e1501168 (2016).
[Crossref]

Mühlenbernd, H.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12, 5750–5755 (2012).
[Crossref]

Mulvaney, P.

J. Pérez-Justea, I. Pastoriza-santos, L. Liz-Marzána, and P. Mulvaney, “Gold nanorods: synthesis, characterization and applications,” Coord. Chem. Rev. 249, 1870–1901 (2005).
[Crossref]

Muskens, O. L.

O. L. Muskens, L. Bergamini, Y. Wang, J. M. Gaskell, N. Zabala, C. H. de Groot, D. W. Sheel, and J. Aizpurua, “Antenna-assisted picosecond control of nanoscale phase transition in vanadium dioxide,” Light Sci. Appl. 5, e16173 (2016).
[Crossref]

Mutlugun, E.

B. Peng, Z. Li, E. Mutlugun, P. L. Hernández Martínez, D. Li, Q. Zhang, Y. Gao, H. V. Demir, and Q. Xiong, “Quantum dots on vertically aligned gold nanorod monolayer: plasmon enhanced fluorescence,” Nanoscale 6, 5592–5598 (2014).
[Crossref]

Nag, J.

K. Appavoo, B. Wang, N. F. Brady, M. Seo, J. Nag, R. P. Prasankumar, D. J. Hilton, S. T. Pantelides, and R. F. Haglund, “Ultrafast phase transition via catastrophic phonon collapse driven by plasmonic hot-electron injection,” Nano Lett. 14, 1127–1133 (2014).
[Crossref]

D. W. Ferrara, J. Nag, E. R. MacQuarrie, A. B. Kaye, and R. F. Haglund, “Plasmonic probe of the semiconductor to metal phase transition in vanadium dioxide,” Nano Lett. 13, 4169–4175 (2013).
[Crossref]

D. W. Ferrara, E. R. MacQuarrie, J. Nag, A. B. Kaye, and R. F. Haglund, “Plasmon-enhanced low-intensity laser switching of gold::vanadium dioxide nanocomposites,” Appl. Phys. Lett. 98, 241112 (2011).
[Crossref]

Nakao, S.

H. Kakiuchida, P. Jin, S. Nakao, and M. Tazawa, “Optical properties of vanadium dioxide film during semiconductive-metallic phase transition,” Jpn. J. Appl. Phys. 46, L113–L116 (2007).
[Crossref]

Nawrodt, R.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16, 1050–1055 (2016).
[Crossref]

Nehl, C. L.

K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl, and J. H. Hafner, “A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods,” ACS Nano 2, 687–692 (2008).
[Crossref]

Nemraoui, O.

M. Maaza, O. Nemraoui, C. Sella, and A. C. Beye, “Surface plasmon resonance tunability in Au-VO2 thermochromic nano-composites,” Gold Bull. 38, 100–106 (2005).
[Crossref]

Nguyen, T. T. T.

D. H. Jung, H. S. So, K. H. Ko, J. W. Park, H. Lee, T. T. T. Nguyen, and S. Yoon, “Electrical and optical properties of VO2 thin films grown on various sapphire substrates by using RF sputtering deposition,” J. Korean Phys. Soc. 69, 1787–1797 (2016).
[Crossref]

Ni, W.

H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape- and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24, 5233–5237 (2008).
[Crossref]

Ni, X.

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
[Crossref]

Ou, J. Y.

J. Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8, 252–255 (2013).
[Crossref]

Ouyang, C.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26, 5031–5036 (2014).
[Crossref]

Ozaki, M.

J. Kobashi, H. Yoshida, and M. Ozaki, “Planar optics with patterned chiral liquid crystals,” Nat. Photonics 10, 389–392 (2016).
[Crossref]

Pan, M.

M. Pan, J. Liu, H. Zhong, S. Wang, Z. F. Li, X. Chen, and W. Lu, “Raman study of the phase transition in VO2 thin films,” J. Cryst. Growth 268, 178–183 (2004).
[Crossref]

Pantelides, S. T.

K. Appavoo, B. Wang, N. F. Brady, M. Seo, J. Nag, R. P. Prasankumar, D. J. Hilton, S. T. Pantelides, and R. F. Haglund, “Ultrafast phase transition via catastrophic phonon collapse driven by plasmonic hot-electron injection,” Nano Lett. 14, 1127–1133 (2014).
[Crossref]

Park, J. W.

D. H. Jung, H. S. So, K. H. Ko, J. W. Park, H. Lee, T. T. T. Nguyen, and S. Yoon, “Electrical and optical properties of VO2 thin films grown on various sapphire substrates by using RF sputtering deposition,” J. Korean Phys. Soc. 69, 1787–1797 (2016).
[Crossref]

Pastoriza-santos, I.

J. Pérez-Justea, I. Pastoriza-santos, L. Liz-Marzána, and P. Mulvaney, “Gold nanorods: synthesis, characterization and applications,” Coord. Chem. Rev. 249, 1870–1901 (2005).
[Crossref]

Peng, B.

B. Peng, Z. Li, E. Mutlugun, P. L. Hernández Martínez, D. Li, Q. Zhang, Y. Gao, H. V. Demir, and Q. Xiong, “Quantum dots on vertically aligned gold nanorod monolayer: plasmon enhanced fluorescence,” Nanoscale 6, 5592–5598 (2014).
[Crossref]

B. Peng, G. Li, D. Li, S. Dodson, Q. Zhang, J. Zhang, Y. H. Lee, H. V. Demir, X. Y. Ling, and Q. Xiong, “Vertically aligned gold nanorod monolayer on arbitrary substrates: self-assembly and femtomolar detection of food contaminants,” ACS Nano 7, 5993–6000 (2013).
[Crossref]

B. Peng, Q. Zhang, X. Liu, Y. Ji, H. V. Demir, C. H. Huan, T. C. Sum, and Q. Xiong, “Fluorophore-doped core-multishell spherical plasmonic nanocavities: resonant energy transfer toward a loss compensation,” ACS Nano 6, 6250–6259 (2012).
[Crossref]

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11, 3232–3238 (2011).
[Crossref]

Pérez-Justea, J.

J. Pérez-Justea, I. Pastoriza-santos, L. Liz-Marzána, and P. Mulvaney, “Gold nanorods: synthesis, characterization and applications,” Coord. Chem. Rev. 249, 1870–1901 (2005).
[Crossref]

Plum, E.

J. Shi, X. Fang, E. T. F. Rogers, E. Plum, K. F. MacDonald, and N. I. Zheludev, “Coherent control of Snell’s law at metasurfaces,” Opt. Express 22, 21051–21060 (2014).
[Crossref]

J. Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8, 252–255 (2013).
[Crossref]

Prasankumar, R. P.

K. Appavoo, B. Wang, N. F. Brady, M. Seo, J. Nag, R. P. Prasankumar, D. J. Hilton, S. T. Pantelides, and R. F. Haglund, “Ultrafast phase transition via catastrophic phonon collapse driven by plasmonic hot-electron injection,” Nano Lett. 14, 1127–1133 (2014).
[Crossref]

Prior, Y.

E. Almeida, O. Bitton, and Y. Prior, “Nonlinear metamaterials for holography,” Nat. Commun. 7, 12533 (2016).
[Crossref]

Pryce, I. M.

Qi, Z.

Qiao, L.

C. Liu, Y. Bai, Q. Zhao, Y. Yang, H. Chen, J. Zhou, and L. Qiao, “Fully controllable Pancharatnam–Berry metasurface array with high conversion efficiency and broad bandwidth,” Sci. Rep. 6, 34819 (2016).
[Crossref]

Qin, F.

F. Qin, L. Ding, L. Zhang, F. Monticone, C. C. Chum, J. Deng, S. Mei, Y. Li, J. Teng, M. Hong, S. Zhang, A. Alu, and C. W. Qiu, “Hybrid bilayer plasmonic metasurface efficiently manipulates visible light,” Sci. Adv. 2, e1501168 (2016).
[Crossref]

Qiu, C. W.

F. Qin, L. Ding, L. Zhang, F. Monticone, C. C. Chum, J. Deng, S. Mei, Y. Li, J. Teng, M. Hong, S. Zhang, A. Alu, and C. W. Qiu, “Hybrid bilayer plasmonic metasurface efficiently manipulates visible light,” Sci. Adv. 2, e1501168 (2016).
[Crossref]

W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C. W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7, 11930 (2016).
[Crossref]

Qiu, C.-W.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Ramanathan, S.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16, 1050–1055 (2016).
[Crossref]

Reineke, B.

W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C. W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7, 11930 (2016).
[Crossref]

Rensberg, J.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16, 1050–1055 (2016).
[Crossref]

Rodrigues, S. P.

L. Kang, Y. Cui, S. Lan, S. P. Rodrigues, M. L. Brongersma, and W. Cai, “Electrifying photonic metamaterials for tunable nonlinear optics,” Nat. Commun. 5, 4680 (2014).
[Crossref]

Rogers, E. T. F.

Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10, 60–65 (2016).
[Crossref]

J. Shi, X. Fang, E. T. F. Rogers, E. Plum, K. F. MacDonald, and N. I. Zheludev, “Coherent control of Snell’s law at metasurfaces,” Opt. Express 22, 21051–21060 (2014).
[Crossref]

Ronning, C.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16, 1050–1055 (2016).
[Crossref]

Rosei, F.

M. Chaker and F. Rosei, “Materials research in Africa: rising from the falls,” Nat. Mater. 11, 187–188 (2012).
[Crossref]

Rostro, B. C.

K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl, and J. H. Hafner, “A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods,” ACS Nano 2, 687–692 (2008).
[Crossref]

Ruan, Q.

L. Shao, Q. Ruan, R. Jiang, and J. Wang, “Macroscale colloidal noble metal nanocrystal arrays and their refractive index-based sensing characteristics,” Small 10, 802–811 (2014).
[Crossref]

Schilbe, P.

P. Schilbe, “Raman scattering in VO2,” Physica B 316–317, 600–602 (2002).
[Crossref]

Schönenberger, C.

B. M. I. van der Zande, M. R. Böhmer, L. G. J. Fokkink, and C. Schönenberger, “Colloidal dispersions of gold rods: synthesis and optical properties,” Langmuir 16, 451–458 (2000).
[Crossref]

Schwarz, C.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16, 1050–1055 (2016).
[Crossref]

Scully, P. T.

K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl, and J. H. Hafner, “A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods,” ACS Nano 2, 687–692 (2008).
[Crossref]

Sella, C.

M. Maaza, O. Nemraoui, C. Sella, and A. C. Beye, “Surface plasmon resonance tunability in Au-VO2 thermochromic nano-composites,” Gold Bull. 38, 100–106 (2005).
[Crossref]

Seo, M.

K. Appavoo, B. Wang, N. F. Brady, M. Seo, J. Nag, R. P. Prasankumar, D. J. Hilton, S. T. Pantelides, and R. F. Haglund, “Ultrafast phase transition via catastrophic phonon collapse driven by plasmonic hot-electron injection,” Nano Lett. 14, 1127–1133 (2014).
[Crossref]

Sepúlveda, N.

M. R. Hashemi, S. H. Yang, T. Wang, N. Sepúlveda, and M. Jarrahi, “Electronically-controlled beam-steering through vanadium dioxide metasurfaces,” Sci. Rep. 6, 35439 (2016).
[Crossref]

Shalaev, V. M.

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
[Crossref]

Shankar, R.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14, 6526–6532 (2014).
[Crossref]

Shao, L.

L. Shao, Q. Ruan, R. Jiang, and J. Wang, “Macroscale colloidal noble metal nanocrystal arrays and their refractive index-based sensing characteristics,” Small 10, 802–811 (2014).
[Crossref]

H. Chen, L. Shao, Q. Li, and J. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42, 2679–2724 (2013).
[Crossref]

Sheel, D. W.

O. L. Muskens, L. Bergamini, Y. Wang, J. M. Gaskell, N. Zabala, C. H. de Groot, D. W. Sheel, and J. Aizpurua, “Antenna-assisted picosecond control of nanoscale phase transition in vanadium dioxide,” Light Sci. Appl. 5, e16173 (2016).
[Crossref]

Shen, P.

H. Zhang, Q. Li, P. Shen, Q. Dong, B. Liu, R. Liu, T. Cui, and B. Liu, “The structural phase transition process of free-standing monoclinic vanadium dioxide micron-sized rods: temperature-dependent Raman study,” RSC Adv. 5, 83139–83143 (2015).
[Crossref]

Shi, J.

Shi, Y.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26, 5031–5036 (2014).
[Crossref]

So, H. S.

D. H. Jung, H. S. So, K. H. Ko, J. W. Park, H. Lee, T. T. T. Nguyen, and S. Yoon, “Electrical and optical properties of VO2 thin films grown on various sapphire substrates by using RF sputtering deposition,” J. Korean Phys. Soc. 69, 1787–1797 (2016).
[Crossref]

Song, Y.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14, 6526–6532 (2014).
[Crossref]

Sonnefraud, Y.

D. Y. Lei, K. Appavoo, F. Ligmajer, Y. Sonnefraud, R. F. Haglund, and S. A. Maier, “Optically-triggered nanoscale memory effect in a hybrid plasmonic-phase changing nanostructure,” ACS Photon. 2, 1306–1313 (2015).
[Crossref]

Su, X.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26, 5031–5036 (2014).
[Crossref]

Suh, J. Y.

J. Y. Suh, E. U. Donev, D. W. Ferrara, K. A. Tetz, L. C. Feldman, and R. F. Haglund, “Modulation of the gold particle-plasmon resonance by the metal-semiconductor transition of vanadium dioxide,” J. Opt. A 10, 055202 (2008).
[Crossref]

Sum, T. C.

B. Peng, Q. Zhang, X. Liu, Y. Ji, H. V. Demir, C. H. Huan, T. C. Sum, and Q. Xiong, “Fluorophore-doped core-multishell spherical plasmonic nanocavities: resonant energy transfer toward a loss compensation,” ACS Nano 6, 6250–6259 (2012).
[Crossref]

Sun, T.

J. Cao, T. Sun, and K. T. V. Grattan, “Gold nanorod-based localized surface plasmon resonance biosensors: a review,” Sens. Actuators B 195, 332–351 (2014).
[Crossref]

Sun, W.

J. He, Z. Xie, W. Sun, X. Wang, Y. Ji, S. Wang, Y. Lin, and Y. Zhang, “Terahertz tunable metasurface lens based on vanadium dioxide phase transition,” Plasmonics 11, 1285–1290 (2016).
[Crossref]

Sun, X.

J. Li, M. Yang, X. Sun, X. Yang, J. Xue, C. Zhu, H. Liu, and Y. Xia, “Micropatterning of the ferroelectric phase in a poly(vinylidene difluoride) film by plasmonic heating with gold nanocages,” Angew. Chem. 128, 14032–14036 (2016).

Sweatlock, L. A.

Tan, Q.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12, 5750–5755 (2012).
[Crossref]

Tao, B.

Y. Ji, Y. Zhang, M. Gao, Z. Yuan, Y. Xia, C. Jin, B. Tao, C. Chen, Q. Jia, and Y. Lin, “Role of microstructures on the M1-M2 phase transition in epitaxial VO2 thin films,” Sci. Rep. 4, 4854 (2014).
[Crossref]

Tazawa, M.

H. Kakiuchida, P. Jin, S. Nakao, and M. Tazawa, “Optical properties of vanadium dioxide film during semiconductive-metallic phase transition,” Jpn. J. Appl. Phys. 46, L113–L116 (2007).
[Crossref]

G. Xu, Y. Chen, M. Tazawa, and P. Jin, “Surface plasmon resonance of silver nanoparticles on vanadium dioxide,” J. Phys. Chem. B 110, 2051–2056 (2006).
[Crossref]

Teng, J.

F. Qin, L. Ding, L. Zhang, F. Monticone, C. C. Chum, J. Deng, S. Mei, Y. Li, J. Teng, M. Hong, S. Zhang, A. Alu, and C. W. Qiu, “Hybrid bilayer plasmonic metasurface efficiently manipulates visible light,” Sci. Adv. 2, e1501168 (2016).
[Crossref]

Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10, 60–65 (2016).
[Crossref]

Tetienne, J. P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Tetz, K. A.

J. Y. Suh, E. U. Donev, D. W. Ferrara, K. A. Tetz, L. C. Feldman, and R. F. Haglund, “Modulation of the gold particle-plasmon resonance by the metal-semiconductor transition of vanadium dioxide,” J. Opt. A 10, 055202 (2008).
[Crossref]

Tongay, S.

H. Kocer, S. Butun, B. Banar, K. Wang, S. Tongay, J. Wu, and K. Aydin, “Thermal tuning of infrared resonant absorbers based on hybrid gold-VO2 nanostructures,” Appl. Phys. Lett. 106, 161104 (2015).
[Crossref]

Valentine, J.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflect array for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14, 1394–1399 (2014).
[Crossref]

van der Zande, B. M. I.

B. M. I. van der Zande, M. R. Böhmer, L. G. J. Fokkink, and C. Schönenberger, “Colloidal dispersions of gold rods: synthesis and optical properties,” Langmuir 16, 451–458 (2000).
[Crossref]

Vilanova-Martínez, P.

P. Vilanova-Martínez, J. Hernández-Velasco, A. R. Landa-Cánovas, and F. Agulló-Rueda, “Laser heating induced phase changes of VO2 crystals in air monitored by Raman spectroscopy,” J. Alloys Compd. 661, 122–125 (2016).
[Crossref]

Walavalkar, S.

Wang, B.

K. Appavoo, B. Wang, N. F. Brady, M. Seo, J. Nag, R. P. Prasankumar, D. J. Hilton, S. T. Pantelides, and R. F. Haglund, “Ultrafast phase transition via catastrophic phonon collapse driven by plasmonic hot-electron injection,” Nano Lett. 14, 1127–1133 (2014).
[Crossref]

Wang, C.-M.

Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10, 60–65 (2016).
[Crossref]

Wang, J.

L. Shao, Q. Ruan, R. Jiang, and J. Wang, “Macroscale colloidal noble metal nanocrystal arrays and their refractive index-based sensing characteristics,” Small 10, 802–811 (2014).
[Crossref]

H. Chen, L. Shao, Q. Li, and J. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42, 2679–2724 (2013).
[Crossref]

H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape- and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24, 5233–5237 (2008).
[Crossref]

Wang, K.

H. Kocer, S. Butun, B. Banar, K. Wang, S. Tongay, J. Wu, and K. Aydin, “Thermal tuning of infrared resonant absorbers based on hybrid gold-VO2 nanostructures,” Appl. Phys. Lett. 106, 161104 (2015).
[Crossref]

Wang, Q.

Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10, 60–65 (2016).
[Crossref]

Wang, S.

J. He, Z. Xie, W. Sun, X. Wang, Y. Ji, S. Wang, Y. Lin, and Y. Zhang, “Terahertz tunable metasurface lens based on vanadium dioxide phase transition,” Plasmonics 11, 1285–1290 (2016).
[Crossref]

X. Wen, Q. Zhang, J. Chai, L. M. Wong, S. Wang, and Q. Xiong, “Near-infrared active metamaterials and their applications in tunable surface-enhanced Raman scattering,” Opt. Express 22, 2989–2995 (2014).
[Crossref]

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11, 3232–3238 (2011).
[Crossref]

M. Pan, J. Liu, H. Zhong, S. Wang, Z. F. Li, X. Chen, and W. Lu, “Raman study of the phase transition in VO2 thin films,” J. Cryst. Growth 268, 178–183 (2004).
[Crossref]

Wang, T.

M. R. Hashemi, S. H. Yang, T. Wang, N. Sepúlveda, and M. Jarrahi, “Electronically-controlled beam-steering through vanadium dioxide metasurfaces,” Sci. Rep. 6, 35439 (2016).
[Crossref]

Wang, W.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflect array for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14, 1394–1399 (2014).
[Crossref]

Wang, X.

J. He, Z. Xie, W. Sun, X. Wang, Y. Ji, S. Wang, Y. Lin, and Y. Zhang, “Terahertz tunable metasurface lens based on vanadium dioxide phase transition,” Plasmonics 11, 1285–1290 (2016).
[Crossref]

Wang, Y.

W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C. W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7, 11930 (2016).
[Crossref]

O. L. Muskens, L. Bergamini, Y. Wang, J. M. Gaskell, N. Zabala, C. H. de Groot, D. W. Sheel, and J. Aizpurua, “Antenna-assisted picosecond control of nanoscale phase transition in vanadium dioxide,” Light Sci. Appl. 5, e16173 (2016).
[Crossref]

Wen, X.

Werner, D. H.

L. Liu, L. Kang, T. S. Mayer, and D. H. Werner, “Hybrid metamaterials for electrically triggered multifunctional control,” Nat. Commun. 7, 13236 (2016).
[Crossref]

Wheeler, V. D.

Wong, L. M.

X. Wen, Q. Zhang, J. Chai, L. M. Wong, S. Wang, and Q. Xiong, “Near-infrared active metamaterials and their applications in tunable surface-enhanced Raman scattering,” Opt. Express 22, 2989–2995 (2014).
[Crossref]

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11, 3232–3238 (2011).
[Crossref]

Wright, C. D.

P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511, 206–211 (2014).
[Crossref]

Wu, J.

H. Kocer, S. Butun, B. Banar, K. Wang, S. Tongay, J. Wu, and K. Aydin, “Thermal tuning of infrared resonant absorbers based on hybrid gold-VO2 nanostructures,” Appl. Phys. Lett. 106, 161104 (2015).
[Crossref]

Xia, Y.

J. Li, M. Yang, X. Sun, X. Yang, J. Xue, C. Zhu, H. Liu, and Y. Xia, “Micropatterning of the ferroelectric phase in a poly(vinylidene difluoride) film by plasmonic heating with gold nanocages,” Angew. Chem. 128, 14032–14036 (2016).

Y. Ji, Y. Zhang, M. Gao, Z. Yuan, Y. Xia, C. Jin, B. Tao, C. Chen, Q. Jia, and Y. Lin, “Role of microstructures on the M1-M2 phase transition in epitaxial VO2 thin films,” Sci. Rep. 4, 4854 (2014).
[Crossref]

Xie, Z.

J. He, Z. Xie, W. Sun, X. Wang, Y. Ji, S. Wang, Y. Lin, and Y. Zhang, “Terahertz tunable metasurface lens based on vanadium dioxide phase transition,” Plasmonics 11, 1285–1290 (2016).
[Crossref]

Xiong, Q.

X. Wen, Q. Zhang, J. Chai, L. M. Wong, S. Wang, and Q. Xiong, “Near-infrared active metamaterials and their applications in tunable surface-enhanced Raman scattering,” Opt. Express 22, 2989–2995 (2014).
[Crossref]

B. Peng, Z. Li, E. Mutlugun, P. L. Hernández Martínez, D. Li, Q. Zhang, Y. Gao, H. V. Demir, and Q. Xiong, “Quantum dots on vertically aligned gold nanorod monolayer: plasmon enhanced fluorescence,” Nanoscale 6, 5592–5598 (2014).
[Crossref]

B. Peng, G. Li, D. Li, S. Dodson, Q. Zhang, J. Zhang, Y. H. Lee, H. V. Demir, X. Y. Ling, and Q. Xiong, “Vertically aligned gold nanorod monolayer on arbitrary substrates: self-assembly and femtomolar detection of food contaminants,” ACS Nano 7, 5993–6000 (2013).
[Crossref]

B. Peng, Q. Zhang, X. Liu, Y. Ji, H. V. Demir, C. H. Huan, T. C. Sum, and Q. Xiong, “Fluorophore-doped core-multishell spherical plasmonic nanocavities: resonant energy transfer toward a loss compensation,” ACS Nano 6, 6250–6259 (2012).
[Crossref]

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11, 3232–3238 (2011).
[Crossref]

Xu, G.

G. Xu, Y. Chen, M. Tazawa, and P. Jin, “Surface plasmon resonance of silver nanoparticles on vanadium dioxide,” J. Phys. Chem. B 110, 2051–2056 (2006).
[Crossref]

Xu, N.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26, 5031–5036 (2014).
[Crossref]

Xu, X.

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11, 3232–3238 (2011).
[Crossref]

Xue, J.

J. Li, M. Yang, X. Sun, X. Yang, J. Xue, C. Zhu, H. Liu, and Y. Xia, “Micropatterning of the ferroelectric phase in a poly(vinylidene difluoride) film by plasmonic heating with gold nanocages,” Angew. Chem. 128, 14032–14036 (2016).

Yang, M.

J. Li, M. Yang, X. Sun, X. Yang, J. Xue, C. Zhu, H. Liu, and Y. Xia, “Micropatterning of the ferroelectric phase in a poly(vinylidene difluoride) film by plasmonic heating with gold nanocages,” Angew. Chem. 128, 14032–14036 (2016).

Yang, S. H.

M. R. Hashemi, S. H. Yang, T. Wang, N. Sepúlveda, and M. Jarrahi, “Electronically-controlled beam-steering through vanadium dioxide metasurfaces,” Sci. Rep. 6, 35439 (2016).
[Crossref]

Yang, X.

J. Li, M. Yang, X. Sun, X. Yang, J. Xue, C. Zhu, H. Liu, and Y. Xia, “Micropatterning of the ferroelectric phase in a poly(vinylidene difluoride) film by plasmonic heating with gold nanocages,” Angew. Chem. 128, 14032–14036 (2016).

Yang, Y.

C. Liu, Y. Bai, Q. Zhao, Y. Yang, H. Chen, J. Zhou, and L. Qiao, “Fully controllable Pancharatnam–Berry metasurface array with high conversion efficiency and broad bandwidth,” Sci. Rep. 6, 34819 (2016).
[Crossref]

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflect array for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14, 1394–1399 (2014).
[Crossref]

Yang, Z.

H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape- and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24, 5233–5237 (2008).
[Crossref]

Yao, Y.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14, 6526–6532 (2014).
[Crossref]

Ye, W.

W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C. W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7, 11930 (2016).
[Crossref]

Yi, M.

Yoon, S.

D. H. Jung, H. S. So, K. H. Ko, J. W. Park, H. Lee, T. T. T. Nguyen, and S. Yoon, “Electrical and optical properties of VO2 thin films grown on various sapphire substrates by using RF sputtering deposition,” J. Korean Phys. Soc. 69, 1787–1797 (2016).
[Crossref]

Yoshida, H.

J. Kobashi, H. Yoshida, and M. Ozaki, “Planar optics with patterned chiral liquid crystals,” Nat. Photonics 10, 389–392 (2016).
[Crossref]

Youn, D.-H.

H.-T. Kim, B.-G. Chae, D.-H. Youn, G. Kim, K.-Y. Kang, S.-J. Lee, K. Kim, and Y.-S. Lim, “Raman study of electric-field-induced first-order metal-insulator transition in VO2-based devices,” Appl. Phys. Lett. 86, 242101 (2005).
[Crossref]

Yu, N.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
[Crossref]

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Yuan, G.

Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10, 60–65 (2016).
[Crossref]

Yuan, Z.

Y. Ji, Y. Zhang, M. Gao, Z. Yuan, Y. Xia, C. Jin, B. Tao, C. Chen, Q. Jia, and Y. Lin, “Role of microstructures on the M1-M2 phase transition in epitaxial VO2 thin films,” Sci. Rep. 4, 4854 (2014).
[Crossref]

Zabala, N.

O. L. Muskens, L. Bergamini, Y. Wang, J. M. Gaskell, N. Zabala, C. H. de Groot, D. W. Sheel, and J. Aizpurua, “Antenna-assisted picosecond control of nanoscale phase transition in vanadium dioxide,” Light Sci. Appl. 5, e16173 (2016).
[Crossref]

Zentgraf, T.

W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C. W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7, 11930 (2016).
[Crossref]

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12, 5750–5755 (2012).
[Crossref]

Zeuner, F.

W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C. W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7, 11930 (2016).
[Crossref]

Zhang, H.

H. Zhang, Q. Li, P. Shen, Q. Dong, B. Liu, R. Liu, T. Cui, and B. Liu, “The structural phase transition process of free-standing monoclinic vanadium dioxide micron-sized rods: temperature-dependent Raman study,” RSC Adv. 5, 83139–83143 (2015).
[Crossref]

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Zhang, J.

J. Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8, 252–255 (2013).
[Crossref]

B. Peng, G. Li, D. Li, S. Dodson, Q. Zhang, J. Zhang, Y. H. Lee, H. V. Demir, X. Y. Ling, and Q. Xiong, “Vertically aligned gold nanorod monolayer on arbitrary substrates: self-assembly and femtomolar detection of food contaminants,” ACS Nano 7, 5993–6000 (2013).
[Crossref]

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11, 3232–3238 (2011).
[Crossref]

Zhang, L.

F. Qin, L. Ding, L. Zhang, F. Monticone, C. C. Chum, J. Deng, S. Mei, Y. Li, J. Teng, M. Hong, S. Zhang, A. Alu, and C. W. Qiu, “Hybrid bilayer plasmonic metasurface efficiently manipulates visible light,” Sci. Adv. 2, e1501168 (2016).
[Crossref]

Zhang, Q.

X. Wen, Q. Zhang, J. Chai, L. M. Wong, S. Wang, and Q. Xiong, “Near-infrared active metamaterials and their applications in tunable surface-enhanced Raman scattering,” Opt. Express 22, 2989–2995 (2014).
[Crossref]

B. Peng, Z. Li, E. Mutlugun, P. L. Hernández Martínez, D. Li, Q. Zhang, Y. Gao, H. V. Demir, and Q. Xiong, “Quantum dots on vertically aligned gold nanorod monolayer: plasmon enhanced fluorescence,” Nanoscale 6, 5592–5598 (2014).
[Crossref]

B. Peng, G. Li, D. Li, S. Dodson, Q. Zhang, J. Zhang, Y. H. Lee, H. V. Demir, X. Y. Ling, and Q. Xiong, “Vertically aligned gold nanorod monolayer on arbitrary substrates: self-assembly and femtomolar detection of food contaminants,” ACS Nano 7, 5993–6000 (2013).
[Crossref]

B. Peng, Q. Zhang, X. Liu, Y. Ji, H. V. Demir, C. H. Huan, T. C. Sum, and Q. Xiong, “Fluorophore-doped core-multishell spherical plasmonic nanocavities: resonant energy transfer toward a loss compensation,” ACS Nano 6, 6250–6259 (2012).
[Crossref]

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11, 3232–3238 (2011).
[Crossref]

Zhang, S.

W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C. W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7, 11930 (2016).
[Crossref]

F. Qin, L. Ding, L. Zhang, F. Monticone, C. C. Chum, J. Deng, S. Mei, Y. Li, J. Teng, M. Hong, S. Zhang, A. Alu, and C. W. Qiu, “Hybrid bilayer plasmonic metasurface efficiently manipulates visible light,” Sci. Adv. 2, e1501168 (2016).
[Crossref]

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16, 1050–1055 (2016).
[Crossref]

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26, 5031–5036 (2014).
[Crossref]

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12, 5750–5755 (2012).
[Crossref]

Zhang, W.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26, 5031–5036 (2014).
[Crossref]

Zhang, X.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26, 5031–5036 (2014).
[Crossref]

Zhang, Y.

J. He, Z. Xie, W. Sun, X. Wang, Y. Ji, S. Wang, Y. Lin, and Y. Zhang, “Terahertz tunable metasurface lens based on vanadium dioxide phase transition,” Plasmonics 11, 1285–1290 (2016).
[Crossref]

Y. Ji, Y. Zhang, M. Gao, Z. Yuan, Y. Xia, C. Jin, B. Tao, C. Chen, Q. Jia, and Y. Lin, “Role of microstructures on the M1-M2 phase transition in epitaxial VO2 thin films,” Sci. Rep. 4, 4854 (2014).
[Crossref]

Zhao, Q.

C. Liu, Y. Bai, Q. Zhao, Y. Yang, H. Chen, J. Zhou, and L. Qiao, “Fully controllable Pancharatnam–Berry metasurface array with high conversion efficiency and broad bandwidth,” Sci. Rep. 6, 34819 (2016).
[Crossref]

Zheludev, N. I.

Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10, 60–65 (2016).
[Crossref]

J. Shi, X. Fang, E. T. F. Rogers, E. Plum, K. F. MacDonald, and N. I. Zheludev, “Coherent control of Snell’s law at metasurfaces,” Opt. Express 22, 21051–21060 (2014).
[Crossref]

J. Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8, 252–255 (2013).
[Crossref]

Zhong, H.

M. Pan, J. Liu, H. Zhong, S. Wang, Z. F. Li, X. Chen, and W. Lu, “Raman study of the phase transition in VO2 thin films,” J. Cryst. Growth 268, 178–183 (2004).
[Crossref]

Zhou, J.

C. Liu, Y. Bai, Q. Zhao, Y. Yang, H. Chen, J. Zhou, and L. Qiao, “Fully controllable Pancharatnam–Berry metasurface array with high conversion efficiency and broad bandwidth,” Sci. Rep. 6, 34819 (2016).
[Crossref]

Zhou, Y.

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16, 1050–1055 (2016).
[Crossref]

Zhu, C.

J. Li, M. Yang, X. Sun, X. Yang, J. Xue, C. Zhu, H. Liu, and Y. Xia, “Micropatterning of the ferroelectric phase in a poly(vinylidene difluoride) film by plasmonic heating with gold nanocages,” Angew. Chem. 128, 14032–14036 (2016).

Ziegler, J. I.

E. U. Donev, J. I. Ziegler, R. F. Haglund, and L. C. Feldman, “Size effects in the structural phase transition of VO2 nanoparticles studied by surface-enhanced Raman scattering,” J. Opt. A 11, 125002 (2009).
[Crossref]

Zimmer, J.

T. Jostmeier, J. Zimmer, H. Karl, H. J. Krenner, and M. Betz, “Optically imprinted reconfigurable photonic elements in a VO2 nanocomposite,” Appl. Phys. Lett. 105, 071107 (2014).
[Crossref]

ACS Nano (3)

B. Peng, G. Li, D. Li, S. Dodson, Q. Zhang, J. Zhang, Y. H. Lee, H. V. Demir, X. Y. Ling, and Q. Xiong, “Vertically aligned gold nanorod monolayer on arbitrary substrates: self-assembly and femtomolar detection of food contaminants,” ACS Nano 7, 5993–6000 (2013).
[Crossref]

K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl, and J. H. Hafner, “A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods,” ACS Nano 2, 687–692 (2008).
[Crossref]

B. Peng, Q. Zhang, X. Liu, Y. Ji, H. V. Demir, C. H. Huan, T. C. Sum, and Q. Xiong, “Fluorophore-doped core-multishell spherical plasmonic nanocavities: resonant energy transfer toward a loss compensation,” ACS Nano 6, 6250–6259 (2012).
[Crossref]

ACS Photon. (1)

D. Y. Lei, K. Appavoo, F. Ligmajer, Y. Sonnefraud, R. F. Haglund, and S. A. Maier, “Optically-triggered nanoscale memory effect in a hybrid plasmonic-phase changing nanostructure,” ACS Photon. 2, 1306–1313 (2015).
[Crossref]

Adv. Mater. (1)

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26, 5031–5036 (2014).
[Crossref]

AIP Conf. Proc. (1)

M. A. García, V. Bouzas, and N. Carmona, “Synthesis of gold nanorods for biomedical applications,” AIP Conf. Proc. 1275, 84–87 (2010).
[Crossref]

Angew. Chem. (1)

J. Li, M. Yang, X. Sun, X. Yang, J. Xue, C. Zhu, H. Liu, and Y. Xia, “Micropatterning of the ferroelectric phase in a poly(vinylidene difluoride) film by plasmonic heating with gold nanocages,” Angew. Chem. 128, 14032–14036 (2016).

Annu. Rev. Phys. Chem. (1)

S. Link and M. A. El-Sayed, “Optical properties and ultrafast dynamics of metallic nanocrystals,” Annu. Rev. Phys. Chem. 54, 331–366 (2003).
[Crossref]

Appl. Phys. Lett. (4)

H.-T. Kim, B.-G. Chae, D.-H. Youn, G. Kim, K.-Y. Kang, S.-J. Lee, K. Kim, and Y.-S. Lim, “Raman study of electric-field-induced first-order metal-insulator transition in VO2-based devices,” Appl. Phys. Lett. 86, 242101 (2005).
[Crossref]

D. W. Ferrara, E. R. MacQuarrie, J. Nag, A. B. Kaye, and R. F. Haglund, “Plasmon-enhanced low-intensity laser switching of gold::vanadium dioxide nanocomposites,” Appl. Phys. Lett. 98, 241112 (2011).
[Crossref]

T. Jostmeier, J. Zimmer, H. Karl, H. J. Krenner, and M. Betz, “Optically imprinted reconfigurable photonic elements in a VO2 nanocomposite,” Appl. Phys. Lett. 105, 071107 (2014).
[Crossref]

H. Kocer, S. Butun, B. Banar, K. Wang, S. Tongay, J. Wu, and K. Aydin, “Thermal tuning of infrared resonant absorbers based on hybrid gold-VO2 nanostructures,” Appl. Phys. Lett. 106, 161104 (2015).
[Crossref]

Chem. Soc. Rev. (1)

H. Chen, L. Shao, Q. Li, and J. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42, 2679–2724 (2013).
[Crossref]

Coord. Chem. Rev. (1)

J. Pérez-Justea, I. Pastoriza-santos, L. Liz-Marzána, and P. Mulvaney, “Gold nanorods: synthesis, characterization and applications,” Coord. Chem. Rev. 249, 1870–1901 (2005).
[Crossref]

Gold Bull. (1)

M. Maaza, O. Nemraoui, C. Sella, and A. C. Beye, “Surface plasmon resonance tunability in Au-VO2 thermochromic nano-composites,” Gold Bull. 38, 100–106 (2005).
[Crossref]

Int. Rev. Phys. Chem. (1)

S. Link and M. A. El-Sayed, “Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals,” Int. Rev. Phys. Chem. 19, 409–453 (2000).
[Crossref]

J. Adv. Res. (1)

X. Huang and M. A. El-Sayed, “Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy,” J. Adv. Res. 1, 13–28 (2010).

J. Alloys Compd. (1)

P. Vilanova-Martínez, J. Hernández-Velasco, A. R. Landa-Cánovas, and F. Agulló-Rueda, “Laser heating induced phase changes of VO2 crystals in air monitored by Raman spectroscopy,” J. Alloys Compd. 661, 122–125 (2016).
[Crossref]

J. Cryst. Growth (1)

M. Pan, J. Liu, H. Zhong, S. Wang, Z. F. Li, X. Chen, and W. Lu, “Raman study of the phase transition in VO2 thin films,” J. Cryst. Growth 268, 178–183 (2004).
[Crossref]

J. Korean Phys. Soc. (1)

D. H. Jung, H. S. So, K. H. Ko, J. W. Park, H. Lee, T. T. T. Nguyen, and S. Yoon, “Electrical and optical properties of VO2 thin films grown on various sapphire substrates by using RF sputtering deposition,” J. Korean Phys. Soc. 69, 1787–1797 (2016).
[Crossref]

J. Opt. A (2)

E. U. Donev, J. I. Ziegler, R. F. Haglund, and L. C. Feldman, “Size effects in the structural phase transition of VO2 nanoparticles studied by surface-enhanced Raman scattering,” J. Opt. A 11, 125002 (2009).
[Crossref]

J. Y. Suh, E. U. Donev, D. W. Ferrara, K. A. Tetz, L. C. Feldman, and R. F. Haglund, “Modulation of the gold particle-plasmon resonance by the metal-semiconductor transition of vanadium dioxide,” J. Opt. A 10, 055202 (2008).
[Crossref]

J. Phys. Chem. B (2)

G. Xu, Y. Chen, M. Tazawa, and P. Jin, “Surface plasmon resonance of silver nanoparticles on vanadium dioxide,” J. Phys. Chem. B 110, 2051–2056 (2006).
[Crossref]

S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 103, 3073–3077 (1999).
[Crossref]

Jpn. J. Appl. Phys. (1)

H. Kakiuchida, P. Jin, S. Nakao, and M. Tazawa, “Optical properties of vanadium dioxide film during semiconductive-metallic phase transition,” Jpn. J. Appl. Phys. 46, L113–L116 (2007).
[Crossref]

Langmuir (2)

H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape- and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24, 5233–5237 (2008).
[Crossref]

B. M. I. van der Zande, M. R. Böhmer, L. G. J. Fokkink, and C. Schönenberger, “Colloidal dispersions of gold rods: synthesis and optical properties,” Langmuir 16, 451–458 (2000).
[Crossref]

Light Sci. Appl. (1)

O. L. Muskens, L. Bergamini, Y. Wang, J. M. Gaskell, N. Zabala, C. H. de Groot, D. W. Sheel, and J. Aizpurua, “Antenna-assisted picosecond control of nanoscale phase transition in vanadium dioxide,” Light Sci. Appl. 5, e16173 (2016).
[Crossref]

Nano Lett. (10)

D. W. Ferrara, J. Nag, E. R. MacQuarrie, A. B. Kaye, and R. F. Haglund, “Plasmonic probe of the semiconductor to metal phase transition in vanadium dioxide,” Nano Lett. 13, 4169–4175 (2013).
[Crossref]

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14, 6526–6532 (2014).
[Crossref]

J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, “Active optical metasurfaces based on defect-engineered phase-transition materials,” Nano Lett. 16, 1050–1055 (2016).
[Crossref]

K. Appavoo and R. F. Haglund, “Detecting nanoscale size dependence in VO2 phase transition using a split-ring resonator metamaterial,” Nano Lett. 11, 1025–1031 (2011).
[Crossref]

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11, 3232–3238 (2011).
[Crossref]

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
[Crossref]

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12, 5750–5755 (2012).
[Crossref]

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflect array for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14, 1394–1399 (2014).
[Crossref]

E. U. Donev, R. Lopez, L. C. Feldman, and R. F. Haglund, “Confocal Raman microscopy across the metal-insulator transition of single vanadium dioxide nanoparticles,” Nano Lett. 9, 702–706 (2009).
[Crossref]

K. Appavoo, B. Wang, N. F. Brady, M. Seo, J. Nag, R. P. Prasankumar, D. J. Hilton, S. T. Pantelides, and R. F. Haglund, “Ultrafast phase transition via catastrophic phonon collapse driven by plasmonic hot-electron injection,” Nano Lett. 14, 1127–1133 (2014).
[Crossref]

Nanoscale (1)

B. Peng, Z. Li, E. Mutlugun, P. L. Hernández Martínez, D. Li, Q. Zhang, Y. Gao, H. V. Demir, and Q. Xiong, “Quantum dots on vertically aligned gold nanorod monolayer: plasmon enhanced fluorescence,” Nanoscale 6, 5592–5598 (2014).
[Crossref]

Nat. Commun. (7)

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

L. Kang, Y. Cui, S. Lan, S. P. Rodrigues, M. L. Brongersma, and W. Cai, “Electrifying photonic metamaterials for tunable nonlinear optics,” Nat. Commun. 5, 4680 (2014).
[Crossref]

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
[Crossref]

A. Arbabi, E. Arbabi, S. M. Kamali, Y. Horie, S. Han, and A. Faraon, “Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations,” Nat. Commun. 7, 13682 (2016).
[Crossref]

W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C. W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7, 11930 (2016).
[Crossref]

E. Almeida, O. Bitton, and Y. Prior, “Nonlinear metamaterials for holography,” Nat. Commun. 7, 12533 (2016).
[Crossref]

L. Liu, L. Kang, T. S. Mayer, and D. H. Werner, “Hybrid metamaterials for electrically triggered multifunctional control,” Nat. Commun. 7, 13236 (2016).
[Crossref]

Nat. Mater. (2)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
[Crossref]

M. Chaker and F. Rosei, “Materials research in Africa: rising from the falls,” Nat. Mater. 11, 187–188 (2012).
[Crossref]

Nat. Nanotechnol. (1)

J. Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8, 252–255 (2013).
[Crossref]

Nat. Photonics (2)

J. Kobashi, H. Yoshida, and M. Ozaki, “Planar optics with patterned chiral liquid crystals,” Nat. Photonics 10, 389–392 (2016).
[Crossref]

Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10, 60–65 (2016).
[Crossref]

Nature (1)

P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511, 206–211 (2014).
[Crossref]

Opt. Express (4)

Opt. Mater. Express (1)

Phys. Rev. B (1)

R. Lopez, T. E. Haynes, and L. A. Boatner, “Size effects in the structural phase transition of VO2 nanoparticles,” Phys. Rev. B 65, 224113 (2002).
[Crossref]

Physica B (1)

P. Schilbe, “Raman scattering in VO2,” Physica B 316–317, 600–602 (2002).
[Crossref]

Plasmonics (1)

J. He, Z. Xie, W. Sun, X. Wang, Y. Ji, S. Wang, Y. Lin, and Y. Zhang, “Terahertz tunable metasurface lens based on vanadium dioxide phase transition,” Plasmonics 11, 1285–1290 (2016).
[Crossref]

RSC Adv. (1)

H. Zhang, Q. Li, P. Shen, Q. Dong, B. Liu, R. Liu, T. Cui, and B. Liu, “The structural phase transition process of free-standing monoclinic vanadium dioxide micron-sized rods: temperature-dependent Raman study,” RSC Adv. 5, 83139–83143 (2015).
[Crossref]

Sci. Adv. (1)

F. Qin, L. Ding, L. Zhang, F. Monticone, C. C. Chum, J. Deng, S. Mei, Y. Li, J. Teng, M. Hong, S. Zhang, A. Alu, and C. W. Qiu, “Hybrid bilayer plasmonic metasurface efficiently manipulates visible light,” Sci. Adv. 2, e1501168 (2016).
[Crossref]

Sci. Rep. (3)

M. R. Hashemi, S. H. Yang, T. Wang, N. Sepúlveda, and M. Jarrahi, “Electronically-controlled beam-steering through vanadium dioxide metasurfaces,” Sci. Rep. 6, 35439 (2016).
[Crossref]

C. Liu, Y. Bai, Q. Zhao, Y. Yang, H. Chen, J. Zhou, and L. Qiao, “Fully controllable Pancharatnam–Berry metasurface array with high conversion efficiency and broad bandwidth,” Sci. Rep. 6, 34819 (2016).
[Crossref]

Y. Ji, Y. Zhang, M. Gao, Z. Yuan, Y. Xia, C. Jin, B. Tao, C. Chen, Q. Jia, and Y. Lin, “Role of microstructures on the M1-M2 phase transition in epitaxial VO2 thin films,” Sci. Rep. 4, 4854 (2014).
[Crossref]

Science (1)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Sens. Actuators B (1)

J. Cao, T. Sun, and K. T. V. Grattan, “Gold nanorod-based localized surface plasmon resonance biosensors: a review,” Sens. Actuators B 195, 332–351 (2014).
[Crossref]

Small (1)

L. Shao, Q. Ruan, R. Jiang, and J. Wang, “Macroscale colloidal noble metal nanocrystal arrays and their refractive index-based sensing characteristics,” Small 10, 802–811 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) SEM image of Au NRs on quartz substrate. (b) Experimental absorption spectra of Au NRs dispersed in solution (black, left axis) and deposited on quartz substrate (blue, right axis). The inset is the photograph of Au NRs deposited on quartz substrate (left) and one blank quartz substrate (right). (c) Schematic of Au NRs on quartz substrate coated by VO2 films. (d) The comparison of experimental absorption spectra for Au NRs (black), Au/VO2 hybrid films (blue), and bare VO2 films (red) on quartz substrate, respectively. (e) X-ray diffraction pattern and (f) AFM 3D image of VO2 films deposited on quartz substrate.
Fig. 2.
Fig. 2. Experimental absorption spectra of bare VO2 and Au/VO2 films as a function of temperature. Heating [(a), (c)] and cooling [(b), (d)] on bare VO2 [(a), (b)] and Au/VO2 [(c), (d)] films. The arrows in (c) and (d) indicate the moving direction of the plasmonic peak with the change of temperature (red: heating; blue: cooling).
Fig. 3.
Fig. 3. (a), (b) Longitudinal plasmon resonance peak of Au/VO2 films as a function of temperature. (c) Temperature hysteresis curves for the plasmon resonance peak of Au/VO2 films. (d) Temperature hysteresis curves for the absorption variation (relative to the absorption intensity of 0.35) of bare VO2 and Au/VO2 films, taken at 685 nm.
Fig. 4.
Fig. 4. Raman spectra of bare VO2 [(a), (c)] and Au/VO2 [(b), (d)] films at different temperatures under optical pumping by 532 nm laser with the power of 0.2 mW [(a), (b)] and 0.5 mW [(c), (d)]. The black arrows represent the change of the temperature.
Fig. 5.
Fig. 5. Raman spectra of bare VO2 and Au/VO2 films at different power by 532 nm laser. (a)–(e) Comparison of Raman spectra between bare VO2 (black) and Au/VO2 (red) films at 0.2, 0.4, 0.5, 0.6, and 0.7 mW, respectively. (f) The intensity of 195  cm1 Raman peak in bare VO2 and Au/VO2 hybrid films as a function of laser power.
Fig. 6.
Fig. 6. Raman mapping of (a)–(c) bare VO2 and (d)–(f) Au/VO2 films under optical pumping by 532 nm laser at 0.6 mW. (a) and (d) 195  cm1. (b) and (e) 223  cm1. (c) and (f) 618  cm1.
Fig. 7.
Fig. 7. White light reflection spectra for bare VO2 and Au NRs/VO2 films. (a), (b) Bare VO2 films with the increase and decrease of temperature, respectively. (c) Bare VO2 and (d) Au/VO2 films excited by 633 nm laser at different laser powers. (e) Temperature hysteresis curves for the reflection intensity of bare VO2 at 650 nm. (f) Comparison of reflection intensity at 650 nm in bare VO2 (black, star) and Au/VO2 (blue, dot) films as a function of laser power.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

γ=2πVNϵm3/23λj(1/Pj2)ϵi(ϵr+1PjPjϵm)2+ϵi2,
Pa=1e2e2[12eln(1+e1e)1],
Pb=Pc=1Pa2,
e=1(ba)2.

Metrics