Abstract

We experimentally demonstrated a method of generating continuously wavelength-switchable optical vortex beams (OVBs) in an all-fiber laser. A polarization-dependent microknot resonator (MKR) functions as comb filter and accounts for the narrow linewidth (0.018 nm) of multiwavelength channels. The wavelength interval corresponds to the free spectral range of the MKR. We exploit a fused SMF–FMF (single mode fiber–few mode fiber) mode coupler to obtain broadband mode conversion and successfully achieve multiwavelength switchable OVBs. As far as we know, this is the first report about identical multiwavelength vortex beams with topological charges of ±1. It has been verified that each channel of the vortex beams preserves the same orbital angular momentum (OAM) properties through their clear spiral interferograms. Multiwavelength vortex beams with identical OAM properties are desirable for multiplexing, exchanging, and routing to further improve the capacity of optical fiber transmission.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
High-order mode lasing in all-FMF laser cavities

Teng Wang, Ao Yang, Fan Shi, Yiping Huang, Jianxiang Wen, and Xianglong Zeng
Photon. Res. 7(1) 42-49 (2019)

Optical communications using orbital angular momentum beams

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi
Adv. Opt. Photon. 7(1) 66-106 (2015)

Switchable and tunable multiple-channel erbium-doped fiber laser using graphene-polymer nanocomposite and asymmetric two-stage fiber Sagnac loop filter

Min Zhou, Zhengqian Luo, Zhiping Cai, Chenchun Ye, Huiying Xu, and Jinzhang Wang
Appl. Opt. 50(18) 2940-2948 (2011)

References

  • View by:
  • |
  • |
  • |

  1. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
    [Crossref]
  2. H. Kawauchi, K. Yonezawa, Y. Kozawa, and S. Sato, “Calculation of optical trapping forces on a dielectric sphere in the ray optics regime produced by a radially polarized laser beam,” Opt. Lett. 32, 1839–1841 (2007).
    [Crossref]
  3. M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys. A 86, 329–334 (2007).
    [Crossref]
  4. G. Milione, T. Wang, J. Han, and L. Bai, “Remotely sensing an object’s rotational orientation using the orbital angular momentum of light,” Chin. Opt. Lett. 15, 030012 (2017).
    [Crossref]
  5. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780–782 (1994).
    [Crossref]
  6. A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8, 234–238 (2014).
    [Crossref]
  7. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
    [Crossref]
  8. S. Zhu, L. Shi, S. Yuan, X. Xu, and X. Zhang, “All-optical control of ultrahigh-Q silica microcavities with iron oxide nanoparticles,” Opt. Lett. 42, 5133–5136 (2017).
    [Crossref]
  9. F. Cardano, E. Karimi, S. Slussarenko, L. Marrucci, C. de Lisio, and E. Santamato, “Polarization pattern of vector vortex beams generated by q-plates with different topological charges,” Appl. Opt. 51, C1–C6 (2012).
    [Crossref]
  10. S. Ramachandran, P. Kristensen, and M. F. Yan, “Generation and propagation of radially polarized beams in optical fibers,” Opt. Lett. 34, 2525–2527 (2009).
    [Crossref]
  11. J.-F. Bisson, Y. Senatsky, and K.-I. Ueda, “Generation of Laguerre–Gaussian modes in Nd:YAG laser using diffractive optical pumping,” Laser Phys. Lett. 2, 327–333 (2005).
    [Crossref]
  12. A. Forbes, “Controlling light’s helicity at the source: orbital angular momentum states from lasers,” Philos. Trans. R. Soc. London Ser. A 375, 20150436 (2017).
    [Crossref]
  13. J. Dong and K. S. Chiang, “Mode-locked fiber laser with transverse-mode selection based on a two-mode FBG,” IEEE Photon. Technol. Lett. 26, 1766–1769 (2014).
    [Crossref]
  14. B. Sun, A. Wang, C. Gu, G. Chen, L. Xu, D. Chung, and Q. Zhan, “Mode-locked all-fiber laser producing radially polarized rectangular pulses,” Opt. Lett. 40, 1691–1694 (2015).
    [Crossref]
  15. D. Mao, T. Feng, W. Zhang, H. Lu, Y. Jiang, P. Li, B. Jiang, Z. Sun, and J. Zhao, “Ultrafast all-fiber based cylindrical-vector beam laser,” Appl. Phys. Lett. 110, 021107 (2017).
    [Crossref]
  16. T. Yusufu, Y. Tokizane, M. Yamada, K. Miyamoto, and T. Omatsu, “Tunable 2-μm optical vortex parametric oscillator,” Opt. Express 20, 23666–23675 (2012).
    [Crossref]
  17. K. Miyamoto, K. Suizu, T. Akiba, and T. Omatsu, “Direct observation of the topological charge of a terahertz vortex beam generated by a Tsurupica spiral phase plate,” Appl. Phys. Lett. 104, 261104 (2014).
    [Crossref]
  18. A. J. Lee, T. Omatsu, and H. M. Pask, “Direct generation of a first-stokes vortex laser beam from a self-Raman laser,” Opt. Express 21, 12401–12409 (2013).
    [Crossref]
  19. A. J. Lee, C. Zhang, T. Omatsu, and H. M. Pask, “An intracavity, frequency-doubled self-Raman vortex laser,” Opt. Express 22, 5400–5409 (2014).
    [Crossref]
  20. A. Aadhi, V. Sharma, R. P. Singh, and G. K. Samanta, “High-power, high repetition rate, tunable, ultrafast vortex beam in the near-infrared,” J. Opt. 20, 01LT01 (2018).
    [Crossref]
  21. Y. G. Han, G. Kim, J. H. Lee, S. H. Kim, and S. B. Lee, “Lasing wavelength and spacing switchable multiwavelength fiber laser from 1510 to 1620  nm,” IEEE Photon. Technol. Lett. 17, 989–991 (2005).
    [Crossref]
  22. A. P. Luo, Z. C. Luo, and W. C. Xu, “Tunable and switchable multiwavelength erbium-doped fiber ring laser based on a modified dual-pass Mach–Zehnder interferometer,” Opt. Lett. 34, 2135–2137 (2009).
    [Crossref]
  23. X. Y. Dong, P. Shum, N. Q. Ngo, and C. C. Chan, “Multiwavelength Raman fiber laser with a continuously-tunable spacing,” Opt. Express. 14, 3288–3293 (2006).
    [Crossref]
  24. M. Yan, S. Y. Luo, L. Zhan, Z. M. Zhang, and Y. X. Xia, “Triple-wavelength switchable erbium-doped fiber laser with cascaded asymmetric exposure long-period fiber gratings,” Opt. Express 15, 3685–3691 (2007).
    [Crossref]
  25. X. Wang, Z. Luo, M. Liu, R. Tang, A. Luo, and W. Xu, “Wavelength-switchable femtosecond pulse fiber laser mode-locked by silica-encased gold nanorods,” Laser Phys. Lett. 13, 045101 (2016).
    [Crossref]
  26. T. Wang, F. Wang, F. Shi, F. Pang, S. Huang, T. Wang, and X. Zeng, “Generation of femtosecond optical vortex beams in all-fiber mode-locked fiber laser using mode selective coupler,” J. Lightwave Technol. 35, 2161–2166 (2017).
    [Crossref]
  27. F. Wang, F. Shi, T. Wang, F. Pang, T. Wang, and X. Zeng, “Method of generating femtosecond cylindrical vector beams using broadband mode converter,” IEEE Photon. Technol. Lett. 29, 747–750 (2017).
    [Crossref]
  28. Z. Zhang, Y. Cai, J. Wang, H. Wan, and L. Zhang, “Switchable dual-wavelength cylindrical vector beam generation from a passively mode-locked fiber laser based on carbon nanotubes,” IEEE J. Sel. Top. Quantum Electron. 24, 1100906 (2018).
    [Crossref]
  29. L. Xiao and T. A. Birks, “High finesse microfiber knot resonators made from double-ended tapered fibers,” Opt. Lett. 36, 1098–1100 (2011).
    [Crossref]
  30. K. S. Lim, S. W. Harun, S. S. A. Damanhuri, A. A. Jasim, C. K. Tio, and H. Ahmad, “Current sensor based on microfiber knot resonator,” Sens. Actuators A Phys. 167, 60–62 (2011).
    [Crossref]
  31. Y. L. Xiao, Y. G. Liu, W. Zhi, Z. Wang, and X. Q. Liu, “Design and experimental study of mode selective all fiber fused mode coupler based on few mode fiber,” Acta Phys. Sin. 64, 204207 (2015).
    [Crossref]
  32. Y. Jiang, G. Ren, Y. Lian, B. Zhu, W. Jin, and S. Jian, “Tunable orbital angular momentum generation in optical fibers,” Opt. Lett. 41, 3535–3538 (2016).
    [Crossref]
  33. X. Liu, L. Zhan, S. Luo, Y. Wang, and Q. Shen, “Individually switchable and widely tunable multiwavelength erbium-doped fiber laser based on cascaded mismatching long-period fiber gratings,” J. Lightwave Technol. 29, 3319–3326 (2011).
    [Crossref]
  34. Z. Xu, Y. Luo, Q. Sun, Y. Xiang, P. P. Shum, and D. Liu, “Switchable single longitudinal-mode fiber laser based on θ-shaped microfiber filter,” IEEE Photon. Technol. Lett. 30, 479–482 (2017).
    [Crossref]
  35. R. Ismaeel, T. Lee, B. Oduro, Y. Jung, and G. Brambilla, “All-fiber fused directional coupler for highly efficient spatial mode conversion,” Opt. Express 22, 11610–11619 (2014).
    [Crossref]

2018 (2)

A. Aadhi, V. Sharma, R. P. Singh, and G. K. Samanta, “High-power, high repetition rate, tunable, ultrafast vortex beam in the near-infrared,” J. Opt. 20, 01LT01 (2018).
[Crossref]

Z. Zhang, Y. Cai, J. Wang, H. Wan, and L. Zhang, “Switchable dual-wavelength cylindrical vector beam generation from a passively mode-locked fiber laser based on carbon nanotubes,” IEEE J. Sel. Top. Quantum Electron. 24, 1100906 (2018).
[Crossref]

2017 (7)

F. Wang, F. Shi, T. Wang, F. Pang, T. Wang, and X. Zeng, “Method of generating femtosecond cylindrical vector beams using broadband mode converter,” IEEE Photon. Technol. Lett. 29, 747–750 (2017).
[Crossref]

A. Forbes, “Controlling light’s helicity at the source: orbital angular momentum states from lasers,” Philos. Trans. R. Soc. London Ser. A 375, 20150436 (2017).
[Crossref]

D. Mao, T. Feng, W. Zhang, H. Lu, Y. Jiang, P. Li, B. Jiang, Z. Sun, and J. Zhao, “Ultrafast all-fiber based cylindrical-vector beam laser,” Appl. Phys. Lett. 110, 021107 (2017).
[Crossref]

Z. Xu, Y. Luo, Q. Sun, Y. Xiang, P. P. Shum, and D. Liu, “Switchable single longitudinal-mode fiber laser based on θ-shaped microfiber filter,” IEEE Photon. Technol. Lett. 30, 479–482 (2017).
[Crossref]

G. Milione, T. Wang, J. Han, and L. Bai, “Remotely sensing an object’s rotational orientation using the orbital angular momentum of light,” Chin. Opt. Lett. 15, 030012 (2017).
[Crossref]

T. Wang, F. Wang, F. Shi, F. Pang, S. Huang, T. Wang, and X. Zeng, “Generation of femtosecond optical vortex beams in all-fiber mode-locked fiber laser using mode selective coupler,” J. Lightwave Technol. 35, 2161–2166 (2017).
[Crossref]

S. Zhu, L. Shi, S. Yuan, X. Xu, and X. Zhang, “All-optical control of ultrahigh-Q silica microcavities with iron oxide nanoparticles,” Opt. Lett. 42, 5133–5136 (2017).
[Crossref]

2016 (2)

X. Wang, Z. Luo, M. Liu, R. Tang, A. Luo, and W. Xu, “Wavelength-switchable femtosecond pulse fiber laser mode-locked by silica-encased gold nanorods,” Laser Phys. Lett. 13, 045101 (2016).
[Crossref]

Y. Jiang, G. Ren, Y. Lian, B. Zhu, W. Jin, and S. Jian, “Tunable orbital angular momentum generation in optical fibers,” Opt. Lett. 41, 3535–3538 (2016).
[Crossref]

2015 (2)

Y. L. Xiao, Y. G. Liu, W. Zhi, Z. Wang, and X. Q. Liu, “Design and experimental study of mode selective all fiber fused mode coupler based on few mode fiber,” Acta Phys. Sin. 64, 204207 (2015).
[Crossref]

B. Sun, A. Wang, C. Gu, G. Chen, L. Xu, D. Chung, and Q. Zhan, “Mode-locked all-fiber laser producing radially polarized rectangular pulses,” Opt. Lett. 40, 1691–1694 (2015).
[Crossref]

2014 (5)

A. J. Lee, C. Zhang, T. Omatsu, and H. M. Pask, “An intracavity, frequency-doubled self-Raman vortex laser,” Opt. Express 22, 5400–5409 (2014).
[Crossref]

R. Ismaeel, T. Lee, B. Oduro, Y. Jung, and G. Brambilla, “All-fiber fused directional coupler for highly efficient spatial mode conversion,” Opt. Express 22, 11610–11619 (2014).
[Crossref]

K. Miyamoto, K. Suizu, T. Akiba, and T. Omatsu, “Direct observation of the topological charge of a terahertz vortex beam generated by a Tsurupica spiral phase plate,” Appl. Phys. Lett. 104, 261104 (2014).
[Crossref]

J. Dong and K. S. Chiang, “Mode-locked fiber laser with transverse-mode selection based on a two-mode FBG,” IEEE Photon. Technol. Lett. 26, 1766–1769 (2014).
[Crossref]

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8, 234–238 (2014).
[Crossref]

2013 (2)

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref]

A. J. Lee, T. Omatsu, and H. M. Pask, “Direct generation of a first-stokes vortex laser beam from a self-Raman laser,” Opt. Express 21, 12401–12409 (2013).
[Crossref]

2012 (2)

2011 (3)

2009 (2)

2007 (3)

2006 (1)

X. Y. Dong, P. Shum, N. Q. Ngo, and C. C. Chan, “Multiwavelength Raman fiber laser with a continuously-tunable spacing,” Opt. Express. 14, 3288–3293 (2006).
[Crossref]

2005 (2)

Y. G. Han, G. Kim, J. H. Lee, S. H. Kim, and S. B. Lee, “Lasing wavelength and spacing switchable multiwavelength fiber laser from 1510 to 1620  nm,” IEEE Photon. Technol. Lett. 17, 989–991 (2005).
[Crossref]

J.-F. Bisson, Y. Senatsky, and K.-I. Ueda, “Generation of Laguerre–Gaussian modes in Nd:YAG laser using diffractive optical pumping,” Laser Phys. Lett. 2, 327–333 (2005).
[Crossref]

2001 (1)

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
[Crossref]

1994 (1)

Aadhi, A.

A. Aadhi, V. Sharma, R. P. Singh, and G. K. Samanta, “High-power, high repetition rate, tunable, ultrafast vortex beam in the near-infrared,” J. Opt. 20, 01LT01 (2018).
[Crossref]

Ahmad, H.

K. S. Lim, S. W. Harun, S. S. A. Damanhuri, A. A. Jasim, C. K. Tio, and H. Ahmad, “Current sensor based on microfiber knot resonator,” Sens. Actuators A Phys. 167, 60–62 (2011).
[Crossref]

Akiba, T.

K. Miyamoto, K. Suizu, T. Akiba, and T. Omatsu, “Direct observation of the topological charge of a terahertz vortex beam generated by a Tsurupica spiral phase plate,” Appl. Phys. Lett. 104, 261104 (2014).
[Crossref]

Bai, L.

Beversluis, M. R.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
[Crossref]

Birks, T. A.

Bisson, J.-F.

J.-F. Bisson, Y. Senatsky, and K.-I. Ueda, “Generation of Laguerre–Gaussian modes in Nd:YAG laser using diffractive optical pumping,” Laser Phys. Lett. 2, 327–333 (2005).
[Crossref]

Bozinovic, N.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref]

Brambilla, G.

Brown, T. G.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
[Crossref]

Cai, Y.

Z. Zhang, Y. Cai, J. Wang, H. Wan, and L. Zhang, “Switchable dual-wavelength cylindrical vector beam generation from a passively mode-locked fiber laser based on carbon nanotubes,” IEEE J. Sel. Top. Quantum Electron. 24, 1100906 (2018).
[Crossref]

Cardano, F.

Chan, C. C.

X. Y. Dong, P. Shum, N. Q. Ngo, and C. C. Chan, “Multiwavelength Raman fiber laser with a continuously-tunable spacing,” Opt. Express. 14, 3288–3293 (2006).
[Crossref]

Chen, G.

Chiang, K. S.

J. Dong and K. S. Chiang, “Mode-locked fiber laser with transverse-mode selection based on a two-mode FBG,” IEEE Photon. Technol. Lett. 26, 1766–1769 (2014).
[Crossref]

Chung, D.

Damanhuri, S. S. A.

K. S. Lim, S. W. Harun, S. S. A. Damanhuri, A. A. Jasim, C. K. Tio, and H. Ahmad, “Current sensor based on microfiber knot resonator,” Sens. Actuators A Phys. 167, 60–62 (2011).
[Crossref]

de Lisio, C.

Dong, J.

J. Dong and K. S. Chiang, “Mode-locked fiber laser with transverse-mode selection based on a two-mode FBG,” IEEE Photon. Technol. Lett. 26, 1766–1769 (2014).
[Crossref]

Dong, X. Y.

X. Y. Dong, P. Shum, N. Q. Ngo, and C. C. Chan, “Multiwavelength Raman fiber laser with a continuously-tunable spacing,” Opt. Express. 14, 3288–3293 (2006).
[Crossref]

Feng, T.

D. Mao, T. Feng, W. Zhang, H. Lu, Y. Jiang, P. Li, B. Jiang, Z. Sun, and J. Zhao, “Ultrafast all-fiber based cylindrical-vector beam laser,” Appl. Phys. Lett. 110, 021107 (2017).
[Crossref]

Feurer, T.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys. A 86, 329–334 (2007).
[Crossref]

Forbes, A.

A. Forbes, “Controlling light’s helicity at the source: orbital angular momentum states from lasers,” Philos. Trans. R. Soc. London Ser. A 375, 20150436 (2017).
[Crossref]

Giacobino, E.

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8, 234–238 (2014).
[Crossref]

Giner, L.

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8, 234–238 (2014).
[Crossref]

Gu, C.

Han, J.

Han, Y. G.

Y. G. Han, G. Kim, J. H. Lee, S. H. Kim, and S. B. Lee, “Lasing wavelength and spacing switchable multiwavelength fiber laser from 1510 to 1620  nm,” IEEE Photon. Technol. Lett. 17, 989–991 (2005).
[Crossref]

Harun, S. W.

K. S. Lim, S. W. Harun, S. S. A. Damanhuri, A. A. Jasim, C. K. Tio, and H. Ahmad, “Current sensor based on microfiber knot resonator,” Sens. Actuators A Phys. 167, 60–62 (2011).
[Crossref]

Hell, S. W.

Huang, H.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref]

Huang, S.

Ismaeel, R.

Jasim, A. A.

K. S. Lim, S. W. Harun, S. S. A. Damanhuri, A. A. Jasim, C. K. Tio, and H. Ahmad, “Current sensor based on microfiber knot resonator,” Sens. Actuators A Phys. 167, 60–62 (2011).
[Crossref]

Jian, S.

Jiang, B.

D. Mao, T. Feng, W. Zhang, H. Lu, Y. Jiang, P. Li, B. Jiang, Z. Sun, and J. Zhao, “Ultrafast all-fiber based cylindrical-vector beam laser,” Appl. Phys. Lett. 110, 021107 (2017).
[Crossref]

Jiang, Y.

D. Mao, T. Feng, W. Zhang, H. Lu, Y. Jiang, P. Li, B. Jiang, Z. Sun, and J. Zhao, “Ultrafast all-fiber based cylindrical-vector beam laser,” Appl. Phys. Lett. 110, 021107 (2017).
[Crossref]

Y. Jiang, G. Ren, Y. Lian, B. Zhu, W. Jin, and S. Jian, “Tunable orbital angular momentum generation in optical fibers,” Opt. Lett. 41, 3535–3538 (2016).
[Crossref]

Jin, W.

Jung, Y.

Karimi, E.

Kawauchi, H.

Kim, G.

Y. G. Han, G. Kim, J. H. Lee, S. H. Kim, and S. B. Lee, “Lasing wavelength and spacing switchable multiwavelength fiber laser from 1510 to 1620  nm,” IEEE Photon. Technol. Lett. 17, 989–991 (2005).
[Crossref]

Kim, S. H.

Y. G. Han, G. Kim, J. H. Lee, S. H. Kim, and S. B. Lee, “Lasing wavelength and spacing switchable multiwavelength fiber laser from 1510 to 1620  nm,” IEEE Photon. Technol. Lett. 17, 989–991 (2005).
[Crossref]

Kozawa, Y.

Kristensen, P.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref]

S. Ramachandran, P. Kristensen, and M. F. Yan, “Generation and propagation of radially polarized beams in optical fibers,” Opt. Lett. 34, 2525–2527 (2009).
[Crossref]

Laurat, J.

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8, 234–238 (2014).
[Crossref]

Lee, A. J.

Lee, J. H.

Y. G. Han, G. Kim, J. H. Lee, S. H. Kim, and S. B. Lee, “Lasing wavelength and spacing switchable multiwavelength fiber laser from 1510 to 1620  nm,” IEEE Photon. Technol. Lett. 17, 989–991 (2005).
[Crossref]

Lee, S. B.

Y. G. Han, G. Kim, J. H. Lee, S. H. Kim, and S. B. Lee, “Lasing wavelength and spacing switchable multiwavelength fiber laser from 1510 to 1620  nm,” IEEE Photon. Technol. Lett. 17, 989–991 (2005).
[Crossref]

Lee, T.

Li, P.

D. Mao, T. Feng, W. Zhang, H. Lu, Y. Jiang, P. Li, B. Jiang, Z. Sun, and J. Zhao, “Ultrafast all-fiber based cylindrical-vector beam laser,” Appl. Phys. Lett. 110, 021107 (2017).
[Crossref]

Lian, Y.

Lim, K. S.

K. S. Lim, S. W. Harun, S. S. A. Damanhuri, A. A. Jasim, C. K. Tio, and H. Ahmad, “Current sensor based on microfiber knot resonator,” Sens. Actuators A Phys. 167, 60–62 (2011).
[Crossref]

Liu, D.

Z. Xu, Y. Luo, Q. Sun, Y. Xiang, P. P. Shum, and D. Liu, “Switchable single longitudinal-mode fiber laser based on θ-shaped microfiber filter,” IEEE Photon. Technol. Lett. 30, 479–482 (2017).
[Crossref]

Liu, M.

X. Wang, Z. Luo, M. Liu, R. Tang, A. Luo, and W. Xu, “Wavelength-switchable femtosecond pulse fiber laser mode-locked by silica-encased gold nanorods,” Laser Phys. Lett. 13, 045101 (2016).
[Crossref]

Liu, X.

Liu, X. Q.

Y. L. Xiao, Y. G. Liu, W. Zhi, Z. Wang, and X. Q. Liu, “Design and experimental study of mode selective all fiber fused mode coupler based on few mode fiber,” Acta Phys. Sin. 64, 204207 (2015).
[Crossref]

Liu, Y. G.

Y. L. Xiao, Y. G. Liu, W. Zhi, Z. Wang, and X. Q. Liu, “Design and experimental study of mode selective all fiber fused mode coupler based on few mode fiber,” Acta Phys. Sin. 64, 204207 (2015).
[Crossref]

Lu, H.

D. Mao, T. Feng, W. Zhang, H. Lu, Y. Jiang, P. Li, B. Jiang, Z. Sun, and J. Zhao, “Ultrafast all-fiber based cylindrical-vector beam laser,” Appl. Phys. Lett. 110, 021107 (2017).
[Crossref]

Luo, A.

X. Wang, Z. Luo, M. Liu, R. Tang, A. Luo, and W. Xu, “Wavelength-switchable femtosecond pulse fiber laser mode-locked by silica-encased gold nanorods,” Laser Phys. Lett. 13, 045101 (2016).
[Crossref]

Luo, A. P.

Luo, S.

Luo, S. Y.

Luo, Y.

Z. Xu, Y. Luo, Q. Sun, Y. Xiang, P. P. Shum, and D. Liu, “Switchable single longitudinal-mode fiber laser based on θ-shaped microfiber filter,” IEEE Photon. Technol. Lett. 30, 479–482 (2017).
[Crossref]

Luo, Z.

X. Wang, Z. Luo, M. Liu, R. Tang, A. Luo, and W. Xu, “Wavelength-switchable femtosecond pulse fiber laser mode-locked by silica-encased gold nanorods,” Laser Phys. Lett. 13, 045101 (2016).
[Crossref]

Luo, Z. C.

Mao, D.

D. Mao, T. Feng, W. Zhang, H. Lu, Y. Jiang, P. Li, B. Jiang, Z. Sun, and J. Zhao, “Ultrafast all-fiber based cylindrical-vector beam laser,” Appl. Phys. Lett. 110, 021107 (2017).
[Crossref]

Marrucci, L.

Maxein, D.

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8, 234–238 (2014).
[Crossref]

Meier, M.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys. A 86, 329–334 (2007).
[Crossref]

Milione, G.

Miyamoto, K.

K. Miyamoto, K. Suizu, T. Akiba, and T. Omatsu, “Direct observation of the topological charge of a terahertz vortex beam generated by a Tsurupica spiral phase plate,” Appl. Phys. Lett. 104, 261104 (2014).
[Crossref]

T. Yusufu, Y. Tokizane, M. Yamada, K. Miyamoto, and T. Omatsu, “Tunable 2-μm optical vortex parametric oscillator,” Opt. Express 20, 23666–23675 (2012).
[Crossref]

Ngo, N. Q.

X. Y. Dong, P. Shum, N. Q. Ngo, and C. C. Chan, “Multiwavelength Raman fiber laser with a continuously-tunable spacing,” Opt. Express. 14, 3288–3293 (2006).
[Crossref]

Nicolas, A.

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8, 234–238 (2014).
[Crossref]

Novotny, L.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
[Crossref]

Oduro, B.

Omatsu, T.

Pang, F.

F. Wang, F. Shi, T. Wang, F. Pang, T. Wang, and X. Zeng, “Method of generating femtosecond cylindrical vector beams using broadband mode converter,” IEEE Photon. Technol. Lett. 29, 747–750 (2017).
[Crossref]

T. Wang, F. Wang, F. Shi, F. Pang, S. Huang, T. Wang, and X. Zeng, “Generation of femtosecond optical vortex beams in all-fiber mode-locked fiber laser using mode selective coupler,” J. Lightwave Technol. 35, 2161–2166 (2017).
[Crossref]

Pask, H. M.

Ramachandran, S.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref]

S. Ramachandran, P. Kristensen, and M. F. Yan, “Generation and propagation of radially polarized beams in optical fibers,” Opt. Lett. 34, 2525–2527 (2009).
[Crossref]

Ren, G.

Ren, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref]

Romano, V.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys. A 86, 329–334 (2007).
[Crossref]

Samanta, G. K.

A. Aadhi, V. Sharma, R. P. Singh, and G. K. Samanta, “High-power, high repetition rate, tunable, ultrafast vortex beam in the near-infrared,” J. Opt. 20, 01LT01 (2018).
[Crossref]

Santamato, E.

Sato, S.

Senatsky, Y.

J.-F. Bisson, Y. Senatsky, and K.-I. Ueda, “Generation of Laguerre–Gaussian modes in Nd:YAG laser using diffractive optical pumping,” Laser Phys. Lett. 2, 327–333 (2005).
[Crossref]

Sharma, V.

A. Aadhi, V. Sharma, R. P. Singh, and G. K. Samanta, “High-power, high repetition rate, tunable, ultrafast vortex beam in the near-infrared,” J. Opt. 20, 01LT01 (2018).
[Crossref]

Shen, Q.

Shi, F.

F. Wang, F. Shi, T. Wang, F. Pang, T. Wang, and X. Zeng, “Method of generating femtosecond cylindrical vector beams using broadband mode converter,” IEEE Photon. Technol. Lett. 29, 747–750 (2017).
[Crossref]

T. Wang, F. Wang, F. Shi, F. Pang, S. Huang, T. Wang, and X. Zeng, “Generation of femtosecond optical vortex beams in all-fiber mode-locked fiber laser using mode selective coupler,” J. Lightwave Technol. 35, 2161–2166 (2017).
[Crossref]

Shi, L.

Shum, P.

X. Y. Dong, P. Shum, N. Q. Ngo, and C. C. Chan, “Multiwavelength Raman fiber laser with a continuously-tunable spacing,” Opt. Express. 14, 3288–3293 (2006).
[Crossref]

Shum, P. P.

Z. Xu, Y. Luo, Q. Sun, Y. Xiang, P. P. Shum, and D. Liu, “Switchable single longitudinal-mode fiber laser based on θ-shaped microfiber filter,” IEEE Photon. Technol. Lett. 30, 479–482 (2017).
[Crossref]

Singh, R. P.

A. Aadhi, V. Sharma, R. P. Singh, and G. K. Samanta, “High-power, high repetition rate, tunable, ultrafast vortex beam in the near-infrared,” J. Opt. 20, 01LT01 (2018).
[Crossref]

Slussarenko, S.

Suizu, K.

K. Miyamoto, K. Suizu, T. Akiba, and T. Omatsu, “Direct observation of the topological charge of a terahertz vortex beam generated by a Tsurupica spiral phase plate,” Appl. Phys. Lett. 104, 261104 (2014).
[Crossref]

Sun, B.

Sun, Q.

Z. Xu, Y. Luo, Q. Sun, Y. Xiang, P. P. Shum, and D. Liu, “Switchable single longitudinal-mode fiber laser based on θ-shaped microfiber filter,” IEEE Photon. Technol. Lett. 30, 479–482 (2017).
[Crossref]

Sun, Z.

D. Mao, T. Feng, W. Zhang, H. Lu, Y. Jiang, P. Li, B. Jiang, Z. Sun, and J. Zhao, “Ultrafast all-fiber based cylindrical-vector beam laser,” Appl. Phys. Lett. 110, 021107 (2017).
[Crossref]

Tang, R.

X. Wang, Z. Luo, M. Liu, R. Tang, A. Luo, and W. Xu, “Wavelength-switchable femtosecond pulse fiber laser mode-locked by silica-encased gold nanorods,” Laser Phys. Lett. 13, 045101 (2016).
[Crossref]

Tio, C. K.

K. S. Lim, S. W. Harun, S. S. A. Damanhuri, A. A. Jasim, C. K. Tio, and H. Ahmad, “Current sensor based on microfiber knot resonator,” Sens. Actuators A Phys. 167, 60–62 (2011).
[Crossref]

Tokizane, Y.

Tur, M.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref]

Ueda, K.-I.

J.-F. Bisson, Y. Senatsky, and K.-I. Ueda, “Generation of Laguerre–Gaussian modes in Nd:YAG laser using diffractive optical pumping,” Laser Phys. Lett. 2, 327–333 (2005).
[Crossref]

Veissier, L.

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8, 234–238 (2014).
[Crossref]

Wan, H.

Z. Zhang, Y. Cai, J. Wang, H. Wan, and L. Zhang, “Switchable dual-wavelength cylindrical vector beam generation from a passively mode-locked fiber laser based on carbon nanotubes,” IEEE J. Sel. Top. Quantum Electron. 24, 1100906 (2018).
[Crossref]

Wang, A.

Wang, F.

F. Wang, F. Shi, T. Wang, F. Pang, T. Wang, and X. Zeng, “Method of generating femtosecond cylindrical vector beams using broadband mode converter,” IEEE Photon. Technol. Lett. 29, 747–750 (2017).
[Crossref]

T. Wang, F. Wang, F. Shi, F. Pang, S. Huang, T. Wang, and X. Zeng, “Generation of femtosecond optical vortex beams in all-fiber mode-locked fiber laser using mode selective coupler,” J. Lightwave Technol. 35, 2161–2166 (2017).
[Crossref]

Wang, J.

Z. Zhang, Y. Cai, J. Wang, H. Wan, and L. Zhang, “Switchable dual-wavelength cylindrical vector beam generation from a passively mode-locked fiber laser based on carbon nanotubes,” IEEE J. Sel. Top. Quantum Electron. 24, 1100906 (2018).
[Crossref]

Wang, T.

Wang, X.

X. Wang, Z. Luo, M. Liu, R. Tang, A. Luo, and W. Xu, “Wavelength-switchable femtosecond pulse fiber laser mode-locked by silica-encased gold nanorods,” Laser Phys. Lett. 13, 045101 (2016).
[Crossref]

Wang, Y.

Wang, Z.

Y. L. Xiao, Y. G. Liu, W. Zhi, Z. Wang, and X. Q. Liu, “Design and experimental study of mode selective all fiber fused mode coupler based on few mode fiber,” Acta Phys. Sin. 64, 204207 (2015).
[Crossref]

Wichmann, J.

Willner, A. E.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref]

Xia, Y. X.

Xiang, Y.

Z. Xu, Y. Luo, Q. Sun, Y. Xiang, P. P. Shum, and D. Liu, “Switchable single longitudinal-mode fiber laser based on θ-shaped microfiber filter,” IEEE Photon. Technol. Lett. 30, 479–482 (2017).
[Crossref]

Xiao, L.

Xiao, Y. L.

Y. L. Xiao, Y. G. Liu, W. Zhi, Z. Wang, and X. Q. Liu, “Design and experimental study of mode selective all fiber fused mode coupler based on few mode fiber,” Acta Phys. Sin. 64, 204207 (2015).
[Crossref]

Xu, L.

Xu, W.

X. Wang, Z. Luo, M. Liu, R. Tang, A. Luo, and W. Xu, “Wavelength-switchable femtosecond pulse fiber laser mode-locked by silica-encased gold nanorods,” Laser Phys. Lett. 13, 045101 (2016).
[Crossref]

Xu, W. C.

Xu, X.

Xu, Z.

Z. Xu, Y. Luo, Q. Sun, Y. Xiang, P. P. Shum, and D. Liu, “Switchable single longitudinal-mode fiber laser based on θ-shaped microfiber filter,” IEEE Photon. Technol. Lett. 30, 479–482 (2017).
[Crossref]

Yamada, M.

Yan, M.

Yan, M. F.

Yonezawa, K.

Youngworth, K. S.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
[Crossref]

Yuan, S.

Yue, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref]

Yusufu, T.

Zeng, X.

F. Wang, F. Shi, T. Wang, F. Pang, T. Wang, and X. Zeng, “Method of generating femtosecond cylindrical vector beams using broadband mode converter,” IEEE Photon. Technol. Lett. 29, 747–750 (2017).
[Crossref]

T. Wang, F. Wang, F. Shi, F. Pang, S. Huang, T. Wang, and X. Zeng, “Generation of femtosecond optical vortex beams in all-fiber mode-locked fiber laser using mode selective coupler,” J. Lightwave Technol. 35, 2161–2166 (2017).
[Crossref]

Zhan, L.

Zhan, Q.

Zhang, C.

Zhang, L.

Z. Zhang, Y. Cai, J. Wang, H. Wan, and L. Zhang, “Switchable dual-wavelength cylindrical vector beam generation from a passively mode-locked fiber laser based on carbon nanotubes,” IEEE J. Sel. Top. Quantum Electron. 24, 1100906 (2018).
[Crossref]

Zhang, W.

D. Mao, T. Feng, W. Zhang, H. Lu, Y. Jiang, P. Li, B. Jiang, Z. Sun, and J. Zhao, “Ultrafast all-fiber based cylindrical-vector beam laser,” Appl. Phys. Lett. 110, 021107 (2017).
[Crossref]

Zhang, X.

Zhang, Z.

Z. Zhang, Y. Cai, J. Wang, H. Wan, and L. Zhang, “Switchable dual-wavelength cylindrical vector beam generation from a passively mode-locked fiber laser based on carbon nanotubes,” IEEE J. Sel. Top. Quantum Electron. 24, 1100906 (2018).
[Crossref]

Zhang, Z. M.

Zhao, J.

D. Mao, T. Feng, W. Zhang, H. Lu, Y. Jiang, P. Li, B. Jiang, Z. Sun, and J. Zhao, “Ultrafast all-fiber based cylindrical-vector beam laser,” Appl. Phys. Lett. 110, 021107 (2017).
[Crossref]

Zhi, W.

Y. L. Xiao, Y. G. Liu, W. Zhi, Z. Wang, and X. Q. Liu, “Design and experimental study of mode selective all fiber fused mode coupler based on few mode fiber,” Acta Phys. Sin. 64, 204207 (2015).
[Crossref]

Zhu, B.

Zhu, S.

Acta Phys. Sin. (1)

Y. L. Xiao, Y. G. Liu, W. Zhi, Z. Wang, and X. Q. Liu, “Design and experimental study of mode selective all fiber fused mode coupler based on few mode fiber,” Acta Phys. Sin. 64, 204207 (2015).
[Crossref]

Appl. Opt. (1)

Appl. Phys. A (1)

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys. A 86, 329–334 (2007).
[Crossref]

Appl. Phys. Lett. (2)

D. Mao, T. Feng, W. Zhang, H. Lu, Y. Jiang, P. Li, B. Jiang, Z. Sun, and J. Zhao, “Ultrafast all-fiber based cylindrical-vector beam laser,” Appl. Phys. Lett. 110, 021107 (2017).
[Crossref]

K. Miyamoto, K. Suizu, T. Akiba, and T. Omatsu, “Direct observation of the topological charge of a terahertz vortex beam generated by a Tsurupica spiral phase plate,” Appl. Phys. Lett. 104, 261104 (2014).
[Crossref]

Chin. Opt. Lett. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

Z. Zhang, Y. Cai, J. Wang, H. Wan, and L. Zhang, “Switchable dual-wavelength cylindrical vector beam generation from a passively mode-locked fiber laser based on carbon nanotubes,” IEEE J. Sel. Top. Quantum Electron. 24, 1100906 (2018).
[Crossref]

IEEE Photon. Technol. Lett. (4)

F. Wang, F. Shi, T. Wang, F. Pang, T. Wang, and X. Zeng, “Method of generating femtosecond cylindrical vector beams using broadband mode converter,” IEEE Photon. Technol. Lett. 29, 747–750 (2017).
[Crossref]

Z. Xu, Y. Luo, Q. Sun, Y. Xiang, P. P. Shum, and D. Liu, “Switchable single longitudinal-mode fiber laser based on θ-shaped microfiber filter,” IEEE Photon. Technol. Lett. 30, 479–482 (2017).
[Crossref]

Y. G. Han, G. Kim, J. H. Lee, S. H. Kim, and S. B. Lee, “Lasing wavelength and spacing switchable multiwavelength fiber laser from 1510 to 1620  nm,” IEEE Photon. Technol. Lett. 17, 989–991 (2005).
[Crossref]

J. Dong and K. S. Chiang, “Mode-locked fiber laser with transverse-mode selection based on a two-mode FBG,” IEEE Photon. Technol. Lett. 26, 1766–1769 (2014).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. (1)

A. Aadhi, V. Sharma, R. P. Singh, and G. K. Samanta, “High-power, high repetition rate, tunable, ultrafast vortex beam in the near-infrared,” J. Opt. 20, 01LT01 (2018).
[Crossref]

Laser Phys. Lett. (2)

X. Wang, Z. Luo, M. Liu, R. Tang, A. Luo, and W. Xu, “Wavelength-switchable femtosecond pulse fiber laser mode-locked by silica-encased gold nanorods,” Laser Phys. Lett. 13, 045101 (2016).
[Crossref]

J.-F. Bisson, Y. Senatsky, and K.-I. Ueda, “Generation of Laguerre–Gaussian modes in Nd:YAG laser using diffractive optical pumping,” Laser Phys. Lett. 2, 327–333 (2005).
[Crossref]

Nat. Photonics (1)

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8, 234–238 (2014).
[Crossref]

Opt. Express (5)

Opt. Express. (1)

X. Y. Dong, P. Shum, N. Q. Ngo, and C. C. Chan, “Multiwavelength Raman fiber laser with a continuously-tunable spacing,” Opt. Express. 14, 3288–3293 (2006).
[Crossref]

Opt. Lett. (8)

S. Zhu, L. Shi, S. Yuan, X. Xu, and X. Zhang, “All-optical control of ultrahigh-Q silica microcavities with iron oxide nanoparticles,” Opt. Lett. 42, 5133–5136 (2017).
[Crossref]

A. P. Luo, Z. C. Luo, and W. C. Xu, “Tunable and switchable multiwavelength erbium-doped fiber ring laser based on a modified dual-pass Mach–Zehnder interferometer,” Opt. Lett. 34, 2135–2137 (2009).
[Crossref]

L. Xiao and T. A. Birks, “High finesse microfiber knot resonators made from double-ended tapered fibers,” Opt. Lett. 36, 1098–1100 (2011).
[Crossref]

Y. Jiang, G. Ren, Y. Lian, B. Zhu, W. Jin, and S. Jian, “Tunable orbital angular momentum generation in optical fibers,” Opt. Lett. 41, 3535–3538 (2016).
[Crossref]

B. Sun, A. Wang, C. Gu, G. Chen, L. Xu, D. Chung, and Q. Zhan, “Mode-locked all-fiber laser producing radially polarized rectangular pulses,” Opt. Lett. 40, 1691–1694 (2015).
[Crossref]

S. Ramachandran, P. Kristensen, and M. F. Yan, “Generation and propagation of radially polarized beams in optical fibers,” Opt. Lett. 34, 2525–2527 (2009).
[Crossref]

S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780–782 (1994).
[Crossref]

H. Kawauchi, K. Yonezawa, Y. Kozawa, and S. Sato, “Calculation of optical trapping forces on a dielectric sphere in the ray optics regime produced by a radially polarized laser beam,” Opt. Lett. 32, 1839–1841 (2007).
[Crossref]

Philos. Trans. R. Soc. London Ser. A (1)

A. Forbes, “Controlling light’s helicity at the source: orbital angular momentum states from lasers,” Philos. Trans. R. Soc. London Ser. A 375, 20150436 (2017).
[Crossref]

Phys. Rev. Lett. (1)

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001).
[Crossref]

Science (1)

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref]

Sens. Actuators A Phys. (1)

K. S. Lim, S. W. Harun, S. S. A. Damanhuri, A. A. Jasim, C. K. Tio, and H. Ahmad, “Current sensor based on microfiber knot resonator,” Sens. Actuators A Phys. 167, 60–62 (2011).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Experimental setup used to excite OVB pulse. WDM, wavelength division multiplexing coupler; EDF, erbium-doped fiber; PC, polarization controller; OSA, optical spectrum analyzer; CCD, charge-coupled infrared camera; PMF, polarization-maintaining fiber.
Fig. 2.
Fig. 2. Microscopy image of (a) the fabricated MKR and (b) the overlapping region.
Fig. 3.
Fig. 3. Spectral response of MKR: (a) Transmission spectrum with different incident states of polarization (SOP); (b) transmission spectra from 1553 nm to 1557 nm; and (c) polarization-dependent loss of the MKR.
Fig. 4.
Fig. 4. Simulation results: (a) Coupling efficiency as a function of the wavelengths; and (b) power exchange in the coupling region when LP01 mode in SMF converts to LP11 mode in FMF.
Fig. 5.
Fig. 5. Output near-field intensity distribution from a mode selective coupler by inputting a femtosecond pulse. (a), (e) Intensity profiles of the LP11 and LP21 modes; (b), (f) donut-shaped OAM mode patterns when pressing the output FMF; (c) and (d), and (g) and (h) corresponding clockwise and anticlockwise spiral interferograms of OAM±1 and OAM±2, respectively.
Fig. 6.
Fig. 6. Output spectra of successively tunable (a) single-, (b) dual-, (c) triple-, and (d) quadruple-wavelength lasing operations.
Fig. 7.
Fig. 7. Stability of triple-wavelength output spectrum. (a) Repeat scans of triple-wavelength output spectrum every minute. (b) Power fluctuation (black) and central wavelength (blue) of each channel in the triple-wavelength output every minute.
Fig. 8.
Fig. 8. Near-field distribution of LP11 intensities, OAM patterns, spiral interferograms, and the out spectra of wavelength-switchable laser. Four columns present (a)–(e) single-, (f)–(j) dual-, (k)–(o) triple-, and (p)–(t) quadruple-wavelength lasing operations. First row, LP11 intensity profiles; second row, donut-shaped mode patterns of vortex beams; third and fourth rows, corresponding clockwise and anticlockwise spiral interferograms; and fifth row, the output spectra.

Metrics